Por favor, use este identificador para citar o enlazar este ítem:
https://hdl.handle.net/20.500.12008/49919
Cómo citar
Registro completo de metadatos
Campo DC | Valor | Lengua/Idioma |
---|---|---|
dc.contributor.author | García González, Gastón | - |
dc.contributor.author | Casas, Pedro | - |
dc.contributor.author | Martínez, Emilio | - |
dc.contributor.author | Fernández, Alicia | - |
dc.date.accessioned | 2025-05-06T14:56:26Z | - |
dc.date.available | 2025-05-06T14:56:26Z | - |
dc.date.issued | 2024 | - |
dc.identifier.citation | García González, G., Casas, P., Martínez, E. y otros. Timeless foundations : Exploring DC-VAEs as foundation models for time series analysis [Preprint]. Publicado en: 2024 8th Network Traffic Measurement and Analysis Conference (TMA), Dresden, Germany, 21-24 may. 2024, pp. 1-4. | es |
dc.identifier.uri | https://hdl.handle.net/20.500.12008/49919 | - |
dc.description.abstract | We investigate a novel approach to time-series modeling, inspired by the successes of large pre-trained foundation models. We introduce FAE (Foundation Auto-Encoders), a foundation generative-AI model for anomaly detection in time-series data, based on Variational Auto-Encoders (VAEs). By Foundation Model (FM), we mean a model pre-trained on massive amounts of time-series data which can learn complex temporal patterns useful for accurate modeling and forecasting on previously unseen datasets. FAE leverages VAEs and Dilated Convolutional Neural Networks (DCNNs) to build a generic model for time-series modeling, which could eventually perform properly in out-of-the-box, zero-shot anomaly detection applications. We introduce the main concepts and ideas of this FM for time-series (TSFM), and present some preliminary results in a multi-dimensional mobile network monitoring dataset. We also present example results applying novel TSFMs to this dataset, both in a zero-shot manner and relying on fine-tuning, and show how complex it is in the practice to achieve accurate results. | es |
dc.description.sponsorship | Este trabajo ha sido financiado parcialmente por el Austrian FFG ICT-of-the-Future project DynAISEC – Adaptive AI/ML for Dynamic Cybersecurity Systems – project ID 887504, the Austrian Science Fund, FWF project GRAPHS4SEC – Graph Neural Networks for Robust AI/ML-driven Network Security Applications – grant number I-6653, y por el proyecto uruguayo CSIC Generalization and Domain Adap- tation in Time-Series Anomaly Detection, project ID CSIC- I+D-22520220100371UD. | es |
dc.format.extent | 4 p. | es |
dc.format.mimetype | application/pdf | es |
dc.language.iso | en | es |
dc.rights | Las obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad de la República.(Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014) | es |
dc.subject | Time-Series Data | es |
dc.subject | Generative AI | es |
dc.subject | Anomaly Detection | es |
dc.subject | VAE | es |
dc.subject | Foundation Models for Time-Series | es |
dc.title | Timeless foundations : Exploring DC-VAEs as foundation models for time series analysis. | es |
dc.type | Preprint | es |
dc.contributor.filiacion | García González Gastón, Universidad de la República (Uruguay). Facultad de Ingeniería. | - |
dc.contributor.filiacion | Casas Pedro, AIT, Austrian Institute of Technology, Vienna, Austria. | - |
dc.contributor.filiacion | Martínez Emilio, Universidad de la República (Uruguay). Facultad de Ingeniería. | - |
dc.contributor.filiacion | Fernández Alicia, Universidad de la República (Uruguay). Facultad de Ingeniería. | - |
dc.rights.licence | Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0) | es |
udelar.academic.department | Procesamiento de Señales | es |
udelar.investigation.group | Tratamiento de Imagenes | es |
Aparece en las colecciones: | Publicaciones académicas y científicas - Instituto de Ingeniería Eléctrica |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | ||
---|---|---|---|---|---|
GCMF24b.pdf | Preprint | 1,3 MB | Adobe PDF | Visualizar/Abrir |
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons