Por favor, use este identificador para citar o enlazar este ítem:
https://hdl.handle.net/20.500.12008/49751
Cómo citar
Registro completo de metadatos
Campo DC | Valor | Lengua/Idioma |
---|---|---|
dc.contributor.author | Canale, Eduardo | - |
dc.contributor.author | Cancela, Héctor | - |
dc.contributor.author | Robledo, Franco | - |
dc.contributor.author | Romero, Pablo | - |
dc.contributor.author | Sartor, Pablo | - |
dc.date.accessioned | 2025-04-23T16:49:17Z | - |
dc.date.available | 2025-04-23T16:49:17Z | - |
dc.date.issued | 2015 | - |
dc.identifier.citation | Canale, E., Cancela, H., Robledo, F. y otros. Full complexity analysis of the diameter-constrained reliability [Preprint]. Publicado en: International Transactions in Operational Research, 2015, vol. 22, no. 5, pp. 811-821. DOI: 10.1111/itor.12159. | es |
dc.identifier.uri | https://hdl.handle.net/20.500.12008/49751 | - |
dc.description.abstract | Let G = (V;E) be a simple graph with |V| = n nodes and |E| = m links, a subset K ⊆ V of terminals, a vector p = (p1; ...; pm) ∈ [0; 1]m and a positive integer d, called diameter. We assume nodes are perfect but links fail stochastically and independently, with probabilities qi = 1 - pi. The diameter-constrained reliability (DCR for short), is the probability that the terminals of the resulting subgraph remain connected by paths composed by d links, or less. This number is denoted by RdK ,G(p). The general DCR computation is inside the class of NP-Hard problems, since is subsumes the complexity that a random graph is connected. The contributions of this paper are two-fold. First, a full analysis of the computational complexity of DCR-subproblems is presented in terms of the number of terminal nodes k = |K| and diameter d. Second, we extend the class of graphs that accept efficient DCR computation. In this class we include graphs with bounded co-rank, graphs with bounded genus, planar graphs, and, in particular, Monma graphs, which are relevant in robust network design. | es |
dc.format.extent | 17 p. | es |
dc.format.mimetype | application/pdf | es |
dc.language.iso | en | es |
dc.rights | Las obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad de la República.(Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014) | es |
dc.subject | Network Reliability | es |
dc.subject | Computational Complexity | es |
dc.subject | Diameter-Constrained Reliability | es |
dc.subject | Monma Graphs | es |
dc.title | Full complexity analysis of the diameter-constrained reliability. | es |
dc.type | Preprint | es |
dc.contributor.filiacion | Canale Eduardo, Universidad de la República (Uruguay). Facultad de Ingeniería. | - |
dc.contributor.filiacion | Cancela Héctor, Universidad de la República (Uruguay). Facultad de Ingeniería. | - |
dc.contributor.filiacion | Robledo Franco, Universidad de la República (Uruguay). Facultad de Ingeniería. | - |
dc.contributor.filiacion | Romero Pablo, Universidad de la República (Uruguay). Facultad de Ingeniería. | - |
dc.contributor.filiacion | Sartor Pablo, Universidad de Montevideo | - |
dc.rights.licence | Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0) | es |
Aparece en las colecciones: | Publicaciones académicas y científicas - IMERL (Instituto de Matemática y Estadística Rafael Laguardia) |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | ||
---|---|---|---|---|---|
CCRRS15.pdf | Preprint | 283,32 kB | Adobe PDF | Visualizar/Abrir |
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons