Por favor, use este identificador para citar o enlazar este ítem:
https://hdl.handle.net/20.500.12008/48702
Cómo citar
Registro completo de metadatos
Campo DC | Valor | Lengua/Idioma |
---|---|---|
dc.contributor.author | Lauret, Philippe | - |
dc.contributor.author | Alonso-Suárez, Rodrigo | - |
dc.contributor.author | Amaro e Silva, Rodrigo | - |
dc.contributor.author | Boland, John | - |
dc.contributor.author | David, Mathieu | - |
dc.contributor.author | Herzberg, Wiebke | - |
dc.contributor.author | Le Gall La Salle, Josselin | - |
dc.contributor.author | Lorenz, Elke | - |
dc.contributor.author | Visser, Lennard | - |
dc.contributor.author | van Sark, Wilfried | - |
dc.contributor.author | Zech, Tobias | - |
dc.date.accessioned | 2025-03-19T15:09:02Z | - |
dc.date.available | 2025-03-19T15:09:02Z | - |
dc.date.issued | 2024 | - |
dc.identifier.citation | Lauret, P., Alonso-Suárez, R., Amaro e Silva, R. y otros. "The added value of combining solar irradiance data and forecasts: A probabilistic benchmarking exercise". Renewable Energy, vol.237 [en línea] 2024. 19 p. DOI: https://doi.org/10.1016/j.renene.2024.121574. | es |
dc.identifier.uri | https://hdl.handle.net/20.500.12008/48702 | - |
dc.description.abstract | Despite the growing awareness in academia and industry of the importance of solar probabilistic forecasting for further enhancing the integration of variable photovoltaic power generation into electrical power grids, there is still no benchmark study comparing a wide range of solar probabilistic methods across various local climates. Having identified this research gap, experts involved in the activities of IEA PVPS T161 agreed to establish a benchmarking exercise to evaluate the quality of intra-hour and intra-day probabilistic irradiance forecasts. The tested forecasting methodologies are based on different input data including ground measurements, satellite-based forecasts and Numerical Weather Predictions (NWP), and different statistical methods are employed to generate probabilistic forecasts from these. The exercise highlights different forecast quality depending on the method used, and more importantly, on the input data fed into the models. In particular, the benchmarking procedure reveals that the association of a point forecast that blends ground, satellite and NWP data with a statistical technique generates high-quality probabilistic forecasts. Therefore, in a subsequent step, an additional investigation was conducted to assess the added value of such a blended point forecast on forecast quality. Three new statistical methods were implemented using the blended point forecast as input. To ensure a fair evaluation of the different methods, we calculate a skill score that measures the performance of the proposed model relative to that of a trivial baseline model. The closer the skill score is to 100%, the more efficient the method is. Overall, skill scores of methods that use the blended point forecast ranges from 42% to 46% for the intra-hour scenario and 27% to 32% for the intra-day scenario. Conversely, methods that do not use the blended point forecast exhibit skill scores ranging from 33% to 43% for intra-hour forecasts and 8% to 16% for intra-day forecasts. These results suggest that using (a) blended point forecasts that optimally combine different sources of input data and (b) a post-processing with a statistical method to produce the quantile forecasts is an effective and consistent way to generate high-quality intra-hour or intra-day probabilistic forecasts. | es |
dc.format.extent | 19 p. | es |
dc.format.mimetype | application/pdf | es |
dc.language.iso | en_US | es |
dc.publisher | Elsevier | es |
dc.relation.ispartof | Renewable Energy, Vol. 237 (2024) 121574. | es |
dc.rights | Las obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad de la República.(Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014) | es |
dc.subject | Probabilistic solar forecasting | es |
dc.subject | Benchmarking exercise | es |
dc.subject | Blended point forecast | es |
dc.subject | CRPS | es |
dc.subject | IEA PVPS T16 | es |
dc.title | The added value of combining solar irradiance data and forecasts : A probabilistic benchmarking exercise. | es |
dc.type | Artículo | es |
dc.contributor.filiacion | Lauret Philippe, University of La Réunion (France) | - |
dc.contributor.filiacion | Alonso-Suárez Rodrigo, Universidad de la República (Uruguay). Facultad de Ingeniería. | - |
dc.contributor.filiacion | Amaro e Silva Rodrigo, MINES Paris University (France) | - |
dc.contributor.filiacion | Boland John, University of South Australia | - |
dc.contributor.filiacion | David Mathieu, University of La Réunion (France) | - |
dc.contributor.filiacion | Herzberg Wiebke, Fraunhofer Institute for Solar Energy Systems (Germany) | - |
dc.contributor.filiacion | Le Gall La Salle Josselin, University of La Réunion (France) | - |
dc.contributor.filiacion | Lorenz Elke, Fraunhofer Institute for Solar Energy Systems (Germany) | - |
dc.contributor.filiacion | Visser Lennard, Utrecht University (The Netherlands) | - |
dc.contributor.filiacion | van Sark Wilfried, Utrecht University (The Netherlands) | - |
dc.contributor.filiacion | Zech Tobias, Fraunhofer Institute for Solar Energy Systems (Germany) | - |
dc.rights.licence | Licencia Creative Commons Atribución (CC - By 4.0) | es |
dc.identifier.doi | https://doi.org/10.1016/j.renene.2024.121574 | - |
Aparece en las colecciones: | Publicaciones académicas y científicas - Laboratorio de Energía Solar (LES) |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | ||
---|---|---|---|---|---|
LAABDHLLVSZ24.pdf | Articulo | 2,06 MB | Adobe PDF | Visualizar/Abrir |
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons