Por favor, use este identificador para citar o enlazar este ítem:
https://hdl.handle.net/20.500.12008/49701
Cómo citar
Registro completo de metadatos
Campo DC | Valor | Lengua/Idioma |
---|---|---|
dc.contributor.author | Canale, Eduardo | - |
dc.contributor.author | Piccini, Juan | - |
dc.contributor.author | Robledo, Franco | - |
dc.contributor.author | Romero, Pablo | - |
dc.date.accessioned | 2025-04-11T17:41:57Z | - |
dc.date.available | 2025-04-11T17:41:57Z | - |
dc.date.issued | 2014 | - |
dc.identifier.citation | Canale, E., Piccini, J., Robledo, F, y otros. Diameter-constrained reliability : Complexity, factorization and exact computation in weak graphs [Preprint]. Publicado en: LANC '14 : Latin America Networking Conference, Montevideo, Uruguay, 18-19 sep. 2014, pp. 1-7. | es |
dc.identifier.uri | https://hdl.handle.net/20.500.12008/49701 | - |
dc.description.abstract | In this paper we address a problem from the field of network reliability, called diameter-constrained reliability. Specifically, we are given a simple graph G = (V, E) with [V] = n nodes and [E] = m links, a subset K ⊆ V of terminals, a vector p = (p1,...,pm) ϵ [0, 1]m and a positive integer d, called diameter. We assume nodes are perfect but links fail stochastically and independently, with probabilities qi = 1 --- pi. The diameter-constrained reliability (DCR for short), is the probability that the terminals of the resulting subgraph remain connected by paths composed by d links, or less. This number is denoted by RdK,G(p). The general DCR computation is inside the class of NP-Hard problems, since is subsumes the complexity that a random graph is connected. In this paper the computational complexity of DCR-subproblems is discussed in terms of the number of terminal nodes k = [K] and diameter d. A factorization formula for exact DCR computation is provided, that runs in exponential time in the worst case. Finally, a revision of graph-classes that accept DCR computation in polynomial time is then included. In this class we have graphs with bounded co-rank, graphs with bounded genus, planar graphs, and, in particular, Monma graphs, which are relevant in robust network design. We extend this class adding arborescence graphs. A discussion of trends for future work is offered in the conclusions. | es |
dc.format.extent | 7 p. | es |
dc.format.mimetype | application/pdf | es |
dc.language.iso | en | es |
dc.rights | Las obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad de la República.(Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014) | es |
dc.subject | Computational Complexity | es |
dc.subject | Network Reliability | es |
dc.subject | Diameter-Constrained Reliability | es |
dc.title | Diameter-constrained reliability : Complexity, factorization and exact computation in weak graphs. | es |
dc.type | Preprint | es |
dc.contributor.filiacion | Canale Eduardo, Universidad de la República (Uruguay). Facultad de Ingeniería. | - |
dc.contributor.filiacion | Piccini Juan, Universidad de la República (Uruguay). Facultad de Ingeniería. | - |
dc.contributor.filiacion | Robledo Franco, Universidad de la República (Uruguay). Facultad de Ingeniería. | - |
dc.contributor.filiacion | Romero Pablo, Universidad de la República (Uruguay). Facultad de Ingeniería. | - |
dc.rights.licence | Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0) | es |
Aparece en las colecciones: | Publicaciones académicas y científicas - IMERL (Instituto de Matemática y Estadística Rafael Laguardia) |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | ||
---|---|---|---|---|---|
CPRR14.pdf | Preprint | 240,39 kB | Adobe PDF | Visualizar/Abrir |
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons