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Abstract
We investigate a novel approach to time-series modeling, inspired
by the successes of large pretrained foundation models. We intro-
duce FAE (Foundation Auto-Encoders), a foundation generative-AI
model for anomaly detection in time-series data, based on Vari-
ational Auto-Encoders (VAEs). By foundation, we mean a model
pretrained on massive amounts of time-series data which can learn
complex temporal patterns useful for accurate modeling, forecast-
ing, and detection of anomalies on previously unseen datasets.
FAE leverages VAEs and Dilated Convolutional Neural Networks
(DCNNs) to build a generic model for univariate time-series mod-
eling, which could eventually perform properly in out-of-the-box,
zero-shot anomaly detection applications. We introduce the main
concepts of FAE, and present preliminary results in different multi-
dimensional time-series datasets from various domains, including
a real dataset from an operational mobile ISP, and the well known
KDD 2021 Anomaly Detection dataset.
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1 Introduction
While the literature offers a plethora of traditional statistical models
for anomaly detection in time-series data, they often struggle with
the non-stationary, non-linear, and noisy nature of real data, leading
to suboptimal predictions. In recent years, there has been a surge
in the adoption of modern deep learning-based approaches for
time-series anomaly detection [28, 31], owing to their ability to
handle complex dependencies and generate realistic data sequences.
Generative AI methodologies, in particular, have gained attention
for their performance in time-series modeling [11, 25, 37].

In this paper, we focus on devising a Generative AI model capable
of matching or even surpassing the performance of conventional
time-series modeling methods without the need for training on the
specific target dataset - a concept known as Zero-Shot Learning
(ZSL). ZSL is a problem setup in deep learning where, at test time, a
learner observes samples from classes which were not observed dur-
ing training, and needs to predict the class that they belong to. We
therefore investigate if a model pretrained on multiple time-series
data can learn temporal patterns useful for accurate forecasting
on previously unseen time-series. For doing so, we use as starting
point the DC-VAE model [13], a deep-learning-based, unsupervised,
and multivariate approach to real-time anomaly detection in MTS
data, based on popular Variational Auto-Encoders (VAEs) [23].

VAEs are generative AI models that learn the underlying distribu-
tion of the data and can generate new samples from this distribution.
In the context of time-series data, VAEs can capture latent represen-
tations of temporal patterns and generate sequences that exhibit

similar characteristics, making them powerful for generalization
and ZSL. VAEs learn a low-dimensional latent space representation
of the input data, which captures the underlying structure of the
data in a compressed form. By learning meaningful representations,
VAEs can generalize well to unseen data points that lie within the
same distribution as the training data, supporting generalization
to new instances. As generative models, VAEs can generate new
samples from the learned latent space distribution. potentially en-
abling ZSL, as the model can produce samples that belong to unseen
classes or categories without explicitly training on them. By sam-
pling from the latent space, VAEs can generate diverse and realistic
data points even for classes not present in the training set.

We introduce and investigate FAE (Foundation Auto-Encoders),
a foundation generative-AI model for anomaly detection in time-
series data, based on VAEs. FAE uses DC-VAE’s network architec-
ture [13], originally designed for multivariate anomaly detection. In
particular, it leverages VAEs and Dilated Convolutional Neural Net-
works (DCNNs) to build a generic model for univariate time-series
modeling, which could eventually perform properly in out-of-the-
box, zero-shot anomaly detection applications. The reasons for
moving from multivariate to univariate time-series analysis are
twofold: from an architectural point of view, we become indepen-
dent of the spatial dimensionality of a MTS dataset – i.e., we fix
the spatial input dimensionality to one – and can therefore apply
exactly the same architecture without any modifications; from an
analytics perspective, while a univariate model is at a disadvantage
compared to a multivariate model – i.e., it loses access to cross-
correlational information, which we have shown might be critical
for better data modeling [13, 14] – the univariate version puts the
focus exclusively on the temporal behavior of the data, which is ex-
actly the target of the generalization we are looking for – we want
a model that generalizes across the temporal dimension and not
necessarily the spatial one, which varies among different problems.

We introduce the main concepts and ideas behind FAE, along
with its network architecture, and present preliminary results in the
analysis of two different datasets: (1) a multi-dimensional network
monitoring dataset – TELCO [15], collected from an operational
mobile Internet Service Provider (ISP), recently released openly to
the research community; and (2) a large-span dataset of 250 multi-
domain time series released for the KDD2021 yearly data contest
[22]. The remainder of the paper is organized as follows: Section 2
presents an overview of the related work. In Section 3 we describe
the FAE model and its underlying network architecture. Section 4
reports the preliminary results obtained with FAE on the analysis of
time-series from TELCO and KDD2021, with a particular focus on
generalization and zero-shot modeling. Discussion on the potential
of FAE, along with its limitations, is presented in Section 5. Finally,
Section 6 concludes the paper.
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Figure 1: FAE’s encoder/decoder architecture using causal
dilated convolutions, implemented through a stack of 1D
convolutional layers.

2 Related Work
The diversity of data characteristics and types of anomalies results
in a lack of universal anomaly detectionmodels. Modern approaches
to time-series anomaly detection based on deep learning technology
have flourished in recent years [28, 31]. Due to their data-driven
nature and achieved performance in multiple domains, generative
models such as VAEs and Generative Adversarial Networks (GANs)
[19] have gained relevance in the anomaly detection field [5, 9, 11,
17, 26, 38, 39].

VAEs [8, 23, 24] represent a powerful and widely-used class of
models to learn complex data distributions. Unlike GANs, a poten-
tial limitation of VAEs is the prior assumption that latent sample
representations are independent and identically distributed. While
this is the most common assumption followed in the literature,
there is ongoing research on the benefits of accounting for covari-
ances between samples in time to improve model performance
[3, 10, 18, 29]. For example, while the original work [23] assumes
that the prior over the parameters and latent variables are cen-
tered isotropic Gaussian and the true posteriors are approximately
Gaussian with approximately diagonal covariance, [10] proposes
an approximation capturing temporal correlations, by considering
a Gaussian process prior in the latent space.

Modeling data sequences through a combination of variational in-
ference and deep learning architectures has been vastly researched
in other domains in recent years, mostly by extending VAEs to
Recurrent Neural Networks (RNNs), with architectures such as
STORN [1], VRNN [6], and Bi-LSTM [32] among others. Convolu-
tional layers with dilation have been also incorporated into some
of these approaches [25, 36], allowing to speed up the training pro-
cess based on the possibilities of parallelization offered by these
architectures. One of these approaches using Dilated Convolutional
Neural Networks as the encoder-decoder architecture for VAEs is
our DC-VAE model [12, 13].

Transformer-based models [33] are gaining popularity in recent
years for time-series analysis, given their remarkable performance
in large-scale settings, such as long sequence time-series forecasting
(LSTF). LSTF requires capturing long-range dependencies between
input and output efficiently. Earlier examples include the TFT in-
terpretable model [27] and the MQTransformer model [4]. The
Informer model [40] introduced Transformers for long sequence
forecasting through sparse self-attention mechanisms. This concept

has since been further refined through various forms of inductive
bias and attention mechanisms in models like the Autoformer [34]
and the FEDformer [41].

Finally, there is a recent surge in papers targeting the conception
of foundation models for time-series data, capable of generating ac-
curate predictions for diverse datasets not seen during training. The
underlying concept of these models is to rely on highly expressive,
large-scale architectures which are trained on millions or billions
of time-series data points, coming from very diverse domains and
having high heterogeneity in terms of temporal behaviors and
characteristics. TimeGPT-1 [16], PromptCast [35], LLMTime [20],
TimesFM [7], Lag-Llama [30], and Time-LLM [21] are all examples
of novel foundation models for time-series forecasting, which tar-
get a ZSL application. FAE follows exactly this concept, but using
a much smaller and simpler architecture. While this adds certain
limitations in terms of expressiveness and therefore generaliza-
tion capabilities, it also opens the door to the exploration of other
venues, such as the combined utilization of smaller foundation mod-
els in the form of ensembles, in combination with domain detection
strategies.

3 FAE Model and Network Architecture
Time-series are generally processed through sliding windows, con-
densing the information of the most recent 𝑇 measurements. We
define 𝑿 as the input vector in R1×𝑇 . For a given input 𝑿 , the
trained VAE model produces two different predictions, 𝝁𝑿 and 𝝈𝑿
– vectors in R1×𝑇 , corresponding to the parameterization of the
probability distribution which better represents the given input.
If the VAE model was trained (mainly) with data describing the
normal behavior of the monitored system, then the output for a
non-anomalous input would not deviate from the mean 𝝁𝑿 more
than a specific integer 𝜶 times the standard deviation 𝝈𝑿 . On the
contrary, if the input presents an anomaly, the output would not be-
long to this normality region. The main goal of the VAE model is to
learn a compressed representation of 𝑿 in an unsupervised manner.
This compressed representation 𝒁 is referred to as a latent variable,
and it is learned by training the VAE to generate data that is similar
to the input data. VAEs learn a probabilistic mapping between the
input data and its latent variable, which allows to generate new
data by sampling from the learned latent variable distribution.

Figure 1 depicts the encoder/decoder architecture used in FAE,
which is an adaptation of DC-VAE’s architecture, for the case of
univariate time-series analysis. The FAE model functions as a uni-
variate model trained on various series within a system simulta-
neously, treating them as distinct classes of series. Similar to the
original DC-VAE version, FAE allows for monitoring of all time-
series within a MTS process using a single model, albeit analyzing
one time-series at a time. The architecture, based on dilated convolu-
tional neural networks (DCNNs), is capable to exploit the temporal
dependence of values for longer sequences. The main difference
with DC-VAE is that the new architecture has to accommodate
univariate input samples 𝑿 ∈ R1×𝑇 , rather than multivariate ones.
To maintain the concept of compression – i.e., the dimension of
the latent space 𝒁 has to be lower than the input dimension of 𝑿 –
the latent space in FAE reduces dimensionality along the temporal
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dimension; in DC-VAE, the dimensionality reduction operates in
the spatial dimension.

Using DCNNs forces to keep the sequence length𝑇 at the output
of each hidden layer – referred to as 𝑯 – thus 𝑯 ∈ R𝑈 ×𝑇 , where
𝑈 is the number of filters in the layer. As shown in Figure 1, the
dilation of each layer at the encoder increases exponentially as
the network deepens, ensuring that each time 𝑡 of the output at
the final layer has information from all the previous times of 𝑿
up to 𝑡 , i.e., [𝑋0, 𝑋1, ..., 𝑋𝑡 ]. This means that the last sample of the
output at position𝑇 − 1 contains information from the entire input
sequence 𝑿 . Then, two layers in parallel with 𝐽 filters of size one
are applied at the output of the last hidden layer, bringing the
output to a 𝐽 -dimensional latent space. The output of the encoder
results from keeping only the values at time 𝑇 − 1 at the output
of these filters, resulting in vectors 𝝁𝒁 ,𝝈𝒁 ∈ R𝐽 ×1, which define
the distribution in the latent space of the inputs 𝑿 , where 𝐽 < 𝑇 .
Using the reparameterization trick [23], the latent vector 𝒁 ∈ R𝐽 ×1
is generated, corresponding to the encoding of observation 𝑿 , and
is then fed into the decoder. The decoder remains the same as in
DC-VAE, which is symmetric with respect to the encoder. However,
given that its input requires a sequence of𝑇 values and not a single
one, the input to the decoder is generated by repeating the vector 𝒁
for a total of𝑇 times, obtaining an input sample ∈ R𝐽 ×𝑇 . As a result,
FAE’s decoder extracts information from the same latent vector 𝒁
for each time 𝑡 , to generate the output parameters 𝝁𝑿 ,𝝈𝑿 ∈ R1×𝑇 ,
which are used to evaluate deviations from the input observation
𝑿 . If the FAE model was trained (mainly) with data describing
the normal behavior of the analyzed time-series, then the value
of a non-anomalous sample 𝑿𝑡 at time 𝑡 would not deviate from
the predicted mean 𝝁𝑿 𝑡 more than a specific integer 𝛼 times the
standard deviation𝝈𝑿 𝑡 . On the contrary, if the sample is anomalous,
it would not belong to the region determined by the predicted mean
and standard deviation.

In terms of size of the architecture, an interesting characteristic
of FAE is that its structure and number of layers is defined by the
length𝑇 of the sliding window. In particular, the number of hidden
layers 𝑁 and the length of filters 𝐹 are related through the dilation
factor 𝑑 = 𝐹ℎ of the DCNNs, which grows exponentially with the
layer depth 𝑛 ∈ [0, 𝑁 − 1]. Subsequently, 𝑁 is the minimum value
that verifies: 𝑇 ≤ 2 ∗ 𝐹𝑁−1. In the architectural example (cf. Figure
1), the window length is 𝑇 = 8 and the filter length is 𝐹 = 2, and
the target is achieved by taking 𝑁 = 3 hidden layers. This direct
relationship between 𝑇 and the network architecture has a strong
practical impact, making it easy to construct the encoder/decoder
based on the desired temporal-depth of the analysis. As a final
reference of architectural complexity, for a relatively small FAE
architecture, using 𝑇 = 256 samples (less than one day of samples,
at a 5’ sampling-rate), the network exposes roughly half a million
free parameters to train. Training FAE with a sufficiently large
and heterogeneous training set, comprising multiple time-series
of different characteristics, enhances its capability to generalize to
unseen data and eventually to different domains.

Table 1: Grid of hyperparameters used in the model calibra-
tion.

Hyperparameter Grid Search Ranges Best

𝑇 - sequence length {128 − 512}, step=32 256
𝐽 - latent dimension {16 − 𝑇 /4}, step=16 48
𝛾 - learning rate {1𝑒−5 − 5𝑒−4 } 6𝑒−5

𝑚 - mini-batch size {16 − 96}, step=16 32
𝑈 - number of filters {16 − 128}, step=16 128

4 FAE Time-Series Prediction in the Practice
4.1 Application of FAE in TELCO
We experiment with FAE in the analysis of an open MTS dataset
arising from the monitoring of an operational mobile ISP, consist-
ing of time-series with different structural properties. Referred to
as the TELCO dataset [15], this large-scale – about 750 thousand
samples, long time-span – seven months’ worth of measurements
(January 1st to July 31st, 2021) collected at a five-minutes scale,
multi-dimensional – twelve different time-series, network moni-
toring dataset includes ground-truth labels for anomalous events
at each individual time-series, manually labeled by the experts of
the network operation center (NOC) managing the mobile ISP. The
twelve time-series are typical data monitored in a mobile ISP, in-
cluding volume of data traffic, number of SMS, number and amount
of prepaid data transfer fees, number and cost of calls, etc.

In this paper we focus on a more qualitative analysis of FAE’s per-
formance, focusing on its ability to properly track and reconstruct
the different TELCO time-series, and the KDD2021 time-series in
section 4.6. Figure 2 depicts a one-month example from the com-
plete TELCO MTS dataset. Different time-series expose different
behaviors, e.g., some of them are noisier (TS3 and TS9), others have
lower dynamic ranges (TS1), and some others show a smoother
evolution (TS2). All time-series exhibit daily seasonality, but some
behave differently on weekends compared to workdays, while oth-
ers show monthly trends either ascending or descending.

4.2 Hyperparameter Search and Training
One of the most important aspects when working with deep learn-
ing models is the search of model and training hyperparameters,
along with the subsequent training of the model. Table 1 shows the
grid used for the hyperparameter search, as well as the best values
(smallest validation loss), identified by Tree-structured Parzen Es-
timator (TPE) search [2]. In total, 50 attempts were tested on the
grid. In the table, 𝑇 corresponds to the sequence length, and 𝐽 is
the dimensionality of the latent space. Training hyperparameters
include the learning rate 𝛾 and the mini-batch size𝑚. Finally, 𝑈 is
the number of filters for each hidden convolutional layer, which
together with the number of layers and the input and output di-
mensions define the size of the architecture in terms of the number
of trainable parameters 𝑝 . Considering the five minutes sampling
rate of the time-series, the selected sequence length of 𝑇 = 256
samples corresponds to a time window of 21hs and 20 minutes. The
exact number of trainable parameters in the identified architecture
is 𝑝 = 483.840.

We split the full, 7-months dataset in three independent, time-
ordered sub-sets, using measurements from January to March for
model training (3 months), April for model validation (1 month),
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Figure 2: TELCO time-series, for one month worth of data (March 2021), sampled at a five minutes rate.
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Figure 3: Predictions with fully-trained FAE andmultivariate
DC-VAE in two days of TELCO samples.

and May to July for testing purposes (3 months). One of the disad-
vantages of the FAE model as compared to the multivariate DC-VAE
model is the training time, and hence the time required for hyperpa-
rameter search. The FAE model requires approximately five times
more training time than DC-VAE.

4.3 FAE Modeling Performance
We evaluate the prediction performance of FAE in samples from
the testing set, considering training on the full three months of
data, for the 12 time-series, i.e., more than 300.000 samples. Figure
3(a) depicts the resulting predictions 𝝁𝑿 𝑡 and 𝝈𝑿 𝑡 for two days of
testing samples 𝑿𝑡 from June 2021, for four representative time-
series, including TS1, TS4, TS8, and TS12. To addmore variability, we
consider a working day (Friday 4th) and a weekend day (Saturday
5th). FAE can properly track different types of behavior in the time-
series, including the strong seasonal daily component, but also the
operation during workdays and weekends, clearly visible in TS12.
Interesting to note is how different periods of time-series variability

ZPC2

ZPC1

Figure 4: Latent space representation – temporal evolution.

result in more or less tight normal-operation regions estimated by
FAE, as defined by 𝝈𝑿 𝑡 . Figure 3(b) depicts the predictions obtained
by the former DC-VAE multivariate model in the same four time-
series, using a different time period in April – in this case from the
validation test – from Friday 16th till Saturday 17th. Results are
similar, but in particular for TS12, DC-VAE can better capture the
drop observed on Saturday evening, exploiting the strong spatial
correlation observed on Saturday between TS12, TS11, and both TS1
and TS2 (cf. Figure 2). Nevertheless, note that FAE predictions are
slightly better than DC-VAE’s for TS8 and TS12 on Friday.

To better understand the modeling capabilities of FAE, we focus
on the analysis of the latent space𝒁 , for the different time-series and
the different times of the analysis. Recall that the latent space set for
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FAE in this analysis is 𝐽 = 48; to easily visualize 𝒁 as a two- or three-
dimensional space, we apply standard PCA analysis, and study the
top-two and top-three principal components 𝒁𝑷𝑪𝒊,...𝒊=1,2,3. Figure
4 shows the latent representation of each sample 𝑿𝑡 for a single
day, for all the 12 time-series, depicting the encoded samples in
colors, each color representing a different three-hour period of the
day. Plotting the first two principal components shows that each
hour period maps to a certain position in the latent space, and
interestingly, the direction mirrors the progression of hours on a
clock, ordered continuously by hour of the day.

Figure 5(a) depicts now the first three principal components, dis-
playing the previously analyzed four time-series TS1, TS4, TS8, and
TS12, independently. FAEmaps each time-series to a different region
of the latent space, showing it can properly differentiate among
different time-series characteristics. Closely located samples from
different time-series exhibit similar behaviors in the time-series
space. For example, time-series TS1 and TS12 are closer to the center
of the latent space, and both exhibit a similar behavior (cf. Figure 2),
with marked differences between weekends and workdays. On the

other hand, time-series TS4 and TS8 have a similar temporal behav-
ior without marked variations between workdays and weekends,
and are located together and farther from the center of 𝒁 .

The difference between time-series for workdays and weekends
is further explored in Figures 5(b,c), where workday samples are
displayed in purple color, and weekends in yellow, for (b) time-
series TS1 and (c) time-series TS4. The plots include two spheres
with radius one and two, reflecting the expected Gaussian distri-
bution of the latent space. The difference between workdays and
weekends are clear for TS1, with weekends clustering closer to the
center (smaller dynamic range, cf. Figure 2), and workdays located
closer at the sphere borders (bigger dynamic range). This work-
days/weekends difference is not observed for TS4. Note in Figure
2 how time-series TS11 and TS12 exhibit a downtrend behavior
during the month, which can also be observed in the latent-space.
Figure 6 depicts the latent representation of time-series TS12, where
days of the month are differentiated by color, from day 1 in purple
to day 31 in yellow. As the month goes by, the representation in
the latent space moves from the outside borders closer towards the
center.

Finally, Figure 7 reports the prediction results, along with flagged
anomalies, for both DC-VAE (left) and FAE (right) for the complete
12 time-series in TELCO. Modeling behavior and detection perfor-
mance are comparable between both models.

To wrap-up these preliminary evaluations, we observe how FAE
can properly capture and differentiate among the different temporal
behaviors present in the time-series used for training, suggesting
a sufficiently expressive model and architecture to model a large
and heterogeneous dataset of time-series. In addition, the visual
analysis of the latent representations in FAE evidences how VAEs
– despite their generative nature – are rather transparent in their
operation and behavior, making interpretation and analysis simpler
andmore human-friendly. This is indeed a strong advantage of VAEs
as a powerful yet explainable generative AI model, as compared
to modern generative AI approaches, which operate in a more
black-box manner.
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Figure 7: FAE vs DC-VAE in TELCO.
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Figure 8: FAE vs DC-VAE in TELCO2.

4.4 FAE vs DC-VAE in TELCO2
What happens when we modify the application domain? In Figure
8, we apply the pretrained DC-VAE and FAE models in a modified
version of TELCO, corresponding to newer data captured in 2024,
with modifications in some of the time-series. We refer to this new
dataset as TELCO2. On the left side, we depict the modeling and
detection performance of DC-VAE, and FAE on the rightside. Both
models are pretrained in TELCO, and then applied on TELCO2.
In this scenario, it is clear to see the flexibility and advantages of
FAE over a multivariate version of the model, which would need
re-calibration to cope with the slight yet present variations in the

domain of the dataset. In particular, the spatial modification of
correlations and time-series’ characteristics make it challenging for
DC-VAE to properly adjust to this domain modification.

4.5 Zero-shot Modeling Behavior
We investigate now the performance of FAE in a zero-shot setting,
testing the model for time-series not seen at training time. We
focus the analysis on TS12, due to its combined seasonality and
particular temporal trend, as well as its strong correlated behav-
ior to TS11 (cf. Figure 2). We train FAE on three different training
datasets from TELCO, using the same 3/1/3-months temporal split
for training/validation/testing, but considering a different number
of time-series TS𝑖 . The first model uses all 12 time-series – we refer
to it as full-FAE; the second model considers a zero-shot setting
for TS12, with a training dataset which includes time-series TS1 to
TS11, leaving out all samples from TS12; given the strong temporal
correlation between TS12 to TS11, we also train a third model leav-
ing out all samples from TS11 and TS12, i.e., training on time-series
TS1 to TS10.

The full FAE model mimics a situation where we pretrain with
a sufficiently large and heterogeneous dataset which covers the
statistical behavior of the downstream data – i.e., a model that
has seen it all. The other two models mimic two different levels of
zero-shot learning: the former represents a pure zero-shot setting
for TS12, where the pretrained model has nevertheless observed a
similar statistical behavior in a different time-series, i.e., TS11 – in
particular, it has seen both the seasonality and the monthly trend
behaviors; the latter represents a more challenging setting, where
the pretrained model has not seen the monthly trend behavior,
which is not present in TS1 to TS10.

Figure 9 presents the prediction performance of the three models,
when applied to two weeks of TS12 samples, from May 5 to May
19, 2021. In Figure 9(a), the modeling performance for full-FAE is
optimal, as it can properly track the different behaviors and patterns
in the time-series, similarly to Figure 3(a). A similar performance
is observed in Figure 9(b) for the second model, which learns the
characteristics of TS12 at training time, from TS11. Not surprisingly,
the performance of the third model in Figure 9(c) is significantly
worse than for the other two models, given the lack of a similar
temporal pattern in the training data. To some extent, there is an
identification with the patterns observed in time-series TS1 – note
how the daily sharp peaks are exacerbated – which is coherent
with their close representations in the latent space (cf. Figure 5(a)).
Nevertheless, it somehowmanages to capture and track themonthly
downtrend, even without previous evidence of it.

4.6 Application of FAE in KDD2021
In this last evaluation, we extend the application of FAE to the
KDD2021 dataset, consisting of 250 different time-series arising
from many different domains. The dataset is part of the larger
UCR Time Series Classification Archive (https://www.cs.ucr.edu/
~eamonn/time_series_data_2018/). Within the dataset, each time-
series comes in two parts, a train partition and a test partition,
which are generally of different sizes. For consistency with TELCO,
we take 12 different time series from KDD2021 and apply FAE on
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Time (day of the month, May 2021)

Training data – TELCO {TS1 – TS12}

(a) FAE predictions for TS12 , with full-FAE (12 time-series).

Time (day of the month, May 2021)

Training data – TELCO {TS1 – TS11}

(b) FAE predictions for TS12 , with FAE trained without TS12 .

Time (day of the month, May 2021)

Training data – TELCO {TS1 – TS10}

(c) FAE predictions for TS12 , with FAE trained without TS11 and TS12 .

Figure 9: Zero-shot modeling experimentation, predicting
TS12 for two weeks in the testing dataset (May 2021). (a) FAE
is trained on the full, 12 time-series training set – modeling
performance is optimal. (b) FAE is trained on 11 time-series,
leaving out TS12 – performance remains almost unchanged.
(c) FAE is trained on 10 time-series, leaving out TS11 and TS12
– modeling performance is impacted.
them, training on the train partition and reporting testing results.
We refer to this dataset as KDD2021-12.

Figure 10 depicts the predictions obtained with FAE in KDD2021-
12. Tracking performance is highly accurate, in particular when
considering the anomaly detection application which FAE targets,
where the main goal is not to fully reconstruct the output, but
rather to provide a mean and variance values where samples are
expected to be contained. A couple of observations are worth con-
sidering: first, there is a much higher heterogeneity in KDD2021-12
as compared to TELCO, yet FAE manages to properly track the
expected normal behavior of the time-series. Second, for some of
the KDD2021-12 time series – e.g., TS10, there are long periods of
inactivity (constant value) followed by a very spiky behavior; in
those cases, note how FAE provides a proper prediction contained
in the forecasted variance, which covers the actual time-series val-
ues. Finally, Figure 11 depicts the resulting latent space for the
KDD2021-12 time-series, which evidences a more complex mix
to model, evidenced by clouds of dots from different time-series
mixed together; nevertheless, there is a clear structure in the data
– clusters with single time-series or with time-series with similar
behavior, which again confirms the principled concepts employed
by FAE when it comes to the application of VAEs to understand the
modeling approach.

5 Discussion and Limitations of FAE
Selecting VAEs for our foundation model exploration has both
benefits and limitations, which we briefly discuss next. On the
benefits side, we have shown how easy it is to explore and interpret
the functioning of the encoding and the behavior of the encoded
time-series in the latent space, making the model transparent and
easy to tame, particularly for training. While VAEs may struggle
with capturing long-range dependencies in the data, we have shown
how the integration of DCNNs as part of the encoding/decoding

Figure 10: FAE applied in 12 time-series from KDD2021.

networks enables tracking multiple different temporal behaviors in
the time-series, from seasonality to long-term trends.

FAE shows potential to be a strong foundation model for time-
series analysis, but so far, we have only trained and tested the model
with a rather small number of datasets from a limited number of
different domains, and thus still require further assessment. Indeed,
thorough testing and validation would be necessary to assess FAE’s
performance and generalization capabilities in different scenarios.
Ultimately, the effectiveness of FAE as a foundation model would
depend on its performance in various real-world scenarios and its
ability to generalize to different datasets and different domains.

While powerful, VAEs may have limitations in terms of expres-
siveness when tasked with learning and mapping a large-scale
number of highly heterogeneous time-series data. VAEs operate
under the assumption of a latent variable space with a simple dis-
tribution, which may not always capture the intricate and diverse
characteristics of more complex and diverse time-series data.

We note that the performance of FAE in generalization and zero-
shot learning tasks can be affected by factors such as the complexity
of the data, the dimensionality of the latent space, the choice of
the encoder/decoder architecture, and the quality and diversity
of the training data. Additionally, while VAEs can capture global
structure in the data distribution, they may not always capture fine-
grained details or handle complex data distributions as effectively
as other generative models. Finally, in terms of scalability, FAE’s
performance may degrade with extremely large datasets or highly
heterogeneous data, as the model complexity may need to increase
significantly.

6 Concluding Remarks
We have introduced FAE, a novel approach for time-series modeling,
motivated by the performance realized by large pretrained foun-
dation models in different domains. FAE targets the detection of
anomalies in univariate time-series data, leveraging VAEs and DC-
NNs to pretrain on large-scale, heterogeneous time-series datasets,
potentially enabling to properly model and track a baseline for
normal operation, even on unseen datasets.
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ZPC3

ZPC2 ZPC1

Figure 11: FAE’s latent space for the 12 KDD2021 time-series.
The preliminary assessment of FAE’s performance has shown

promising results. In particular, we have provided evidence of FAE’s
capabilities to capture and distinguish various temporal behav-
iors within the training time-series, demonstrating a promising
capacity to model large and heterogeneous datasets effectively. The
interpretability of FAE’s latent representations showcased VAEs’
transparency in operation, facilitating simpler analysis and inter-
pretation compared to black-box generative AI models.

Our exploration extended to the zero-shot learning scenario,
where FAE’s performance on unseen time-series was assessed. We
tested FAE in three settings, ranging from optimal modeling perfor-
mance to more challenging scenarios. While FAE performs properly
in tracking different behaviors and patterns in the time-series, even
in the absence of previous evidence, there is room for further im-
provement, especially in capturing previously unseen temporal
trends.

These initial findings underscore FAE’s potential as a feasible
foundation model for time-series analysis. However, it is essential
to note that our evaluation was limited to a rather small number of
datasets from a limited number of different domains. As part of our
ongoing work, we are focusing on comprehensively testing FAE’s
performance and generalization capabilities across diverse scenar-
ios, using much larger and heterogeneous time-series datasets for
training, considering more heterogeneous domains.
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