english Icono del idioma   español Icono del idioma  

Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/20.500.12008/49701 Cómo citar
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorCanale, Eduardo-
dc.contributor.authorPiccini, Juan-
dc.contributor.authorRobledo, Franco-
dc.contributor.authorRomero, Pablo-
dc.date.accessioned2025-04-11T17:41:57Z-
dc.date.available2025-04-11T17:41:57Z-
dc.date.issued2014-
dc.identifier.citationCanale, E., Piccini, J., Robledo, F, y otros. Diameter-constrained reliability : Complexity, factorization and exact computation in weak graphs [Preprint]. Publicado en: LANC '14 : Latin America Networking Conference, Montevideo, Uruguay, 18-19 sep. 2014, pp. 1-7.es
dc.identifier.urihttps://hdl.handle.net/20.500.12008/49701-
dc.description.abstractIn this paper we address a problem from the field of network reliability, called diameter-constrained reliability. Specifically, we are given a simple graph G = (V, E) with [V] = n nodes and [E] = m links, a subset K ⊆ V of terminals, a vector p = (p1,...,pm) ϵ [0, 1]m and a positive integer d, called diameter. We assume nodes are perfect but links fail stochastically and independently, with probabilities qi = 1 --- pi. The diameter-constrained reliability (DCR for short), is the probability that the terminals of the resulting subgraph remain connected by paths composed by d links, or less. This number is denoted by RdK,G(p). The general DCR computation is inside the class of NP-Hard problems, since is subsumes the complexity that a random graph is connected. In this paper the computational complexity of DCR-subproblems is discussed in terms of the number of terminal nodes k = [K] and diameter d. A factorization formula for exact DCR computation is provided, that runs in exponential time in the worst case. Finally, a revision of graph-classes that accept DCR computation in polynomial time is then included. In this class we have graphs with bounded co-rank, graphs with bounded genus, planar graphs, and, in particular, Monma graphs, which are relevant in robust network design. We extend this class adding arborescence graphs. A discussion of trends for future work is offered in the conclusions.es
dc.format.extent7 p.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenes
dc.rightsLas obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad de la República.(Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014)es
dc.subjectComputational Complexityes
dc.subjectNetwork Reliabilityes
dc.subjectDiameter-Constrained Reliabilityes
dc.titleDiameter-constrained reliability : Complexity, factorization and exact computation in weak graphs.es
dc.typePreprintes
dc.contributor.filiacionCanale Eduardo, Universidad de la República (Uruguay). Facultad de Ingeniería.-
dc.contributor.filiacionPiccini Juan, Universidad de la República (Uruguay). Facultad de Ingeniería.-
dc.contributor.filiacionRobledo Franco, Universidad de la República (Uruguay). Facultad de Ingeniería.-
dc.contributor.filiacionRomero Pablo, Universidad de la República (Uruguay). Facultad de Ingeniería.-
dc.rights.licenceLicencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)es
Aparece en las colecciones: Publicaciones académicas y científicas - IMERL (Instituto de Matemática y Estadística Rafael Laguardia)

Ficheros en este ítem:
Fichero Descripción Tamaño Formato   
CPRR14.pdfPreprint240,39 kBAdobe PDFVisualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons