english Icono del idioma   español Icono del idioma  

Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/20.500.12008/49698 Cómo citar
Título: Counterexample to a Boesch's conjecture.
Autor: Rosenstock, Nicole
Canale, Eduardo A.
Tipo: Preprint
Palabras clave: Network Reliability, Uniformly Most Reliable, Regular graphs, All-terminal reliability, Boesch’s Conjecture, Reliability polynomial
Fecha de publicación: 2022
Resumen: A key issue in network reliability analysis. A graph with n nodes and whose e edges fail independently with probability p is an Uniformly Most Reliable Graph (UMRG) if it has the highest reliability among all graphs with the same order and size for every value of p. The all-terminal reliability is a polynomial in p which defines the probability of a network to remain connected if some of its components fail. If the coefficients of the reliability polynomial are maximized by a graph, that graph is called Strong Uniformly Most Reliable Graph (SUMRG) and it should be UMRG. An exhaustive computer search of the SUMRG with vertices up to 9 is done. Regular graphs with 10 to 14 vertices that maximize tree number are proposed as candidates to UMRG. As an outstanding result a UMRG with 9 vertices and 18 edges which has girth 3 is found, so smaller than the conjectured by Boesch in 1986.
Financiadores: Comisión Sectorial de Investigación Cientifica (CSIC)
Citación: Rosenstock, N. y Canale, E. Counterexample to a Boesch's conjecture [Preprint]. DOI: 10.48550/arXiv.2212.03912.
Aparece en las colecciones: Publicaciones académicas y científicas - IMERL (Instituto de Matemática y Estadística Rafael Laguardia)

Ficheros en este ítem:
Fichero Descripción Tamaño Formato   
RC22.pdfPreprint327,7 kBAdobe PDFVisualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons