english Icono del idioma   español Icono del idioma  

Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/20.500.12008/49919 Cómo citar
Título: Timeless foundations : Exploring DC-VAEs as foundation models for time series analysis.
Autor: García González, Gastón
Casas, Pedro
Martínez, Emilio
Fernández, Alicia
Tipo: Preprint
Palabras clave: Time-Series Data, Generative AI, Anomaly Detection, VAE, Foundation Models for Time-Series
Fecha de publicación: 2024
Resumen: We investigate a novel approach to time-series modeling, inspired by the successes of large pre-trained foundation models. We introduce FAE (Foundation Auto-Encoders), a foundation generative-AI model for anomaly detection in time-series data, based on Variational Auto-Encoders (VAEs). By Foundation Model (FM), we mean a model pre-trained on massive amounts of time-series data which can learn complex temporal patterns useful for accurate modeling and forecasting on previously unseen datasets. FAE leverages VAEs and Dilated Convolutional Neural Networks (DCNNs) to build a generic model for time-series modeling, which could eventually perform properly in out-of-the-box, zero-shot anomaly detection applications. We introduce the main concepts and ideas of this FM for time-series (TSFM), and present some preliminary results in a multi-dimensional mobile network monitoring dataset. We also present example results applying novel TSFMs to this dataset, both in a zero-shot manner and relying on fine-tuning, and show how complex it is in the practice to achieve accurate results.
Financiadores: Este trabajo ha sido financiado parcialmente por el Austrian FFG ICT-of-the-Future project DynAISEC – Adaptive AI/ML for Dynamic Cybersecurity Systems – project ID 887504, the Austrian Science Fund, FWF project GRAPHS4SEC – Graph Neural Networks for Robust AI/ML-driven Network Security Applications – grant number I-6653, y por el proyecto uruguayo CSIC Generalization and Domain Adap- tation in Time-Series Anomaly Detection, project ID CSIC- I+D-22520220100371UD.
Citación: García González, G., Casas, P., Martínez, E. y otros. Timeless foundations : Exploring DC-VAEs as foundation models for time series analysis [Preprint]. Publicado en: 2024 8th Network Traffic Measurement and Analysis Conference (TMA), Dresden, Germany, 21-24 may. 2024, pp. 1-4.
Departamento académico: Procesamiento de Señales
Grupo de investigación: Tratamiento de Imagenes
Licencia: Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)
Aparece en las colecciones: Publicaciones académicas y científicas - Instituto de Ingeniería Eléctrica

Ficheros en este ítem:
Fichero Descripción Tamaño Formato   
GCMF24b.pdfPreprint1,3 MBAdobe PDFVisualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons