Por favor, use este identificador para citar o enlazar este ítem:
https://hdl.handle.net/20.500.12008/49698
Cómo citar
Título: | Counterexample to a Boesch's conjecture. |
Autor: | Rosenstock, Nicole Canale, Eduardo A. |
Tipo: | Preprint |
Palabras clave: | Network Reliability, Uniformly Most Reliable, Regular graphs, All-terminal reliability, Boesch’s Conjecture, Reliability polynomial |
Fecha de publicación: | 2022 |
Resumen: | A key issue in network reliability analysis. A graph with n nodes and whose e edges fail independently with probability p is an Uniformly Most Reliable Graph (UMRG) if it has the highest reliability among all graphs with the same order and size for every value of p. The all-terminal reliability is a polynomial in p which defines the probability of a network to remain connected if some of its components fail. If the coefficients of the reliability polynomial are maximized by a graph, that graph is called Strong Uniformly Most Reliable Graph (SUMRG) and it should be UMRG. An exhaustive computer search of the SUMRG with vertices up to 9 is done. Regular graphs with 10 to 14 vertices that maximize tree number are proposed as candidates to UMRG. As an outstanding result a UMRG with 9 vertices and 18 edges which has girth 3 is found, so smaller than the conjectured by Boesch in 1986. |
Financiadores: | Comisión Sectorial de Investigación Cientifica (CSIC) |
Citación: | Rosenstock, N. y Canale, E. Counterexample to a Boesch's conjecture [Preprint]. DOI: 10.48550/arXiv.2212.03912. |
Aparece en las colecciones: | Publicaciones académicas y científicas - IMERL (Instituto de Matemática y Estadística Rafael Laguardia) |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | ||
---|---|---|---|---|---|
RC22.pdf | Preprint | 327,7 kB | Adobe PDF | Visualizar/Abrir |
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons