english Icono del idioma   español Icono del idioma  

Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/20.500.12008/48487 Cómo citar
Título: Big Heegner points, generalized Heegner classes and p-adic L-functions in the quaternionic setting
Autor: Longo, Mateo
Magrone, Paola
Rocha Walchek, Eduardo
Tipo: Preprint
Descriptores: MATHEMATICS - NUMBER THEORY
Fecha de publicación: 2024
Resumen: The goal of this paper is to study the p-adic variation of Heegner points and generalized Heegner classes for ordinary families of quaternionic modular forms. We compare classical specializations of big Heegner points (introduced in the quaternionic setting by one of the authors in collaboration with S. Vigni) with generalized Heegner classes, extending a result of Castella to the quaternionic setting. We also compare big Heegner points with p-adic families of generalized Heegner classes, introduced in this paper in the quaternionic setting, following works by Jetchev--Loeffler--Zerbes, \cite{JLZ}, Büyükboduk--Lei and Ota. These comparison results are obtained by exploiting the relation between p-adic families of generalized Heegner classes and p-families of p-adic L-functions, introduced in this paper following constructions of Brooks and Burungale-Castella-Kim.
Editorial: arXiv
EN: Mathematics (Number Theory), arXiv:2401.03439, ene. 2024, pp.1-59.
Citación: Longo, M, Magrone, P y Rocha Walchek, E. "Big Heegner points, generalized Heegner classes and p-adic L-functions in the quaternionic setting" [Preprint]. Publicado en: Mathematics (Number Theory). 2024, arXiv:2401.03439, ene. 2024, pp.1-59. DOI: 10.48550/arXiv.2401.03439
Aparece en las colecciones: Publicaciones académicas y científicas - Facultad de Ciencias

Ficheros en este ítem:
Fichero Descripción Tamaño Formato   
2401.03439v1.pdf924,78 kBAdobe PDFVisualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons