english Icono del idioma   español Icono del idioma  

Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/20.500.12008/49872 Cómo citar
Título: Towards foundation auto-encoders for time-series anomaly detection.
Autor: García González, Gastón
Casas, Pedro
Martínez, Emilio
Fernández, Alicia
Tipo: Ponencia
Palabras clave: Time-Series Data, Anomaly Detection, VAE, Foundation Models
Fecha de publicación: 2024
Resumen: We investigate a novel approach to time-series modeling, inspired by the successes of large pretrained foundation models. We introduce FAE (Foundation Auto-Encoders), a foundation generative-AI model for anomaly detection in time-series data, based on Variational Auto-Encoders (VAEs). By foundation, we mean a model pretrained on massive amounts of time-series data which can learn complex temporal patterns useful for accurate modeling, forecasting, and detection of anomalies on previously unseen datasets. FAE leverages VAEs and Dilated Convolutional Neural Networks (DCNNs) to build a generic model for univariate time-series modeling, which could eventually perform properly in out-of-the-box, zero-shot anomaly detection applications. We introduce the main concepts of FAE, and present preliminary results in different multidimensional time-series datasets from various domains, including a real dataset from an operational mobile ISP, and the well known KDD 2021 Anomaly Detection dataset.
Editorial: MILETS
EN: The 10th Mining and Learning from Time Series Workshop : From Classical Methods to LLMs (MILETS 2024), Aug 25th, 2024 - KDD 2024, Barcelona, Spain, pp. 1-9.
Financiadores: Este trabajo ha sido financiado parcialmente por FWF Austrian Science Fund, Project I-6653 GRAPHS4SEC, the Austrian FFG ICT- of-the-Future project DynAISEC – Adaptive AI/ML for Dynamic Cybersecurity Systems – ID 887504 y por el Proyecto uruguayo CSIC con referencia CSIC-I+D-22520220100371UD Generalization and Domain Adaptation in Time-Series Anomaly Detection.
Citación: García González, G., Casas, P., Martínez, E. y otros. Towards foundation auto-encoders for time-series anomaly detection [en línea]. EN: The 10th Mining and Learning from Time Series Workshop : From Classical Methods to LLMs (MILETS 2024), Barcelona, Spain, Aug 25th 2024, pp. 1-9.
Departamento académico: Procesamiento de Señales
Grupo de investigación: Tratamiento de Imagenes
Licencia: Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)
Aparece en las colecciones: Publicaciones académicas y científicas - Instituto de Ingeniería Eléctrica

Ficheros en este ítem:
Fichero Descripción Tamaño Formato   
GCMF24.pdfVersión definitiva2,91 MBAdobe PDFVisualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons