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BIG HEEGNER POINTS, GENERALIZED HEEGNER CLASSES AND
p-ADIC L-FUNCTIONS IN THE QUATERNIONIC SETTING

MATTEO LONGO, PAOLA MAGRONE, EDUARDO ROCHA WALCHEK

ABSTRACT. The goal of this paper is to study the p-adic variation of Heegner points and
generalized Heegner classes for ordinary families of quaternionic modular forms. We com-
pare classical specializations of big Heegner points (introduced in the quaternionic setting in
|[LV17] by one of the authors in collaboration with S. Vigni) with generalized Heegner classes,
extending a result of Castella [Cas20] to the quaternionic setting. We also compare big Heeg-
ner points with p-adic families of generalized Heegner classes, introduced in this paper in the
quaternionic setting, following works by Jetchev—Loeffler—Zerbes, [JLZ21], Biiytikboduk—Lei
[BL21] and Ota [Ota20]. These comparison results are obtained by exploiting the relation
between p-adic families of generalized Heegner classes and p-families of p-adic L-functions,
introduced in this paper following constructions of [HB15] and [BCK21].

1. INTRODUCTION

The goal of this paper is to study the p-adic variation of Heegner points and classes for
ordinary families of quaternionic modular forms. The main result is a comparison between,
one the one side, quaternionic big Heegner points and their classical specializations introduced
in [LV17], and, on the other side, p-adic families of quaternionic generalized Heegner classes
and their classical specializations defined in this paper following the works of [JLZ21]| and
[BL21] in the GLo case. The connection between these two objects is made possible by their
relations with quaternionic families of p-adic L-functions, defined in this paper. We now
explain more carefully the main goals and results of this paper.

1.1. Higher specializations of Big Heegner points. Big Heegner points were introduced
by Howard [How07| in the case of Hida families for GLg; soon after, big Heegner points were
generalized to Shimura curves over totally real fields by Fouquet [Foul3| and to Shimura curves
over Q by |[LV1I]. The main idea in these papers is to define a compatible system of Heegner
points in a tower of modular or Shimura curves of increasing p-power level and tame level
I'o(NV), and form suitable (inverse) limits of these points. While it is clear how specializations
of big Heegner points at weight 2 arithmetic primes in the Hida family are related to Heegner
points on the modular or Shimura curve of p-power level, their specializations at higher weight
arithmetic primes are less clear. However, building on the relation in weight 2, Castella
established in [Cas20] and [Cas13] a relation between big Heegner points and families of BDP-B
p-adic L-functions (here, following [Kob13| and [KO20], BDP-B refers to the p-adic L-function
constructed in [BDPI3| and |Bralll); using the well-known relation between BDP-B p-adic
L-functions and generalized Heegner cycles in [BDP13| and [CH18a], one obtains an explicit
relation between higher weight specializations of big Heegner points and generalized Heegner
classes. As may be observed, this approach is in some sense local, going through the study
of specific p-adic L-functions; a global approach is instead used by Ota [Ota2(] to obtain the
same results.

The first goal of this paper is to pursue this program in the quaternionic setting, following
especially [Cas13| and [Cas20]. The crucial ingredients are, as remarked above, the study of
weight 2 specializations of quaternionic big Heegner points obtained in Theorem @11 and
the explicit reciprocity law proved in Theorem explaining the relation between the p-adic
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family of analytic BDP-B p-adic L-functions constructed in Section [l (see especially §5.3])
and the p-adic family of geometric p-adic L-functions, obtained by applying a big Perrin-Riou
logarithm to quaternionic big Heegner points. The main result, Theorem [0.13] states the
equality (up to a simple explicit factor):

(1.1) L = A

where:

e Ilis the p-adic Hida-Hecke algebra corresponding to a primitive p-adic family of quater-
nionic modular forms of tame level NT and attached to an indefinite quaternion al-
gebra B/Q of discriminant N~ ; here N* and N~ are two coprime integers such that
pt N =NTN~ and N”1- is a square-free product of an even number of primes; (see
§3.50 §3.0) for details);

e & K X\I? ¥ — I is a continuous character of conductor ¢, where K/Q is a quadratic
imaginary field where p is split; here ¢ and Dg are prime to each other, and prime
to Np; moreover, we require that all primes dividing N~ are inert in K, while those
primes dividing NT are split in K (see §5.2] for details);

. %gzo and .Z; Eg are continuous functions on I[I's ] where I' is a finite index subgroup
of the anticyclotomic Zy-extension of H., the ring class field of conductor c of K; here
L % is obtained as the image, via a big Perrin-Riou map, of the big Heegner point

of conductor ¢ (see §I0.3 for details), while .,?fiég has a more analytic construction
and interpolates BDP-B p-adic L-functions at arithmetic points of I (see §5.3 for the
construction, and §5.4]for the relation with BDP-B quaternionic p-adic L-functions for
a fixed modular form).

Equation () is obtained by a continuity argument from a direct comparison (following similar
strategies in [DR17], [Cas20], [Cas13|, [CL16]) at weight 2 primes, where the specialization of
big Heegner points is explicit, since it comes directly from the construction and interpolates
Heegner points. The resulting explicit reciprocity law at weight 2 specializations is explained
in detail in Proposition Since the specialization of .,?fiég is known, thanks to a result
of Magrone |[Mag22], to interpolate generalized Heegner cycles at arithmetic points of I of
trivial character and even weight k& > 2, we see that the higher weight specialization of big
Heegner points is explicitly related to generalized Heegner cycles; a more precise statement
(see details in Theorem [[T.I]) says that for all arithmetic points v € Spec(I)(Q,) of weight
k=2 mod 2(p — 1), we have

(1.2) (pr,) (Ge(v)) = 2E
where:

e 3. is (obtain from) the big Heegner point of conductor ¢ in the quaternionic setting,
and 3.(v) is its specialization at v (see §8.2));

e 2. is a generalized Heegner cycle of conductor ¢ (see §I1.1]);

e pr, is a combination of the two degeneracy maps involving curves of level N™ and

N*tp (see §6.1)).

1.2. Generalized Heegner classes. More recently, other approaches to the p-adic variation
of Heegner points have been proposed, and extended to Coleman families, by Jetchev—Loeffler—
Zerbes |[JLZ21]|, Buytikboduk-Lei [BL21], Ota [Ota20] and, for Shimura curves over totally real
number fields, Disegni [Dis22]. These approaches differ from each other in many ways, but a
common feature can be recognized in the fact that the p-adic variation of the geometric ob-
jects is obtained by varying the coefficients in the cohomology of the fixed modular or Shimura
curve of level T'o(Np), as opposite to consider towers of modular or Shimura curves. In other
words, the strategy of Hida [Hid86] to construct big Galois representations via the tower of
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modular curves of increasing p-power level is replaced by the approach of Stevens [Ste94] and
Pollack—Stevens [PS11] via locally analytic distributions interpolating polynomial represen-
tations attached to modular curves. In particular, the paper [JLZ21] takes this perspective
and proposes a motivic construction of p-adic families of generalized Heegner classes in the
case of Coleman families. The second goal of our paper, achieved in Section [I0 (see especially
§10.9)), is to propose an analogue motivic construction of generalized Heegner classes in the
quaternionic ordinary case.

1.3. Comparison. The third (and final) goal of this paper is to compare p-adic families of
quaternionic Heegner points and p-adic families of quaternionic generalized Heegner classes.
This comparison is made possible by the fact that both families specialize in higher weight to
quaternionic generalized Heegner classes, and the conclusion follows from a density argument,
restricting both families to suitable open affinoids. The main result is Theorem [I1.3] which
shows that quaternionic big Heegner points and big generalized Heegner classes agree in a
suitable connected open affinoid of the weight space.

1.4. The quaternionic setting. The quaternionic setting presents some technical difficulties
and interesting features with respect to the GLo case. We list some of them.

We need to set up a sufficiently explicit integral theory of p-adic quaternionic modular forms,
suitable for computations with Serre-Tate coordinates which are crucial for the definition of
analytic p-adic L-functions in Section[Bl For this, we need to extend in Sections[2]and Section [3]
some results of Buzzard [Buz97|, and Brasca [Bral3l Bral4l Bral6|; we note that for the results
in [LV11] there is no need of such a theory, since the required properties in [LV11] are obtained
by identifying the Hida big Galois representation with the representation constructed by means
of the inverse limit of p-adic Tate modules of Jacobians of Shimura curves of increasing p-power
level. Since Shimura curves are moduli spaces for quaternionic multiplication abelian surfaces,
it becomes necessary, as usual in this context, a careful use of certain idempotents to be able
to cut the dimension of the relevant cohomology groups.

A crucial ingredient for the explicit reciprocity law is the interpolation in p-adic families of
the Eichler—Shimura isomorphism, for which we use the new approach of Chojecki—-Hansen—
Johansson [CHIJI7| via perfectoid techniques; we also make use of some of the results by
Barrera—Gao [SG17], generalizing to the quaternionic setting the paper by Andreatta—Iovita—
Stevens [AISTH].

An other crucial ingredient for the explicit reciprocity law is the use of Coleman integration
to describe Perrin-Riou logarithm, and we extend to the quaternionic setting the relevant
results of the theory for p-power level Shimura curves, which, to the best knowledge of the
authors, have not been settled properly elsewhere.

Results related to this paper, especially on the construction of quaternionic generalized
Heegner classes, have been sketched in a recent preprint [Wan23|, based on a work in progress
by Jetchev, Skinner and Wan. However, on this side, we would like to remark that the focus
on this paper is rather on the comparison between quaternionic generalized Heegner classes
and quaternionic big Heegner points.

1.5. Organization of the paper. The paper is organized as follows. In Section Bl and
Section [ we review (and extend to the required level of generality) the integral theory of
Shimura curves of p-power level and the theory of quaternionic ordinary families of integral
modular forms. In Section Ml we review the theory of Serre—Tate coordinates, which allows
to define T-expansions of quaternionic families of modular forms. In Section [l we apply the
previous results to the construction of the analytic families of BDP-B p-adic L-functions,
which is the first result of this paper. After reviewing the construction of p-adic families
of Galois representations in Section [6] big Perrin-Riou maps in Section [[] and big Heegner
points in Section [8 in Section [@ we prove the second result of this paper, the equality between
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geometric and analytic families of p-adic L-functions, where the geometric p-adic L-function is
defined to be the image of quaternionic big Heegner points by the big Perrin-Riou map. The
construction of p-adic families of generalized Heegner classes is outlined, in the case of Hida
families, in Section [0l Section [II] contains the main results of this paper. In §IT.1]1 we prove
the specialization result relating quaternionic big Heegner points and quaternionic generalized
Heegner classes, answering a question in [LV11]; this is our third result. Finally, in §IT.2] we
relate quaternionic big Heegner points and quaternionic families of generalized Heegner classes,
showing that these two objects coincide on suitable affinoid subsets of the weight space; this
is our forth result. Of course, a similar result should hold in the GLs-case; we do not state
the result in the GLa-case, but the reader will encounter any problem in stating it.

1.6. Notation. We set up some notations which will be used throughout the paper. Fix a
square-free integer N~ which is the product of an even number of primes, and integer N* > 5
coprime with N~ and a prime number p { N = NTN™; we suppose that N~ > 1, since
the case N~ = 1 is the GLs-case, where our results have been already established. We also
fix an imaginary quadratic field K of discriminant —Dpg such that all primes dividing N~
are inert in K and all primes dividing NTp are split in K. We fix throughout the paper
embeddings tso: Q — C and lp: Q — Q We fix a p-stabilized newform fy of even weight
ko > 2 and tame level I'o(N), ordinary at p. We assume throughout the paper that the residual
Galois representation p attached to fy is absolutely irreducible, p-distinguished and ramified
at all primes ¢ | N7; we also assume the multiplicity one hypothesis [LV11, Assumption
9.2], which ensures that the quaternionic Hida family passing through fy has multiplicity one
(a generalization of |[CKL17, Theorem 3.5] to the present setting would prove that [LVI11]
Assumption 9.2] holds under the current hypothesis on p, but we will not consider this result
in this paper).

Acknowledgements. The authors would like to thank Stefano Vigni and Francesc Castella for
useful discussions and remarks on a preliminary version of this paper.

2. SHIMURA CURVES

2.1. Quaternion algebras. Let B be the (indefinite) quaternion algebra over Q of discrim-
inant N~. Since K splits B, we may fix an embedding of Q-algebras tx: K — B. Define
0 =+v—Dk and 9 = D—M, where D' = Dy if 24 Dg and D' = Dy /2 if 2 | Dg. For each
place v | NTpoo of Q, choose an isomorphism i, : B, = Ms(Q,) satisfying

. T ¥) —N Y

(Here for any field extension L/F, we denote by Ty, and Ny, the trace and norm maps.)
For each prime ¢ { Np, choose isomorphisms i,: By = My(Qg) such that i,(Og ) C Ma(Zy),
where Ok o = Ok ®yz Zy. In particular, for each divisor M of N*p™ and each integer m > 0,
we obtain isomorphisms

ine: Op @z (Z/MZ) = My(Z/MZ).

For each integer m > 0, let R,, be the Eichler order of B of level NTp™ with respect to the
chosen isomorphisms i, for all finite places £ N~. Let U, = RX = (Rm ®z Z) and let Uy,
be the subgroup of U, consisting of those elements g whose p-component is congruent to a

matrix of the form ((1) 3) mod p"

Remark 2.1. Following Mori [Morl11], other papers (including [HB15|, [Burl7|, [Lon23|) choose
different isomorphisms by fixing a so called Hashimoto model for B, for which one needs to
chose a quadratic real field M which splits B. This is useful, among other things, to fix a
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global idempotent element which is fixed by the involution z + 2 (see §2.3)); our choices are
more directly comparable with those in [CHI8b|, [CH15|, [CHI18al.

2.2. Idempotents. Define the following elements in K ®q K:

dR1-—109 o 1lev-9®1
e = and €=

W—-9)®1 W—-D) el

We will often write simply 9 — 9 = § for the denominators of e and €. A simple computation
shows that e and e are orthogonal idempotents such that e +é = 1.

Let £ | NTp be a prime number. Then ¢ splits in K ad ¢ = [[, where [ be the prime
corresponding to the chosen embedding Q — Q,, so K; = K ®q Q¢ splits as the direct sum
Qe ® Qeg of two copies of Qy. We have a canonical map

jo K @q K — K ®q Qr — By — Ma(Qy)

and one computes that j,(e) = (§9) and je(e) = (§9).
Denote by i: K < Mz(Q) the Q-linear map which takes ¥ to (TK/{Q(’” _NKéQw)). Choose

any isomorphism Ig: B ®qg K = My(K) such that, if we denote tp: B < Ma(K) the em-
bedding obtained by composition of the canonical map B < B ®q K and I, then we have
L oL =1, where we view i: K < My(K) via the canonical inclusion Ms(Q) C Mgy (K). We
thus obtain a further map

ji K ©q K — My(K)
defined by j(x ® y) = i(x)y, and one computes again that j(e) = (é 8) and j(e) = (8 ?)

Remark 2.2. If we work over a sufficiently big extension containing both K and M, where
M is a real quadratic field as in Remark 2.1l the choices of the idempotents made above and
those obtained from the Hashimoto model are essentially equivalent; see [Morll, Remark 2.1]
for details.

2.3. Quaternionic multiplication abelian varieties. We introduce a class of abelian sur-
faces which play a central role in the theory of Shimura curves.

Definition 2.3. Let S be a scheme. A quaternionic multiplication (QM) abelian surface (A, )
over S is an abelian scheme A — S of relative dimension 2 equipped with an injective algebra
homomorphism ¢: Op < Endg(A).

Remark 2.4. QM abelian surfaces are often called fake elliptic curves. We often write (A,¢)/S,
or even A/S if the quaternionic action need not to be specified, to denote QM abelian surfaces;

if S = Spec(R), we also write (A,¢)/R or A/R for (A,.)/S and A/S, respectively.

Definition 2.5. An isogeny (resp. an isomorphism) of QM abelian surfaces is an isogeny
(resp. an isomorphism) of abelian schemes commuting with the Op-action.

Let t € Op be such that t> = —Dg < 0, which exists because B splits over K, and define
the involution 1 given by b := t~1bt, where = denotes the main involution on B. Each QM
abelian surface over S can be equipped with a unique principal polarization such that for each
geometric point s of S the corresponding Rosati involution of End(Ay), where A; is the fiber of
A — S at s, coincides with the involution x + 2 on Op ([Mil79, Lemma 1.1]; see also [DT94]
Lemma 5|, [Buz97, §1]). If 7: A — B is an isogeny, taking duals and composing with principal
polarizations gives an isogeny 7": B — A. We say that 7 has degree d if the composition of

m¥ o7 is, locally on A, the multiplication by a unique integer d.
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2.4. Shimura curves with naive level structures. Given a group G and a scheme S, we
write G g for the constant group scheme of value G over S; when the context is clear, we often
simplify the notation and write G for Gg.

Definition 2.6. Let M | N™p be a positive integer and (A,t) a QM abelian surface over a
Z[1/M]-scheme S. A naive full level M structure on A is an isomorphism

a: Op @z (Z)MZ) — AM]

of S-group schemes locally for the étale topology of S which commutes with the left actions of
Op given by ¢ on A[M], and the multiplication from the left of Op on the constant S-group
scheme Op ®z (Z/M7Z).

Remark 2.7. Notice that a full level M-structure is equivalent via ip; to an isomorphism
My(Z/MZ) = A[M] of finite flat group schemes over S, which commutes with the left action
of Op given by ¢ on A[M] and by left matrix multiplication on My(Z/MZ). Also note that,
if k£ is an algebraically closed field, to give a full level M structure on a QM abelian surface
defined over S = Spec(k) is equivalent to fix a Z/MZ-basis of the group A[M](k).

The group (Op ®z (Z/MZ))* acts from the left on the set of full level M structures on
a QM abelian surface (A,:) as follows. If g € (Op ® (Z/MZ))*, then right multiplication
rq(x) = xg by ¢ defines an automorphism of the group (Op ® (Z/MZ))* which commutes
with the left action of (Op ® (Z/MZ))* on itself by left multiplication; for a naive full level M
structure a: (Op ® (Z/MZ))* = A[M] on (A, 1), we see that oy = awor, is a naive full level
M structure on (A, ), and the map a — «y gives a left action of (Op®z(Z/M7Z))* on the set
of naive full level M structures on (A,:). For any subgroup U of (/O\E (where Op = Op ®z Z

and Z is the profinite completion of Z), we obtain an action of U on full level M structures

by composing the action of (Op ®z (Z/MZ))* with the map U C (/9\2 jid (Op®z (Z/MZ))*
(where 7rp/ is the canonical projection).

Definition 2.8. Let (A, ) be a QM abelian surface over a Z[1/M]-scheme S and U a subgroup
of OF. A naive level-U structure is an equivalence class of full level M structures under the
left action of U.

We say that two triples (A, ¢, «) and (A’,/, /) consisting of QM abelian surfaces equipped
with level-U structures are isomorphic if there is an isomorphism of QM abelian surfaces
¢: A — A’ such that g o = o/. The functor which takes a Z[1/(M N~ )]-scheme S to the set
of isomorphism classes of such triples (A, ¢, a) over S is representable by a Z[1/(M N ~)]-scheme
Xy, which is projective, smooth, of relative dimension 1 and geometrically connected.

We are especially interested in Vi (M) and Vo (M )-level structures, where Vo(M) C (/9\§ is
the inverse image via 7ys of the subgroup of (Op ®z (Z/MZ))* consisting of matrices which
are upper triangular modulo M, and Vi(M) is the subgroup of V(M) consisting of elements
g such that 7p(g) = (8 l1>) for some a,b. We also note that the map g — ¢’ = norm(g)g~*
defines an anti-isomorphism of Vp(M) to itself, and from Vi(M) to Uy(M), the subgroup of
Uo(M) = Vo (M) consisting of elements g such that () = (§4) for some b, d. We thus get
an induced right action of Uy(M) and U; (M) on full naive level M structures, and two such
structures are equivalent under the right action of Uy(M) (respectively, of U;(M)) if and only
if they are equivalent under the left action of Vi(M) (respectively, of Vi(M)). We simply say
that two full naive level structure are Uy (M) or Up(M )-equivalent in this case, understanding
the right action.

Remark 2.9. The representability result is due to Morita [Mor81l Main Theorem 1] for naive
full level M structures. A complete proof of the general case can be found in [Buz97, §2]| (see
especially [Buz97, Corollary 2.3 and Propositions 2.4 and 2.5]) combining the representability
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result of [BBGT79, Theorem §14, Exposé III] and the proof in [Buz97, Lemma 2.2| that the
moduli problem Fs is rigid. See also [DT94] §4] and [HB15, Theorem 2.2|.

2.5. Shimura curves with Drinfeld level structures. Let m > 1 an integer. Recall
that we have a left action of Op on A[p™] and therefore we also obtain a left action of
Opp = Op ®z Z, on A[p™]; thus, through i,, we have a left action of My(Z,) on A[p™].
Recall the idempotent e € Op ®y Z, such that i,(e) = (é 8). We have a decomposition

Alp™]| = ker(e) @ ker(1 — e).

The element w € Op,, satisftying i,(w) = (? é) induces an isomorphism of group schemes

w: ker(e) = ker(1 — ¢), and we have eA[p™] = ker(1 — ¢) and (1 — e)A[p™] = ker(e).

Definition 2.10. Let (A4, ¢) be a QM abelian surface defined over a scheme S. A T'y(p™)-level
structure on A is the datum of a cyclic finite flat S-subgroup scheme H of eA[p™] which is
locally free of rank p™, equipped with the choice of a generator P of H.

A simple generalization of [Buz97, Lemma 4.4] shows that, for a QM (A,¢)/S over a Q-
scheme S, there are canonical bijections between I'y(p™)-level structures and Vi (p™)-level
structures (and therefore also with Uj(p™)-level structures, accordingly with our definitions).

Remark 2.11. Comparing with [Buz97, Lemma 4.4], the reader will notice that in loc. cit. is
shown the existence of a canonical isomorphism between V;(p)-level structures and the choice
of a generator @ of a finite flat subgroup scheme T of ker(e) C Alp]; after the generalization
to the case of higher powers of p of loc. cit., which does not present any difficulty and is left
to the reader, in our notation, the generator of eA[p™] is then P = w(@ and the subgroup is
H=wT.

We denote (A, t,a, (H, P)) quadruplets consisting of a QM abelian surface (A,¢)/S over a
scheme S equipped with a naive U-level structure o and a I'1(p™)-level structure (H, P) on
A. Two such quadruplets (A, ¢, a, (H, P)) and (A’,/, o/, (H', P')) are said to be isomorphic
if there is an isomorphism ¢: A — A’ of QM abelian surfaces which takes o to o/ and such
that o(H) = H' and ¢(P) = P’. The functor which takes a Z)-scheme S to the set of
isomorphism classes of such quadruplets (A4, «, (H, P)) over S is representable by a Zp)-
scheme Xy r,(pm), which is proper and finite over Xy (here Ay is viewed as a Z(p)—scheme).
Moreover, there is a canonical isomorphism of Q-schemes between the generic fiber of Xy p, (pm)
and the generic fiber of Xy, (pm). We sometimes understand H and simply write (4, ¢, a, P)
for (A, ¢, o, (H, P)).

Remark 2.12. The proof of this result is similar to the proof of [Buz97, Proposition 4.1] which
only considers the case m = 1; the extension to the general case does not present difficulties
and is left to the reader.

2.6. CM points on Shimura curves. Combining [CHI8b|, [CHI5]|, [CL16], [CKL17] (in the
definite setting) and [Cas20], [CHI8a], [BCK21] (for the indefinite case), we introduce a more
explicit version of the families of Heegner points introduced in [LVII].

Recall the imaginary quadratic field K. Fix an integer ¢ > 1 with p { ¢ and for each integer
n >0 let Ogpn = Z + cp" Ok be the order of K of conductor ¢p™. Class field theory gives an
isomorphism Pic(Ogpn) = Gal(Hepn/K) for an abelian extension Hepn of K, called the ring
class field of K of conductor cp™. Define the union of these fields Hepeo = J,;~q Hepn. Since
¢ is prime to p, H. N Hpo = H, where H = H; is the Hilbert class field of K, so we have an
isomorphism of groups

Gal(Hopo /K) = Gal(H,/K) x Gal(Hyee /H).

Since p is split in K, we have Gal(Hy/H) = Z,; as usual we decompose Z,; = A x I', with
I'=(1+pZ,) and A = (Z/pZ)*.
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Let H* = C\R, equipped with the action of BX by fractional linear transformations via the
embedding is,: B* < GLa(R). We will often identify H* with Hompg (C, B). Recall, from
21 U,,, and U,,, equivalently characterized by Uy, = Uy(N*p™) and U,, = Uy(NT)NUL(p™).
For any integer m > 0, define the Riemann surfaces (see [LV11] §2| for details)

(2.1) Xm(C) = B*\(H* x B*) /Uy 2 T\ K,

(2.2) Xim(C) = B*\(H* x B*) /Uy 2T\ K,

where T';,, (respectively, T'y,) is the subgroup of norm 1 elements in B* N U, (respectively,
B*NU,,). We will write [(x, g)] for the point in any of the two Riemann surfaces X,,(C) and
)?m((D) represented by the class of the pair (z,g) in H* x B*. Then there are algebraic curves
X,, and )Z'm, defined over Q, whose complex points are canonically identified with X,,(C) and
)me(C), respectively; moreover, the curves X,, and X,, are the generic fibers of &, = Ay,
and X, = Xﬁm’ respectively.

We refer to [LV11, Definition 3.1| for the definition of Heegner points on X, and X, in
terms of optimal embeddings; to fix the notation, for ¢ > 1 an integer prime to pN Dk (and
N = NTN7) the point z = [(f, g)] represents a Heegner point on X,, (respectively, )me) if
f(Ocpn) = f(K) N gUpg™t (vespectively, f(Oepn) = f(K)N gUpmg™ !, plus a natural condition
on the images of the elements congruent to 1 modulo ¢p™); here f: K <— B is viewed as a
point in H* by scalar extension to R. Moreover, for a € K X by Shimura reciprocity law we
have 27 = [(f, f(a=1)g)] where f: K — B is the adelization of f, reck(a) = o, and reck is
the geometrically normalized reciprocity map ([Shi71, Theorem 9.6]).

Let ¢ = ct¢™ with ¢ divisible by primes which are split in K and ¢~ divisible by primes
which are inert in K. Choose decompositions ¢™ = ¢¢t and NT = 99", For each prime
number ¢ and each integer n > 0, define

e {y=1if({Ntep.
o &7 =51 (11) (% 1) € GLa(K,) = GL(@Qy).
o & =01(Y9)(51) € GLa(K) = GL2(Qp) if £ | ¢* and £ is the exact power of £
dividing ¢*, where (¢) = [l is a factorization into prime ideals in Ok and [ | ¢*.
o &= (? _01)(%3 (1]) € GL2(Qy) if £ | ¢~ and ¢° is the exact power of ¢ dividing ¢~ .
o & =061 71§) € GLy(K)) = GL(Qy) if £ | N, where (¢) = Il is a factorization into
prime ideals in Ok and [ | 9TF.
We understand these elements £ as elements in BX by implicitly using the isomorphisms
i¢ defined before. With this convention, define £ = ({g,&(,n))g#p € B*. Define a map
Tepnm: Pic(Ogn) = Xon(C) by [a] = [(tx,a€(™)], where if a is a representative of the ideal
class [a], then a € K* satisfies a = a@cpn N K; here a € K* acts on &M € B* via left
multiplication by ik (a). We often write cpn m(a) or Tepnm(a) for zepn m([a]). One easily
verifies that xcpn m(a) are Heegner points of conductor ¢p™ in X, (Hepn ), for all a € Pic(Ogpn),
and all integers n > 0 and m > 0. More generally, we define a map Zcpn KX\I?X — )Z'm(@)
by Zepnm(a) = [(tic,a€™)], and again verify that Zem .n(a) are Heegner points of conductor
cp™ in )zm(Hcpn), for all a € I?X, and all integers n > 0 and m > 0.
We consider the pro-Z,-scheme (viewing X as a Z,-scheme by scalar extension)

)?Oo = @)?m

m
Then we have a uniformization H* x B* — Xo(C) and define the point z(a) = [(tx,a 1€)]
for each a € K*. If a is an integral ideal of O, such that (a, 0 "p) = 1, then if a € K* satisfies

a = a0k N O, and aq = 1 for all q | MTp, we write z(a) = z(a) (one easily checks that this
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definition does not depend on the choice of a). The points x(a) are rational over Hcye in
the following sense: for each m the canonical projection z,,(a) of z(a) to X,,(C) belongs to

X (Hepeo).

2.7. Igusa towers. Let (A,¢) be a QM abelian surface over a Z,-scheme S. For an integer
m > 1, let A[p™]° be the connected component of the identity of the p™-torsion subgroup
A[p™] of A, and let A[p>]° be the connected component of the identity of the p-divisible
group A[p™] of A. Let p,e (respectively, p,m) denote the S-group scheme of p-power roots
of unity (respectively, of p™-th roots of unity).

Definition 2.13. An arithmetic trivialization on A[p™] (respectively, A[p™]) is an isomor-
phism B: ft00 X pe0 5 A[p™]° (respectively, an isomorphism f3: Hpm X fhym 5 A[p™°) of
finite flat group schemes over S which is equivariant for the Op ), = Op ®z Z,-action, where
the action of Op p on pyee X pyeo is by left matrix multiplication via ¢,

Remark 2.14. The existence of an arithmetic trivialization on A[p>] implies that A is an
ordinary abelian scheme over S.

One can easily show that an arithmetic trivialization of A[p™] is equivalent to an isomor-
phism B: pr,0c = €A[p™]?, and similarly an arithmetic trivialization of A[p™] is equivalent to
an isomorphism S: p,m 5 eA[p™]© of finite flat connected group schemes over S, equivariant
for the action of eOp, (where the action of eOp ) on e is defined through the isomorphism
with e(ftyee X pye0) = pyo given by the first projection). An arithmetic trivialization 3 of
A[p*] induces for each integer m > 1 an arithmetic trivialization 3™ : ppm — eAlp™°. An
arithmetic trivialization 3, of A[p™] is said to be compatible with a given arithmetic trivial-
ization (8 of A[p*>] if the composition
(m)

m)y—1
— [l:pm

g 22 eAlpm0
is the identity.

Let us denote Xy viewed as Z(,)-scheme. Let Ha be the Hasse invariant of the special
fiber X of Xy, and let Ha be a lift of Ha to A, (JKas04, §7]). Then X" = Xo[l/ﬁg] is
an affine open Z,-subscheme of X representing the moduli problem which associates to any
Z(p)-scheme S the isomorphism classes of triplets (4,:,«) where (4,:) is an ordinary QM
abelian surface over S and a a naive Up(N™)-level structure.

Let A°9 — X9 be the universal ordinary abelian variety and for any Zp)-algebra R define
Agd = gord ®z,,, B for R =Z/p"Z, we set Aord = A%}ipnz. Denote A% [p™]° the connected
component of the p™-torsion subgroup scheme A%rd[pm] of .A%rd. For integers m > 1 and
n > 1, let

Pm,n(S) = IsomoB,p </”'pm X “pm7Agrd[pm]0>

be the set of arithmetic trivializations on A%4[p™], where for two group schemes G and H
equipped with a left Op j-action, Isome, (G, H) denotes the set of isomorphisms of groups
schemes G — H which are equivariant for the action of Op,. The moduli problem P, ,, is
represented by a Z/p"Z-scheme Ig,, ,,, the p™-layer of the Igusa tower over Z/p"Z, which is
finite étale over Ig,,, (see [Hid04, Chapter 8|, [Hid02) §2.1] or [Burl7, §2.5]). We also note

ord

that, by the universality of A, the Z/p"Z-scheme Ig,, » represents the moduli problem which
associates to any Z/p"Z-scheme S the set of isomorphism classes of quadruplets (A,¢,«, )
consisting of a QM abelian surface (4,:) over S equipped with a U;(N™T)-level structure «
and an arithmetic trivialization 8 of A[p™]. For each m > 0, each integer n > 1 and each



10 MATTEO LONGO, PAOLA MAGRONE, EDUARDO ROCHA WALCHEK

Z/p"Z-scheme S, the canonical monomorphism Hym <> pyme1 of S-group schemes induces a
canonical map Ig,, 1, — Ig,, ,. We can therefore consider the Z/p"Z-scheme

Ig, = limIg,, ,,.
m

The Z./p"Z-scheme I/én represents then over Z/p"Z the moduli problem
Pn(S) = Isomoy , (,upoo X “p°°=«4%rd[p°°]°>

classifying the set of arithmetic trivializations of A%4[p>], or, equivalently, the moduli problem
which associates to a Z/p"Z-scheme S the set of isomorphism classes of quadruplets (A, ¢, a, )
for each integer m > 1 consisting of a QM abelian surface (A,¢) over S equipped with a
Ui(N*)-level structure o and a family of arithmetic trivializations £, of A%4[p™], one for
each integer m > 1, such that there is a trivialization 8 of A% [p*°] for which 3, is compatible
with 3, for all m > 1. Define finally the Z,-formal scheme

Ig = lim Ig,,
n

where the direct limit is computed with respect to the canonical maps induced by the canonical
projection maps Z/p" 7 — 7Z,/p"Z for each n > 1.

Recall the point z(a) = [(ti,a™1€)] in the pro-Q,-scheme Xoo (Hep) defined before, which
corresponds to the sequence (z,(a)),>0 of points in )Zm(Hcpoo). Let z,(a) correspond to
a quadruplet (Aq, tq, @g, Bam). The abelian variety A, can be defined over V = K ab 7,",
and is p-ordinary because p is split in K, so there exists a unique arithmetic trivialization
Ba compatible with the arithmetic trivializations defined by g ; therefore, the point z(a)

corresponds to a point, still denoted x(a) = (Aq, ta, 0, Bq), in the Igusa tower Ig.

3. MODULAR FORMS

3.1. Geometric modular forms. Following [Bral4], we introduce the notion of quaternionic
geometric modular forms. Let S be a Z,-scheme and (A,¢) a QM abelian surface over a S;
denote m: A — S the structural map. Then m.,/g, where 24,5 is the bundle of relative
differentials, inherits an action of Op. For S = Spec(R), we write Qy/p = Q4/spec(R)-
Tensoring the action of Op on m.,/p with the scalar action of Z;, we obtain an action of
Opp on T 4/R, and therefore the sheaf 7,24,/ is equipped with an action of the idempotent
element e considered in §2.41 Define the invertible sheaf w 4 /R = em:Sdy/R.

Definition 3.1. Let R be a Z,-algebra. A test object over a R-algebra Ry is a quintuplet
T = (A1, (H, P),w) consisting of a QM abelian surface (4,:) over Ry, a Uy(N™T)-level
structure a on A, a I'1(p™)-level structure (H, P) on A and a non-vanishing global section of
the line bundle w4 /Ro of relative differentials. Two test objects are isomorphic if there is an
isomorphism of QM abelian surfaces which induces isomorphisms of Vi (M) and T';(p™)-level
structure and pulls back the generator of the differentials of A’ to that of A.

Definition 3.2. Let R be a Z,-algebra and k an integer. A R-valued geometric modular
form of weight k on )?m is a rule F that assigns to every isomorphism class of test objects
T = (A,t,a,(H,P),w) over an R-algebra Ry a value F(T') € Ry such that the following two
conditions are satisfied:
e Compatibility with base change: F(A',//, o/, (H', P),w') = o(F(A, v, o, (H, P), o* ("))
for any morphism ¢: Ry — Ry, of R-algebras, where A’ = A ®pg, Ry, and ¢/, o/ and
(H', P") are obtained by base change from ¢, @ and (H, P), respectively;
e Weight condition: F(4,,a, (H, P), \w) = A"*F(A,1,a, (H, P),w), for any A € R}.
We denote My, (N1, p™, R) the R-module of R-valued weight k& modular forms on X
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We also need to recall an alternative definition of modular forms. First, any test object
gives rise to a test quadruplet over a R-algebra Ry is a quadruplet T = (A, ¢, o, (H, P)) by
forgetting the differential form; we say that two such quadruplet are isomorphic if, as before,
there is an isomorphism of QM abelian surfaces which induces isomorphisms of V; (M) and
Iy (p™)-level structure.

Definition 3.3. Let R be a Z,-algebra and k an integer. A R-valued geometric modular
form of weight k on /l?m is a rule F that assigns to every isomorphism class of test quadruplet

= (A,.,, (H, P)) over an R-algebra Ry a section F(T') of w%}“RO which is compatibility with
base change, i.e. F(A,/,o/,(H,P))w' = ¢(F(A, v, a,(H,P)))¢*(w') for any morphism
¢: Ry — Ry of R-algebras, where A" = A ®p, Rj, and ¢/, ¢/ and (H', P’) are obtained by
base change from ¢, a and (H, P).

The equivalence between Definitions and B3] is given the map F — G defined by
G(T) = F(T,w)w™

for any choice of a section w. We also note that both definitions are equivalent to the existence
of a global section of w®",, where w m,R = Wey g and o, — X, is the universal QM abelian

surface (here we view X and p, as defined over R; see [HB15, §3.1] for details). We denote
wr the global section of w® R associated with F as in Definitions and B3l

We have an action of (Z/ me)X on I'y (p™)-level structures of a QM abelian surface A over
Ry, denoted (H,P) — u - (H,P) = (H,u- P), and defined by taking the generator section P
to the section u - P (multiplication of P by u). We define an action of (Z/p™Z)* on F €
My(N™T,p™, R) by setting (F|(u))(T) = F(u-T) where for any test object T' = (A, «, (H, P))
defined over a R-algebra Ry, we define u-T = (A,t,a,u - (H, P)). It is easy to check that
F|(u) still belongs to My(N*,p™, R).

Definition 3.4. Let ¢: (Z/p™Z)* — R be a finite order character. We say that a modular
form F € Mp(N™T,p™, R) has character v if F|{u) = ¢ (u)F for all u € (Z/p™Z)*

We denote My (NTp™, R) the R-submodule of My(NT,p™, R) consisting of those modular
forms with trivial character; if p is invertible in R, then an element in My(NTp™, R) is a
rule ' — F(T) defined on test objects T' = (A, ¢, a, H,w) (obtained from a test object as in
Definition Bl by forgetting the generator P of H) and satisfying similar compatibilities as
before. See [Braldl Definition 1.3] for more details.

3.2. p-adic modular forms. Recall that a p-adic ring R is a Z,-algebra which is complete
and Hausdorff with respect to the p-adic topology, so that R = lim R/ p"R.

Definition 3.5. Let R be a p-adic ring. The space V,(NT, R) of p-adic modular forms of
tame level NT on B is a global section of IgR = Ig ®z, R.

For a p-adic ring R, define Igg ,,, ,, = 1g,,, ,, ®7, R. Accordingly with Definition (.5 for a
p-adic ring R we have

V(N R) = i lim H (g Ot )
n m

An element in V,(NT, R) is then a rule F that for each p-adic ring Ry with an R-algebra
structure and each pair of integers m > 1 and n > 1 assigns to each quaternionic multipication
abelian surface (4,1, «, 3), with Uy(N™T)-level structure a and an arithmetic trivialization
Bm of A[p™], over the R/p™R-algebra Ry/p"Ry a value F(A,t, o, Bm) € Ro/p™ Ry which is
compatible with respect to the canonical maps which are used to compute the direct and
inverse limit, depends only on the isomorphism class of the quadruplet and is compatible
under base change given by continuous morphisms between R-algebras.
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The action of I' = 1 + pZ, on A%4[p>] by left multiplication on compatible sequences of
p-power torsion sections give rise to an action of I' on arithmetic trivializations 5 of A[p™],
denoted 8 — u - B for u € I', obtained by composition

uﬁ “'poo B }A%rd[poo] u Agrd[poo].

Alternatively, if u: p,00 — ppyo denotes the action of u € T' on the p-power roots of unity
given, for any Z,-algebra R and any ¢ € p,e(R), by ¢ = (" (raise to the u-power), then

u - 3 is equal to the composition u - 8: e 4 Moo LA Aord[p>]. The R-module V,(N*, R) is
equipped with a structure of Agp = R[['|-module F +— F|(\) for F € V,(NT,R) and A € Ap,
defined for v € I" by

(]:|<u>)(Aa 2 a’lﬁ) = -7:(14, Lo, U 5)
and then extending by R-linearity.

Definition 3.6. Let ¢: 1+ pZ;, — p,(Q,) be a finite order character and k € Z, a p-adic
integer. We say that a p-adic modular form F is of signature (k,) if for every u € 1+ pZ,,
we have F|(u) = u*(u)F.

3.3. Geometric modular forms and p-adic modular forms. Let R be a p-adic ring and F
an R-valued modular form of weight k on A,,. Consider a QM abelian surface (A, ¢, a, 3) over
R equipped with a Uy-level structure o and an arithmetic trivialization g, and let A = AQRrk,
with & = R/mp the residue field of R. The trivialization S determines by Cartier duality a
point x5 in e/ Ta,(AY)(F,) (see for example [Mag22} §3.1]), where Ta,(AY)(TF,) is the p-adic
Tate module of the dual abelian variety A" of A (use that the abelian S-scheme A is equipped
with a unique principal polarization 64: A 5 AV such that the associated Rosati involution
of End(A) coincides with the involution b + b' on Op). Now recall from [Kat81 page 150]
that Ta,(AY)(Fp) = Homg, (.Z, @m), where A is the formal group of A and G,, is the formal
multiplicative group over R, and therefore we have

et Ta,(A4Y)(F,) = Homg, (eA, G,,).

Let g € Homzp(e./zt\, (/E\}m) denote the homomorphism corresponding to xg.  Thus, we can
consider the pull-back wg = ¢3(dT’/T) of the standard differential dT/T" of Gpn. Then wg is a
formal differential form on ./Zl\, which is then identified with a differential form on A, denoted
with the same symbol. Moreover, 3 defines a I'1 (p™)-level structure as follows. Fix a generator
of p,00, which induces a generator of p,m, call it (m; then 3((ym) gives a point P in Alp™]° of
exact order p™, which gives a I'1(p™)-level structure (H, P), where H is the subgroup scheme
generated by P. Define

]?(A,L,O‘aﬁ) = ‘F(A’L,O" (HaP)aWB)-

The map F +— Fis compatible with base change, only depends on the isomorphism class of
(A, 1, a, ) and it is compatible with the maps occurring in the direct and inverse limit in the

definition of p-adic modular forms; thus F F establishes a map
(31) Mk(N+7pmaR) —>V;’7(N+7R)

from geometric to p-adic modular forms. If the character of F is ¢ (c¢f. Definition 3.4]) then

the signature of Fis (k,1). We say that a p-adic modular form is classic if it belongs to the
image of the map (B.)).
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3.4. U and V operators. Following [Gou88|, §II1.2, I1.3], we recall the definitions for the V'
and U operators on the space V(N T, R) of p-adic modular forms over a p-adic ring R. Given a
triple (4, a, B) over an R-algebra, with A = (4,:) ordinary QM abelian surface, a a Up(NT)-
level structure and 8 an arithmetic trivialization as in Definition 2.13] we can consider the
quotient Ay = A/C), of A by its canonical subgroup C,. Write ¢: A — A for the canonical
projection; then (Ag, to) is a QM abelian surface, where ¢ is the principal polarization induced
by ¢. Since ¢ has degree prime to N, it induces an isomorphism ¢: A[NT] — Ag[N™T],
which defines a Up(N™T)-level structure ag = ¢ o o on AO Also, the isogeny ¢ is étale, so it
1nduces an 1somorphlsm on formal completions gb Ao — A and therefore also an isomorphism
o: er — eA. Asin §3.3] the trivialization 5 determines by Cartier duality a point xg in

el Ta,(AY)(TF,) and therefore a morphism ¢g: eA — Gy,. Hence we obtain an isomorphism

o Ao S e G,
which corresponds to an arithmetic trivialization Sy on Ag.

Definition 3.7. The operator V: V,(N*,R) — V,(N*, R) is defined for any p-adic modular
form f over R by the equation (V f)(A,«, ) = f(Ao, 0, Po), with ag and Sy as above.

Definition 3.8. The operator U: V,(N*,R) — V,(NT, R) is defined for any p-adic modular
form f over R by the equation (Uf)(A,«,3) = %Z(Ahahﬁi) f(A;, a4, B;), where the sum is
over the set of equivalence classes of triples (A;, a;, 3;) such that (A,a, ) is obtained from
(A;, a4, ;) by quotient by the canonical subgroup.

For any F € V,(M, R), we then have VUF = F. The limit lim, o U™ defines an idem-
potent acting on V,(N*, R), which we denote by e (see [Hid00, Lemma 3.2.7] and [Hid00,
pag. 238]).

Definition 3.9. The R-module V,,(N*, R)**d := ¢°*dV,(N*, R) is the ordinary submodule of
Vo(NT, R).

If F € V,(N*,R) is a p-adic modular forms over the valuation ring R of a finite extension
of Qp, which is an eigenform for the operator U with eigenvalue A, then, F is ordinary if and
only if |[A|, = 1, i.e. if X is invertible in R, where |- |, denotes the p-adic absolute value, which
we normalize so that [p|, = 1/p. Also in this case we have ¢4 . F = F.

Definition 3.10. We define the p-depletion of a p-adic modular form F in V,(NT, R) to be
FlPl .= (1d-UV)F.

3.5. Ordinary families of modular forms on GLs. Fix as in Section [I] an embedding
Lp: Q — @p (sometimes, we simply write = for ¢y(z). We begin by recalling some notation
and results on [-adic families of modular forms on GLjy. Let O be the valuation ring of a finite
extension L of Q, and N = NtTN~ as above with p{ N. Define I' = 14 pZ, and A = O[I']. If

I is a finite flat extension of A, we say that a O-linear homomorphism v: I — Qp is arithmetic
if its restriction to A is of the form v(y) = v, ()72 for a finite order character 1, : I' — Q;

and an integer v > 2. We call k, the weight of k,, 1, the wild character of v and the pair
(ky, 1) the signature of v. Let

Joo = Zanqn € ]I[[Q]]
n>1
be a primitive branch of the Hida family of modular forms of tame level N. Then for each
arithmetic morphisms v: I — @p of signature (ky, v, ), the v-specialization

fv=v(fx) = Zy(an)qn = Zan(fV)q

n>1 n>1
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of f is the g-expansion of a modular form of level I';(Np") (where r = max{1,cond(¢,)}),
weight k,, and character yytp,w~*=2) for a character vy: (Z/NpZ)* — Q; , independent of
v, called tame character. We assume that the following condition is satisfied: There exists
an arithmetic morphism vy such that fo = f,, € Sk(I'o(Np)) has even weight ko > 2 with
ko =2 mod p — 1 and trivial character. When this condition holds, v is trivial and fy is an
ordinary p-stabilized newform (either fy is a newform of level T'y(Np), or fy is the ordinary
p-stabilization of a newform fy of level I'o(NV)).

Let X = Hom%);t(Z;, Z.; ) be the group of continuous Z,-linear homomorphisms of Z,; into
itself; we view Z as a dense subset of X' via the map Z < X which takes k to [z — xF72].
The p-adic Lie group X is isomorphic to p — 1 copies of I'; for a connected open neighborhood
U of kg € Z, let kg : T' — A be the universal character of . Since A — I is étale at kg, if
7 is sufficiently small we can identity % with a neighborhood in I of the unique arithmetic
morphism lying over z — x*72; in this case, for any k € Z N %, we let v}, the arithmetic
morphism lying over k, and put f; = f,,, which is a modular form of weigh k, level I'o(Np)
and trivial character.

3.6. Quaternionic ordinary families of modular forms. We now study the quaternionic
analogue of the notion of Hida families. For this, we introduce the notion of quaternionic I-adic
(ordinary) modular forms, and prove a version of a p-adic Jacquet-Langlands correspondence
between these forms and Hida families; the results of this subsection are probably well-known,
however we discuss some details for lacking of precise references. We fix I as before.

Definition 3.11. The I-module V,(N*,T) = V,,(N*, 0)®,1I is the T-module of quaternionic
I-adic modular forms.

An element in V,(NT,I) is then a rule F that for each integer m > 1, each integer n > 1,
and each integer r > 1, assigns a value F(T') € I/m} to each quadruplet T' = (4, ¢, a, 3)
consisting of a QM abelian surface (4,:) over a O/p"O-algebra R, a Uy(N™T) naive level
structure o on A and a trivialization 5 of A[p™], where my is the maximal ideal of I; the rule
(A, 1,0, B) — F(A, 1, , ) is compatible with respect to the canonical maps for varying n, m
and r, depends only on the isomorphism class of the quadruplet and is compatible under base
change. If v: I — O, is an arithmetic character, where O, is the valuation ring of the finite
extension F, of Q, containing the Fourier coefficients of f,, and F is a I-adic modular form,
we obtain a p-adic modular form F, via the canonical map V,(N*,I) = V,(N*,0,).

Definition 3.12. The I-module V,(N*,I) = V"4(N*+,0) @4 I is the I-module of ordinary
I-adic modular forms.

Recall that V"(N*, O) is a finitely generated A-module by [Hid02, Theorem 1.1]; also, we
have a canonical map V},"rd(N +,I) — V,(NT,1) and, for each arithmetic character v: I — O,),
a specialization map VoY(NT 1) — VYN, 0O,) denoted Foo + F,.

Theorem 3.13. The I-module V;rd(NJr,]I) is free of rank 1. In particular, there exists an
[-adic modular form Fo, such that for any arithmetic weight v, F,, is a classical modular form
sharing the same eigenvalues as f,.

Sketch of proof. This result is well-known, and is an instance of p-adic Jacquet—Langlands cor-
respondence, developed in different frameworks in [Che05], [LV17] and [GS16]. In the present
context, it can be deduced from the existence of the quaternionic eigencurve C'4, proved in
[Bral6], [Bral3|, combined with results of Chenevier [Che05] to identify the connected com-
ponent of the GLg-eigenvariety corresponding to the fixed Hida family f., with a connected
component of C°*9, which we denote Cyp. More general results on the p-adic Jacquet-Langlands
correspondence are available in [Hanl7|, [Newl3]. The reader is in particular referred to
[Hanl7, Theorem 5.3.1| for a general result in this direction. O
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Remark 3.14. Since Vo'4(NT 1) is torsion free, the canonical map VO'4(N*+, 1) — V(N* 1)
of A-modules is injective. We will then identify V°'4(N* ) as a I-submodule of V(N*,I) in
the following.

For a given Hida family f., for GLg, we say that Fo, in Theorem B.13]is the I-adic quater-
nionic modular form associated with f; note that actually F is only well defined up to units
in I, because g-expansions are not available in the quaternionic setting, so we shall understand
that we fix a choice Fo, which is unique up to units; note that the specializations F, are also
well defined up to p-adic units. Our results, however, do not depend on those choices.

4. POWER SERIES EXPANSION OF MODULAR FORMS

4.1. Serre—Tate coordinates for Shimura curves. Following [Kat81], we introduce the
Serre-Tate deformation theory for ordinary abelian varieties, which provides a way to attach
power series expansions to modular forms on Shimura curves, replacing classical g-expansions
for elliptic modular forms that are not available in the quaternionic case.

Consider an ordinary abelian variety A over T, i.e. Alp|(F,) = (Z/pZ)3 ™). Let AV
denote the dual abelian variety, which is isogenous to A and hence ordinary too. Denote the
p-adic Tate modules of A and AY by Ta,(A) and Ta,(AY), respectively; then Ta,(A) and
Ta,(AY) are free Z,-modules of rank g := dim A = dim AY. Let € be the category of artinian
local rings with residue field Fp.

Definition 4.1. If R is an object of &, a deformation of an ordinary abelian variety A/Fp
to R is an abelian scheme A/R equipped with an isomorphism A ®p Fp = A over Fp. Two
deformations A/R and A’/ R of A/TF, are said to be isomorphic if there exists an isomorphism
between the abelian R-schemes A and A’ that induces the identity on A/F,,.

We denote by R +— Z4(R) the functor Z4: ¢ — Sets which takes a ring R in ¢ to the set
of isomorphism classes of deformations of A/F, to R. The functor 24 is pro-representable by
a complete noetherian local ring % 4 with residue field Fp. Let 274 /% 4 be the universal object.
To describe the ring Z 4, one uses Serre—Tate coordinates. For this, let R € %, and write mp

for its maximal ideal. Following a construction due to Serre, the Weil pairing induces, for each
deformation A/R of A/IF,, a Z,-bilinear form

qa/r: Tap(A) x Tay(AY) — Gm(R) =1+ mg,

where @m is the completion of the multiplicative group scheme G,, over Fp. By [Kat81
Theorem 2.1], the construction A/R — g4 /R establishes a bijection, functorial in R, between
the set Z4(R) and the set of Z,-linear homomorphisms Ta,(A4) ®z, Ta,(AY) — Gm(R). Let
now R be a complete noetherian local ring with maximal ideal mg and A/R a deformation
of A/F,, i.e. as above an abelian scheme A/R endowed with an isomorphism A ®gr F, = A
over Fp. Set

qa/r = WM qa/(r/my,).

This gives a Zjy-linear homomorphism Ta,(A) ®z, Ta,(AY) — Gm(R), so if we pick Z,-bases
{@1,..., 24} and {y1,...,yg} of Ta,(A) and Ta,(A"), respectively, then for each deformation
A/R we have g* elements T;;(A/R) = qa/r(xi,y;) —1 € R. The elements Tjj(/a/%a) are
called Serre-Tate coordinates and the maps defined by Tj; +— T;;(/a/%4) establish a non-
canonical ring isomorphism Z;" [T};] 5 %4, where Z.,," is the ring of Witt vectors of Fp
(JKatS1l §3.1]).

Fix now an ordinary QM abelian surface (A, ¢) over I, with a Uy (N 1) naive level structure
a and write z = (A,,a). Let P4 = Spf(Z4) be the deformation functor associated with
A/Fp and o7y /% 4 be the universal object as before. Consider now the subfunctor 7, of Z4,
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which sends an artinian local ring R with residue field I, to the set of deformations of 4, as a
QM abelian surface with Uy (NT)-level structure, to R, i.e. deformations A of A to R together
with an embedding Op < Endr(A) deforming the given embedding Op — Endy(A) and a
Uy (N™)-level structure on A deforming the given Uy (N*)-level structure on A. Note that the
Uy (N)-level structure automatically lifts uniquely, as A[N ] is étale over R.

The Tate module Ta,(A) attached to A inherits an action of Op and hence of Op ® Z,,
which is identified with My(Z,). Consider the idempotent e = (}9) € My(Z,) acting on
Ta,(A). Since Tay,(A) = eTay(A) d (1 —e) Tay(A), we can find a Zy,-basis {1, 22} of Ta,(A)
such that ex; = z1 and exs = 0. Recall that A is equipped with a unique principal polarization
04: A AV satisfying 04(b(P)) = bT04(P) for all b € Op and all P € A(TF,). We thus ob-
tain an isomorphism of Z,-modules O, (4): Tay(A) = Ta,(AY) which satisfies the condition
Oa,(4)(0(2)) = bYOry,(a)(z) for all b € Op and all € Ta,(A). Given a point P € A(F)) we
define P = 04(P) € AY(IF,); also, given z € Ta,(A), we set ¥ = g, (a)(z). By [Kat81]
Theorem 2.1, 4)| (see also [HB15, Proposition 4.5] and [Morlll Proposition 3.3|), the sub-
functor 2, of 24 is pro-representable by a ring %, that is the quotient of Z4 by the closed
ideal generated by the relations q., /%, (0,Y) = Qu, /2., (T, bly) for all b € B, z € Ta,(A) and
y € Tay(AY). Furthermore, there is an isomorphism %, = Zy"[T'], where T' = Ty = t1; — 1
and t11 = Qo /%, (z1,2y). In particular, if we denote by @x the completion of the local ring

of xgrd @z, Ly™ at z, then P, = Spt (@JC) as Zy-formal schemes.

4.2. T-expansions of modular forms. Fix a point = = (Z, 3) € IE;(E,) in the Igusa tower,
i.e., the isomorphism class of a quadruple (A, ¢, a, ), lying above a point & = (A,t,«a) in
X4(T,) and equipped with an arithmetic trivialization 3 of A[p>°]. Then B determines a
point )} € el Ta,(AY)(Fp) as in §3.31 Take x5 = Ora,(avy(T)) € e Ta,(A)(F,), where 04v is
the dual of #4 (again a principal polarization). We fix the Serre-Tate coordinate t, = t(z g)
around Z to be t,(A/R) = qa/r(zs,2)), for each deformation of QM abelian surface A of A.
As before, denote by (42%56, Lz, ag—c) the universal object of Zz; in particular, recall that <7 is a
QM abelian variety over %z = Z*[T], with T, = t, — 1.

Definition 4.2. Let F € V,(M,Z,") be a p-adic modular form and z = (Z,8) € IAg(Fp)
with z = (4,1, ) € Xord(ﬁp). The formal series F(T,) = .7-"(42%93, Lz, 0455) in Z™[T;], where
T, =t, — 1, is the T,.-expansion of F.

For the case of I-adic modular forms (with I as before a primitive branch of the Hida
family passing through a p-stabilized newform f of trivial character and even weight), let
I = IR0Zy™ and Vy(N*,I) = V,(N*,I)&L. For any Foo € Vo(NT,I) and = € Ig(F,), we
can then form the T,-expansion of F,

Foo(Ty) = Foo (i, 1z, ) € I[T].
The canonical map O < Z,™ induces an injective map I — I and we may define the T,-
expansion of Fo, € V,(NT,1I) to be the Ty-expansion of the image of Foo in V,(N1,I).
Lemma 4.3. Let F be as in Theorem BI3l Then for each arithmetic morphism v we have
an equality of formal power series F,(Ty) = V(Foo(1y)).
Proof. This is clear from the functoriality properties of modular forms and T-expansions. [

4.3. Serre—Tate coordinates of CM points. Recall the point x(a) = [(tx,a"1€)] defined

in §2.6] which corresponds to the sequence (z,(a))m>0 of points, each in X,,(Hepe). Fix an
integer n > 1. For any x in Q,, define the x-action of n(x) on the point z(a) by the formula

z(a) xn(z) = [(ux, a”"én(x)]
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where n(x) denotes the element in B* whose p-component has image equal to ((1) 91”) in GL2(Qp)
via the map i, and whose components at other primes are trivial. A simple computation (see
also [CH18al, page 587]) shows that for any u € Z, we have

n(u/p") = ip(u/p)E™ - (vt "),

where i, (u/p") is the element of KX having all components equal to 1 except the p-component,
equal to u/p™. We thus obtain

(1) ala)wn(u/p") = (0~ nu/p)] = [ (e a ipu/pme™ - (511
By [BCK21, Proposition 4.1, for any u € Z), (z(a)*n(u/p")) is still a CM point defined over
V. Moreover, we have (z(a) xn(u/p")) @y I, = f(a) and

,1 —
fuo (@) * nu/p") = GV
where for an ideal ¢ C O, we define N(¢) = ¢! - #(O,/¢).

5. THE ANALYTIC p-ADIC L-FUNCTION

5.1. p-adic L-functions of modular forms. Recall that p is split in K and fix embeddings
to: @ = € and 1p: Q — Q,, as before. Write p = pp in Ok and let p be the prime
ideal corresponding to the fixed embedding ¢,. For an element z € A%, let z, € K, and
rp € K, denote the components of x at p and p, respectively. For an algebraic Hecke character
£ KX\AY — €%, write € = gboo With &ay: KX — €% and &,0: KX — € the finite and
infinite restrictions of £ respectively, where KX and K X are respectively the groups of finite
and infinite ideles. We say that £: K*\A . — C* has infinity type (m,n) if () = 22",
and in this case denote by &: K X\I? X Q; its p-adic avatar, defined by

E(x) = (1p 0 1) (in ()}

To simplify the notation, we sometimes write & (z) = &(z)xy" p for z € K %, understanding
that £(x) denotes (1,013} )(&an(w)). If € is a Hecke character of conductor ¢ C Ok and b is an
ideal prime to ¢, we write £(b) for £(b), where b € K* is a finite idele with trivial components
at the primes dividing ¢ and such that b@K NK =b0.

Fix F € My(M, R) of signature (k,1), where 1 denotes the trivial character, M = Nt or
M = N7Tp, and R a p-adic ring obtained as the ring of integers of a finite extension of Q,, and
an anticyclotomic Hecke character £ of infinity type (k/2, —k/2). We recall the construction of
the p-adic L-function associated with F and & in [Mag22, §4.6| (see also [BCK21l §4]). Denote
7, (§) the extension of Z;™ obtained by adjoining the values of { and R. Let cOk be the
prime to p part of the conductor of ¢ and recall the CM points z(a), defined in §2.6] for each
a € Pic(O.). As before, since z(a) has a model over V = Z;™ N K b we can consider the
reduction Z(a) = z(a) ®w F,, of x(a) modulo p. For each ideal class [a] € Pic(O.) with a C O,
define the Z;" (£)-valued measure iz q over Zj, by

—1 — —1
(5.1) /Z £ dyu () = F (ti?(“’ V=i )ezzn%s)[m]],
P

where FIPl = Fyy_yy is the p-depletion of f defined e.g. in [Burl7, (5.2)] or [Mag22] §4.4],
with U and V defined in [HB15, §3.6], and F ] denotes as in Definition the Ty-espansion
of FPI seen as a p-adic modular form in V,(M, R) via the map in (BI) (also, recall that
Ty =to— 1 and tq = t5(q) is the Serre-Tate coordinate at z(a), and N(a) = ¢ '#(O./a)). The
measures jiF q are supported on Z) ([Mag22, Remark 4.2]).
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Recall that recg: K*\K* — Gal(K??/K) denotes the geometrically normalized reciprocity
map, where K? is the maximal abelian extension of K; let reck p: K, — Gal(K2*/K,) be
the local reciprocity map, and view Gal(K32"/K,) as a subgroup of Gal(K?"/K) by the fixed
embedding @ — Qp. Define ['oy = Gal(Hep /K) and let Og, be the valuation ring of the
completion C, of Qp. For each continuous function ¢: oo — Oc,, and each ideal class
[a] € Pic(O,), define the continuous function |[a]: ZX — Og, by the formula

plla(u) = ¢ (rec (a)rec p(u))

where a € K is a finite idele with trivial components at the primes lying over cp such that
aO.N K = a and we view an element u € Z; as an element in pr via the canonical inclusion
X
Z,; C K. N
Define a Z;™ (£)-valued measure .Zx ¢ on I, by the formula

Lrep)= Y CON@™ [ Glella) i)

aePic(O.)

for any continuous function ¢: [ — Og,, where, as before, {(a) denotes {(a) for a € KX
finite idele with trivial components at the primes dividing the conductor of ¢ and such that
a@c NK =a.

We recall some results from [Mag22] and [BCK21|. For any ideal a C O, any continuous
function ¢: Z; — Og, and any power series G(T,) € W[T;], define the formal power series
([9]G)(Ta) € Zy™ (#)[Tu], where Zy™ () is the extension of Zy™ generated by the values of
¢, by the formula ([¢]G)(T,) = fZ§ d(t)tEdpsq(x). Define

-’FLp](Ta) = f[p] <(Ta _|_ 1)N(a)_1 7DK71) ‘

By [Mag22, Proposition 4.5] (see also [BCK21| Proposition 4.1), if ¢: (Z/p"Z)* — Q; is a
primitive Dirichlet character, and [a] is an ideal class in Pic(O.) with p t ¢ as before, we have

(5.2) (BFDHO) =ps(6) Y ¢ WF(e(@) «nlu/p")),
u€(Z/p"Z)*
where g(¢) is the Gauss sum of ¢.

We finally recall the following result which will be useful later. Suppose that F is a modular
form of level N*p which is the ordinary p-stabilization of a newform F* of level N7; in other
words, we have F = Ft — ap]:ﬁ|Wp where W), is the quaternionic Atkin-Lehner involution,
and a,, is the eigenvalue of the T),-operator acting on F* (see [LV14a, Eq. (28)] for details).

Lemma 5.1. Lr¢ = Lps .

Proof. In light of Definition [5.1] it is enough to observe that F, [Cip = F ﬁgp  for each ideal class
[a] in Pic(O.). This follows immediately from [Burl7, Lemma 5.2] and the references therein;
see [Mag22], §4.4] for details. O

5.2. Families of Hecke characters. Let Gq = Gal(Q/Q) and xcye: Gq — Z) be the
cyclotomic character. Factor Xcyc as Xeye = Xtame * Xwild, Where Xtame: Gq — pp—1 takes
values in the group of p — 1 roots of unity in Z; and xwiq: Gg — I' takes values in the
group of principal units I' = 1 + pZ,; in other words, if we write an element z € Z; as
r = (g - (r), where (; = w(z) € pp-1 and z ~ (r) is the projection Z; — T from Zj
to the group I' of principal units, then Xtame(0) = (yye(o) a0d Xwild(0) = (Xeye(0)). We
also denote with Xcye: Q*\AG = Z, Xiame: Q\AG = pp—1 and Xyua: Q\AG — T the
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composition of Xcyc, Xtame a0d Xwild, respectively, with the reciprocity map recq; we then have

Xtame(x) - Cxcyc(ar) and Xwild(x) - <chc(x)>'

Fix a finite flat extension I of A. Let z +— [z] be the inclusion of group-like elements
Zy — Zp[Z;]* and I' — A*. Recall the critical character ©: Gq — A* defined in [How(7,
Definition 2.1.3] by

ko2 1/2
O(0) = Xtame (7) * it ()],
where z — =z is the unique square root of z € I'. We still write ©: Gg — I* for
the composition of ® with the canonical inclusion A — 1. Write 6: (QX\AIQ — I* for
the composition of © with the geometrically normalized reciprocity map recqg. We denote
p = Q) = Uy>1 Q(Gpn) the p-cyclotomic extension of Q, where, for all integers n > 1,
(o is a primitive p"-root of unity, and define G&° = Gal(Q({y=)/Q). The cyclotomic char-
acter induces an isomorphism xeye: Gy = Z, . Since © factors through G&, precomposing

it with the inverse of the cyclotomic character, we obtain a character of Z, which we denote

1/2

with 9: Z; — I*. Ifv: 1T — Qp is an arithmetic morphism of signature (k,,v,) we put
0, =vo@and ¥, =vod. Forany v € Z},if k, = kg mod 2(p—1), then we have (also recall
that kg =2 mod 2(p — 1))
2y (@) = v (@) - 2T

Denote by N q: Ajy — Ag the adelic norm map, by Nq: Ag — Q the adelic absolute
value and let N : A} — Q* denote the composition Nx = Ng oNg/q- Define the character
x: KX\K* = T* by x =6 o Nilg:
Xcyc © recq is the p-adic avatar of the adelic absolute value Ngq: Aa — Q*, we obtain, for
x € K* and k, = ko mod 2(p—1), k=2 mod 2(p — 1),

For an arithmetic morphism v, define x, = v o x. Since

(5.3) $o(e) = 0, P (N ()ayap)) - (Nge(2)ayrg) 2

Let A\: K*\A % — C* be a Hecke character of infinity type (1,0), unramified at p and whose
p-adic avatar M K X\I? X — @; takes values in O (possibly after enlarging O if necessary).
Denote now by A the complex conjugate character of A, defined by = — A(Z), where x — Z is
given by the complex conjugation on K. Then A has infinity type (0,1) and the p-adic avatar
of A\ is equal to the product X - Xcye,xk Where Xcye, Kk = Xeye 0 Tecgq © N /Q and x) is a finite
order character unramified at p. We define a character A: KX\K* — O[W]* by the formula
A(z) = Az)[(A(x))/?], where we view A(z) € O% — O[W]* via the map a — a - 1y, with
1y the identity element of W, (A(x)) denote the projection of A(z) in W and z — [z] is the
inclusion of group-like elements W — O[W]*.

To define the specializations of A, we need to extend arithmetic morphisms from I" to W.
We briefly explain this point. Recall that F' is the field of fractions of @ and note that
O* = u(F) x Zg, as topological groups, where d = [F': Qp]. Therefore each element z € O*
can be written uniquely as a product (,(z), where (, is the projection of x in u(F) and (z)
is the projection on Zg. Let Of,, = Zg be the maximal Z,-free quotient of O and denote
by (—) the projection O* — Of ... Let W = (im 5\> be the projection of the image of A
in OF... If X has conductor ¢ prime to p, then A factors through Gal(K (p°°c)/K), where
K(p>¢) = U,;>1 K(p"c) and K (p"c) is the ray class field of K of conductor p™c. Since Oy

free*
free

is a free pro-p group, the composition (5\> of A with the projection (—) factorizes through
the maximal free pro-p quotient of Gal(K (p>°c)/K) which is a cyclic pro-p group isomorphic
to Zp; hence W is isomorphic to Z, and we can see I' as a subgroup of W of finite index,
of. [Hid1l, pp. 64-65]. Write p™ = [W : I']. Let w € W be a topological generator of
W such that wP?™ = v € I' is a topological generator. Consider an arithmetic morphism
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v: 1 — O, with signature (¢,,k,), where ¢,: I' — O) is a continuous character of finite
order and O, is the ring of integer of a finite extension L, of Q,. Fix a p™-th root u € Qp
of ¥, (y) and consider a finite extension M, of L, containing u. We can extend v, to a
continuous morphism W — Oy, , with Oy, the ring of integers of M, sending w to w.
We will denote this morphism again by 1,. Then the restriction yp: I' — O of v to T
takes x to 1, (z)2* 2 and can be extended to a continuous morphism vy : W — OZT/I,, by
w — Y, (w)wk =2, so that vy (v) = 9, (v)v* =2 for any v € W. This induces a unique
continuous morphism vopyy: O[W] — Oy, Indeed, if O[W] is contained in I, then we can
find u € O such that 1, (w) = v and uP" = 1), () (possibly enlarging O, by adding a p™-root
of ¥, (1 + p) as above), so that v(w) = uw® 2 and, extending v, to W by ¥, (w) = u, we
can say that v(v) = v, (v)v* =2 for any v € W. Otherwise, if O[W] is not contained in T,
we can replace I by ]I@O[[F]]O[[W]] and extend v to /: IReO[W] — Oy, , fixing a p™-th root
u € Qp of 1, () as above, which is the map obtained by universal property of (completed)
tensor product from the O-bilinear map I x O[W] — Oy, given by (x,y) — v(z)vopw)(y)-
Note that ¢, : W — (’)]T/[V is still a finite order character; indeed, since v, is of finite order as
a character of T, there exists n > 0 such that ¢ is trivial on T, so ,,” " is trivial on W. By
the above argument, we can assume in the following that O[] is contained in I and that v
restricted to W is given by v(v) = ¢, (v)v** =2 for any v € W.

We can see A: K*\K* — I assuming that O[W] is contained in I. Let v: I — Q, be an
arithmetic morphism of signature (k,,,) and write A = VoA Then, for x € K* and k, =k
mod 2(p — 1), k=2 mod 2(p — 1), we have

Mo(@) = 02 (M) - Aa) o 2ay .

Hence ), is the p-adic avatar of an algebraic Hecke character ), of infinity type (k,/2,0).
Denote by = +— A(z)~! = )\(E)_lxgl (for x € K*) the p-adic avatar of the Hecke character
given by z — A(Z)~! (for z € A%) of infinity type (0, —1). Then define the character

AN @) = A@) @) )

which we see as taking values in I*. Consider now the character &: K X\I? * — I* given by
&(z) = M(z) - A71(z). Note that €~ is trivial. For any arithmetic morphisms v, set as above

&, =vok. Foraunyazel?X and k, =k mod 2(p— 1), k=2 mod 2(p — 1), we have

(5.4) &) = 02 (A@z apay 1)) - Maw /2 gt Pag 2,

Therefore, él, is the p-adic avatar of an anticyclotomic Hecke character &, of infinity type
(ky/2,—k,/2). If we want to emphasise the dependence of &, &, and &, from \, we write €™,

59) and {,E)‘) .

5.3. p-adic L-functions for families of modular forms. Fix a primitive branch I of the
Hida family passing through a p-stabilized newform f € S(T'o(Np)) of trivial character and
even weight £ = 2 mod 2(p — 1). Let Foo € V(N *+ 1) be the quaternionic form associated
with I as in Theorem B3, where recall that I = I ®0 7. Let cOf, with ¢ > 1 and
p 1 ¢, be the conductor of x + A(x)A~1(Z). Consider the CM points z(a) with a € Pic(0,),

defined in §2.61 Recall that x(a) has a model defined over Z;™", and define the fiber product
z(a)= := z(a) @y L Define now a I-valued measure WUFoo o O Zy by

I
N@ /D) =~
[, dnraate) = 72 (615 ) el
P
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where as before Ty q) = t,(q) — 1 and t,(q) is the Serre-Tate coordinate around z(a)y,, ® F,,

}"O[g] is the p-depletion of F, and .'F'[O@ is the T (q)-expansion of }"O[g] (see Definition [£.2]). The
measures [, o are supported on 7.

Definition 5.2. Let Fu, € V,(NT,T) and let &: K*\K* — I* be a continuous character as
in m The measure .Zr._ ¢ associated with o, and £ is the I-valued measure on the Galois
group [oo = = Gal(Hp~/K) given for any continuous function ¢: [oo = 1 by

Zroe@)= 3 xE@N(@)! /Z (o la) () djirn ).

a€Pic(O.) P

Definition 5.3. Define the analytic anticyclotomic p-adic L-function iﬂﬂag € fﬂfwﬂ to be the
power series corresponding to the measure £z _ ¢ in Definition

For any continuous character ¢: foo — Q; and any arithmetic morphism v: I — O, we
adopt the common notations £ (v) = v(£%) and L% (v, ) = (v (LE)).

5.4. Interpolation. Let I be the fixed Hida family passing though f € Si(T'o(Np)) with

k=2 modp—1, and let F, € V},(N‘F,f]f) be as in the previous subsection. The following

result generalizes [Cas20, Theorem 2.11] to the quaternionic setting. Fix A: K*\Ag — QX
be an algebraic Hecke character of infinity type (1,0) of conductor ¢ C O prime to p whose
p-adic avatar takes values in O™ and let £ = & oy

Theorem 5.4. Let v: I — Qp be an arithmetic morphism of weight k, = k mod 2(p — 1),
and recall that k =2 mod 2(p —1). Then ¢ (v) = 9,1(0) L, ¢, -

Proof. By Lemma 1.3 we have that, for any point x = x(a), the T-expansion of F, at x and
the specialization at v of the T-expansion of F at x are equal, that is F, (1) = v(Foo(T%)).
Denote again by v: I — Z;™ (v) the natural extension of v, where Z;"" (1) denotes the finite

extension of Z;" obtained by adjoining the image of v. Then for any continuous ¢: Z;, — f,
using its Mahler expansion, we obtain for a € Pic(O,):

v ( i ; so(u)dwwm)) -/ 0@, 1),

Recall that, for an ideal a C O,, we write N(a) = ¢ 14(0,/a); if a = aO. N K for an clement

a € Ok, we have N(a) = ¢! - Ni'(a). Choose representatives a of Pic(O.) such that p { a
and p 1 a; by (5.3) we then have

X;l(a) = X;l(a) — NK(a)ku/Qfl — N(a)fky/2+lcfky/2+1

and &,(a) = &,(a). Therefore, since &, is unramified at p, we have

Lroep)= Y (GE)@N@)! /Z ol (wdpz ow)

a€Pic(O.)
= Z *ku/2+1N / Evp(u)(vo gp‘ w)dpr, o(u)
ac€Pic(O.)
B Ly e (Vo p).
In particular we have Lr_ ¢(v,1y) = ¢ /21 2% ¢ (1y) for any open compact subset U

of the Galois group I'eo, where 1y is the characteristic function of U. We conclude by the
equivalence between Z," (v)-valued measures on I's, and additive functions on the set of open

compact subsets of I'ss with values in 77 (v). O
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We recall the interpolation properties satisfied by this p-adic L-function. Let f, be the
specialization at v of the Hida family f., and suppose that f, € Si(Io(Np)) has trivial
character. Then, since f, is ordinary, either f, has weight 2 and is a newform of level Np, or
there is a newform ff € Sk(To(N)) whose ordinary p-stabilization is f,. Suppose we are in the

second case. If p: 'y — Q; corresponds via reck to the p-adic avatar of an anticyclotomic
Hecke character ¢ of infinity type (n, —n) for some integer n > 0, then

(L2 (v, 9))* = C - L(f}, £, ki /2)

where C' is a non-zero constant depending on v, &,, ¢ and K, and, up to a p-adic unit, on
the choice of Foo (this follows immediately from Theorem [5.4] and Lemma [5.1] combined with
[Mag22, Theorem 4.6]).

6. GALOIS REPRESENTATIONS

We first recall a standard notation for the symmetric tensors (see [KLZ17, §2.2] for details).
For a free abelian group of finite rank H and an integer m > 0, denote &,, the symmetric
group on m elements, acting over H®™ by permutation of the factors. Let Sym™(H) denote
the quotient of H®™ by the action of &,,, i.e. the group of &,,-coinvariant elements of H®™.
We also define the submodule of H®™ consisting of the elements which are &,,-invariant,
which is denoted by TSym™ (H); the ring TSym®(H) = €p,,,~, TSym™ (H) is equipped with
a ring structure, obtained by symmetrization of the tensor product (z,y) — z -y; for = €
TSym™(H) and y € TSym"™(H) we thus have z -y € TSym™"(H) (see [KLZIT7, (2.2.1)]).
There is a natural homomorphism Sym™ (H) — TSym™ (H), which is an isomorphism if H is a
module over a ring where m! is invertible, and a canonical duality isomorphism Sym™ (H"Y) =
(TSym™(H))" (for a R-module M, we denote M" the R-linear dual of M). The module
TSym™ sheafifies in the étale cohomology (see [KLZ17, §3.1] and [KinI5| for more details).

If F is a field, let Sym™(F?) denote the left representation of GL(F?) afforded by the space
of homogeneous polynomials P in two variables with coefficients in F' and degree m, given by
((2%)-P)(X,Y) = P(aX + ¢Y,bX + dY). The vector space TSym™(F?) is equipped with
the dual left action of GLy(F) as follows: if we fix an isomorphism F? = (F?2)V, then for
© € TSym™(F?) and P € Sym™(F?), we set (v-¢)(P) = p(y~ 1 P).

6.1. Galois representations. Recall the discrete valuation ring O fixed in §3.5 and its
fraction field L = Frac(O). Let m > 0 be an integer and let My = My(NT,p™ L) or
My, = My(NTp™, L); in the first case, let C = X, and in second case let C = X,,. In both
cases, let m: A — C be the universal abelian surface. Fix F € Mj which is an eigenform
for all Hecke operators. We consider the motive h'(A), the degree 1 part of the relative
Chow motive of A over C, whose étale realization is R'7.Q, (see [Ancl5l §2, Exemple 3.3(ii),
Proposition 3.5]). The idempotents e and € defined in §2.2] induce a decomposition into
isomorphic factors leQp = ele*Qp @ éRlﬂ'*Qp, which lifts to a decompositon of motives
h'(A) = eh!(A) @ eh!(A) ([Ancls, Théoréme 6.1]). Form the motives

¥F = TSym*2(eh! (A)(1)) and (¥*)Y = Sym"2(ehr!(A)),
where V denotes the dual motive, notice that eh!(A)(1) =2 eh!(A), by [Ancls, Corollaire
2.6]. Denote by 7 = TSym* 2(eR'7.Q,(1)) and (#)V = Sym" 2(eR'7.Q,) their étale
realizations. Put C@ =C®q Q. The subspace
Vr C H (C@, (%@)v) ®q, Fr

(here Fr C Qp is the Hecke field of F) corresponding to the Hecke eigenspace for F is the
Deligne p-adic Galois representation attached to F, characterized by requiring that the trace
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of the geometric Frobenius element at a prime ¢ { Np is equal to as(F), the Hecke eigenvalue of
Ty. The dual, or contragredient, Galois representation Vz of Vr is then the maximal quotient

HL, (Cg 7)) @q, Fr — VE,

where the dual Hecke operators T, act by a¢(F), for all £ { Np, and U’ acts by ap(F), the
Hecke eigenvalue of U; see [KLZ17, §2.8].

If F € M(N*tp, L) is the ordinary p-stabilization of a newform F* € My (N, L), then we
have two isomorphic Galois representations Vr and Vs, and an explicit isomorphism is

PIg )«

(6.1) pr, = (pry)« — %: VE — Vr,
where pry,pry: X7 — X are the canonical degeneration maps and « is the p-adic unit-root
of the Hecke polynomial of T}, acting on F* (this follows from a standard generalization of
the argument in [KLZ17, Proposition 7.3.1]). By [Ota20, Corollary 5.8] (whose proof works in

the quaternionic case also), the maps pr; and pry are related to Hida ordinary projector e
(ILV11), S 6.2]) by the formula

a(my)x — (m2)
(ro)s o e™ = =0

6.2. Big Galois representations. Define J,,, = Jac(X,,) and
Tap = lim <Tap(jm) ®z, (’)) .
m

The O-module Tay(Jp,) ®z, O is equipped with an action of Hecke operators Ty for primes
¢t Np and U, for primes ¢ | Np attached to the indefinite quaternion algebra B ([LV11] §6.2]).
Taking the projective limit of these Hecke algebras one defines a big Hecke algebra acting on
Ta,. Consider the ordinary submodule Tagrd = eord Ta,, of Ta,. Since I is a primitive branch

of the Hida ordinary Hecke algebra f)?\?d, again as a consequence of the Jacquet-Langlands
correspondence for p-adic families of modular forms ([LV11 Proposition 6.4]; see also [Che05]),
one has that T = Tagrd ®h%dﬂ is a free I-module of rank 2 equipped with a Gq = Gal(Q/Q)-

action, having the following property: T is unramified outside Np and the characteristic
polynomial of the arithmetic Frobenius element Frob, at a prime ideal £1 Np is equal to

Py(X) = X? —TyX + (Xeyc©®?)(0).
For each arithmetic character v: I — F,,, where F, is a finite extension of Q,, T, = T ®r, F},
is isomorphic to Vz .
Let v be the place of Q over p corresponding to the fixed embedding Q — @p, and let
D, = Gq, = Gal(Qp/Qp) denote the decomposition group of Gq at v and I,, C D, the inertia
subgroup, isomorphic to the inertia subgroup Ig, of Gq, via the isomorphism D, = Gq,. Let

Nyt Dy/I, — I be the unramified character defined by 7,(Frob,) = U,, where Frob, is an
arithmetic Frobenius element of D, /I,; we identify 7, with a character of Gq,/Iq,. There is

a short exact sequence of Gq,-modules (depending on the choice of v, and thus on Q — Qp)

(6.2) 0—TH—T—T —0

such that both Fil*(T) and Fil~(T) are free I-modules of rank 1, and Gq, acts on Fil*(T)
via 7, 1 Xeye©? and acts on the unramified quotient Fil~(T) via n,; see [LVII] §5.5] and [LVI1L
Corollary 6.5] for details. As Gq,-representations we have then an isomorphism

T o~ 772)_1XCyC®2 * .
0 Mo
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Define the critical twist of T to be the twist TT = T @ ©~1 of T by the Galois action of ©
([LV11, §6.4]). Then T}, = Tt ®1,, Fy, is isomorphic to the self-dual twist V}V = Vg, (k/2) of
the Deligne representation Vr,. Fix a continuous character &: K X\I? ¥ — T* as in §5.2] and
denote by the same symbol the associated Galois character £&: Gx — I*. Let T\TGK
the G g-representation TT obtained by restriction to the subgroup Gg C Gq. Define the
G g-representation Ti = TFGK ® €L From ([6.2) we obtain a filtration of D, = Gq,-modules

(recall that p is split in K)

denote

O—>T£’+—>T£—>T£’_—>O

and as Gq,-representations we have an isomorphism

TT o~ 77171chc@£71 *
¢ 0 0 '¢t )’

Define the Galois character U: G — I* by ¥ = n;lxcyCGE_l.

Lemma 6.1. V: Gg, — I is unramified.

Proof. Since A has infinity type (1,0) and it is unramified at p, we have A = Xcyef3, with
A: z — A(Z) and 8 a character of finite order and unramified at p. Since k =2 mod 2(p—1), a

simple computation shows that 7, ! xeyc?€ ™" = 7! 5*15\2[(@*1/ 2“@”’ and the result follows

because 7, is unramified as a G,-character and ﬁ*1i2[<5>*1/ 2)[(\)] is unramified at p seen
as the p-adic avatar of a Hecke character. O

For each arithmetic morphism v: I — O,, where O, is the valuation ring of the finite
extension F), of Qp, define Tzu = TE ®1,, I, where the tensor product is taken with respect
to v, composed with the inclusion O, C F), as indicated. We have then an exact sequence of
Gq,-modules

O—>T2L+HT;—>T£ —0

,—
v

where Tg/i = Tz’i ®r1,, F, are F,-vector spaces of dimension one.

6.3. Specializations. Fix a prime 8 of @ over p. Denote F = H. g the completion of H.
at P, Foo = Q™ the maximal unramified extension of Q, (which contains F' and is also
the maximal unramified extension of F' because p { ¢) and Lo, = Hcpeo s, the completion of
H.po at P. Recall that Lo = F(§F) is obtained by adjoining the torsion points of the relative
Lubin-Tate formal group § of parameter 7/7, where if § is the order of p in Pic(O,.), then
pd = (7) with m € O, (see [Shnl6l, Proposition 8.3] for the proof; see also [CHI8al, page 604]).
Let Koo = Loo(ptp~) and define G = Gal(Kw /F'), T'oo = Gal(Loo/F'), Leye = Gal(F' (pip=)/F).
We also notice that if we let ﬁcpn = Hpn(ppn) and f[cpoo =U,>1 ﬁcpn, then K = ﬁcpoofp
is the completion of ]TIcpoo at B. We thus have the following diagram of local fields:

Kx
F(pp) Lo
NG
Fcyc
F

(6.3)
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For any finite extension L of F' in L., and any G-stable subquotient M of Tz, define

Hiy(Loo/ L, M) = Hi, (Gal(Loo /L), M) = lim H' (L', M)
Ll

where L' runs over the finite extensions of L contained in L.

Let (v, ¢) be a pair consisting of an arithmetic morphism v: I — O, and a Hodge-Tate
character ¢: G — Q; of Hodge—Tate weight m € Z; we adopt the convention that the Hodge—
Tate weight of the cyclotomic character xcye: GQP — Zy is +1, s0 ¢ = xeyp for some

unramified character ¢: G — @; . For e being 4+, — or no symbol, let Tg:(gb) denote the twist

of the representation Tz’: by ¢. We then have specialization maps
Dt Hhy (Do, TE*) < H'(F, TE"E4[G]) — H'(F,TL"(9))

where the first map is induced by Shapiro’s isomorphism.

7. BIG PERRIN-RIOU LOGARITHM MAP

7.1. Big Eichler—Shimura isomorphisms. Faltings Eichler-Shimura isomorphism is con-
structed in the quaternionic case by [SG17]. Faltings Eichler-Shimura isomorphism in the
quaternionic setting is constructed in [SG17, Section 2|, following the approach of Faltings

[Fal87]. Recall the Shimura curve X,, in (Z2), which we view as defined over Q,. Let
A, — X, be the universal QM abelian surface and set G, = Tap((e./zm [p™°])) and, for any
integer £ > 2 and any finite extension of Q,, define Vy_o(L) = Sym*~2(G)® L (tensor product
as Zp-modules). Put w,, = WAV /%, = ew*(ervn/;(m). Then by [SG17, Proposition 2.1| there

is an isomorphism (where the tensor product is over L)
(7.0)  H' (X, Vea(1) @ Cp(1) = (HO(X,wh) @ Cy) & (H (K 2) @ €k — 1))

of Cp-vector spaces, which is G = Gal(Q,/L) and Hecke equivariant. We use the results by
[CHJ17] to interpolate this isomorphism along the Hida family I.

Let V be the sheaf of distributions on Z, defined in [CHJ17, §4.2], and M7 the sheaf of
perfectoid modular forms defined in [CHJ17] §4.3]; also, let C = Cv = C 4+ be the eigencurve
constructed by the eigenmachine in [CHJ17, §5.1] (see especially [CHJ17, Proposition 5.2]).
The Hida family I corresponds to an irreducible component Cy of C, which coincides with the
base-change of the eigencurve in the proof of Theorem B I3} let Vi and My be the restrictions
of V.and M' to Cy. By [CHII7, Theorem 5.12], the Gg-representation V(1) is isomorphic to
the base change of the big Galois representation T considered before. Moreover, the sheaf of
perfectoid modular forms My is canonically isomorphic to the base change of the sheaf of p-
adic modular forms constructed from the Igusa tower (see [BHW22, §3.4] for the argument over
modular curves, which extends to the quaternionic setting; also, note that [BHW22| work over
the anticanonical tower while [CHJ17] work over the canonical tower, which are isomorphic
by the Arkin-Lehner involution, as explained in [BHW22| §3.2]). By [CHJ17, Theorem 5.12],
the sheaves V1 and My are locally free of rank 2 and 1 respectively. Denote

ES 1 Vi(1)®q,Cp — MiRq,C)
the restriction of the Eichler-Shimura map constructed in [CHJ17, Theorem 5.3]. The kernel
ker(£S) and the image im(ES) are both locally free sheaves of rank 1. By [CHJ17, Theorem
5.14] we have, outside a Zariski closed subset of dimension 0 disjoint from the subset of classical
points, a splitting
(7.2) Vi(1)®q,Cp — (Mi®q,C,) @ ker(ES).

Proposition 7.1. Zariski generically, the map ([T2]) interpolates (T.).
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Proof. This is one of the main results of the paper [CHJIL7| (see especially [CHJIT, §5.2]).
However, the paper [CHJ17] does not explicitly mention specializations at arithmetic mor-
phisms with arbitrary wild ramification. For this reason, we sketch the construction of this
specialization morphisms by modifying the relevant maps in [CHJ17|; we advise the reader to
keep her /his copy of the paper [CHIJ17| for the notation which is not fully introduced here. A
similar result can be obtained by adapting in the same way the techniques of [SG17|, which
relies on a quaternionic analogue of [AIST5]. However, we remark that in the ordinary case
one can probably obtain finer results using measures instead of distributions, and only working
directly over the ordinary locus instead of its neighborhoods of overconvergence. To keep the
proof at a reasonable length, we prefer to explain how to modify the more general result of
[CHI17].

We follow closely, in this proof only, the notation in [CHJ17|, which we briefly recall and
adapt to our setting. For any m > 0, we denote Ag(p™) (respectively, Ko(p™) or K1(p™)) the
semigroup (respectively, the group) of matrices v = (‘Z Z) in M2 (Z,) N GL2(Z) (respectively,
in GL2(Zy)) with ¢ =0 mod p™ and d € Z) (respectively, c =0 or ¢ =0 and d = 1) modulo
p™. For K = Ky(p™) or K = K;(p™), denote Xk the adic Shimura curve with Uy(N*)-level
structure, and K-structure at p, and let X' = X () and X = Xg (ym) (cf [CHILT, §2.2[;

all these curves are viewed as adic spaces over Spa(Q,’“, Z; “); also, X Ko(pm) and X, (pm) are

the analytifications of the curves previously denoted X,, and X,,). The perfectoid Shimura
curve considered in this proof is Xy, ~ @ X,; this is not exactly the same object considered

m
in [CHJ17, Theorem 2.2|, where X,, is replaced by Shimura curves with full level structure;
however, the arguments used in [CHJ17| work as well in our setting, since X, is a perfectoid
space as well (|Sch15, Proposition 3.2.34]). The perfectoid space X is equipped with the
Hodge-Tate map 7yt : Xs — P! and the variable 3 € HO(Vl,O}OO) is 3 = z o Mg with
Vi = m1(V1) and z = —y/x the standard variable in V; = {[z : y] : © # 0}, so that we have

v (3) = Z_a% forally = (2%) € Ko(p) (see [CHILT, §2.2] for details; alternatively, one can use

a different affine subset of P! and obtain a new variable 3’ as in [BHW22] satisfying v*3' = %5%'3,
but we prefer to follow more closely the computations in [CHJ17]). Let X,,(0). denote the
canonical component of the ordinary locus &, (0) of X,,,, and X (0). = g} (X,(0).), where
Gm * Xoo — Xm is the canonical projection map. Let w = mp(O(1)) and let 5 € H( X (0),, w)
be the (fake) Hasse invariant defined in [CHJ17, §2.4], satisfying the transformation formula
v*(s) = s(b3+d) (alternatively, as in [BHW22|, one could work over the anticanonical ordinary
tower instead, which is isomorphic to the canonical tower by an Atkin-Lehner operator, and has
the advantage of being directly related to Katz convergent modular forms as noticed before).

Step 1. Twist distributions and polynomials by finite order characters. In [CHJI7, §3.1],
replace the Q,-vector space of powerbounded p*-locally analytic functions AZ’O on Z, with the
Q,-vector space A;’°, which coincides with AZ’O as Qp-vector space, but the right Ag(p)-actions
is defined by replacing the automorphic factor 2 — (cz+d)* =2 with = +— 1, (cz+d)(cz+d)* 2.
Equip then the linear dual D;° with the dual left action as in [CHJIT, §3.1] (here, working in
the ordinary setting, one could even use measures instead of locally analytic distributions, but
the modifications required to adapt the notation in [CHJ17| would led to a too long proof).
Similarly, for a ring A, replace the A-module of polynomials %} (A) with coefficients in A and
degree at most k — 2 with the A-module .%,(A), which coincides with .Z%(A) as A-module,
but the left Mg (A)-action is twisted by v, as follows: for f € 4, (A), put

(73 (70 X = dulad+ 021 (T3 ).

Replace then £ with £ = £,(Z,) and £}, with £, = £,(Q,). Change the map p, appear-
ing before [CHJT7, Definition 3.2] with the map p, : Dy° — 2 defined by the integration
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formula
pv(p) = . (@) (1 + Xa) 2dp()
P

with the convention that if ¢, is non-trivial, then ¢, (z) = 0 for z € pZ,, and ¥, (x) =1
otherwise. A standard computation shows that the map p, is then Ay(p™)-equivariant for
m = max{1l,m,}:

ky,—2
/ (1+ 2X )5 ~2d(y - ) = /Z ez + d)(cz + )2 (1 + Zjisz> du(x)

= Yy (d)(cx + d+ (az + b)X)* 2du(x)
Zyp

=) | X +dalaX +0)* (o)

P

ky—2
= ¥, (d) /Z (bX + d)~2 (1 + xz)fi;) dp(z)

= (/(1 + xX)"“_Qd,u> Y

where we use that ¢, (cx + d) = 1, (d) because v € Ag(p™). We also need to consider twists
at the level of overconvergent distributions as follows. Replace ODZ (V') in [CHJ17, §4.5] with

OD;(V) = (D;&q, O, (Vao)) 1)
where V' € (Xp,)proet and Voo =V Xx,, Xoo. The integration map p, gives then a map
pu: ODY(V) — (£,8q, O (Vec)) 1 ¥,

which is equivariant for the actions of Ag(p™) on both sides.

Step 2. Let A, — X, be the universal QM abelian surface. Define the Z,-modules
Gm = eAn[p™] and T,, = Tay(Gn), and the sheaf 7A'm = Tm @z, (//)\Xm' Form the sheaf
V, = Sym*~2(7,,,). Asin [CHIT7, Lemma 4.13], by [CHJI7, Lemma 4.1] we obtain a canonical
isomorphism

V,(V) = (Z,8q,0x, (Vao)) 1)

for each qcqs V' € (X)) prost; wWe equip V, with the left Ag(p™)-action by 7 -, z = 1, (d)(7 - z)
for v = (‘cl 3), where 7 - x denotes the untwisted action considered in [CHJ1T7, §4.5]. We thus

get a map still denoted p, : ODJ — 9,,, which is equivariant for the action of Ag(p™).

Step 2. Let wy, = eLie(An,/Xy,). Then w = ¢}, (wm) = mip(O(1)) (see [CHJLT, Theorem
2.8]). The Hodge-Tate map gives a map Ty, — wy, and we thus obtain a map lAiV — wg(k”_Z);
we twist the usual action of Ay(p™) on the target by 1, to obtain the sheaf w, so that there
is an equivariant map j, : V, — w,. This map can be described as in [CHJ17, Lemma 4.15]
as follows. For any qcgs open subset V' of X,,,(0)., define

Oy = <(5xm (Voo) | X oo (0)0) e .

Let @, be the sheaf sheaf w?f’”’” with Ag(p™) action twisted by v,. By |[CHIJ17, Lemma
4.14|, the map f +— f - 5®(Fv=2) defines then an isomorphism @&, = w, which is equivariant for
the action of Ag(p™). Define a map Xl,@QP@Xm(VOO) — O, (Vo) by X' 5'. Restricting
to X (0). and taking Kj(p™)-invariants, we thus obtain the explicit description of the map
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Ju 9,, — w,. By the argument in [CHJ17, Lemma 4.15|, we thus obtain a commutative
diagram on which Ag(p™) acts equivariantly:

Jvo .
oD 5,

””l
Xirszis®(ku—2)

~

V.

Step 3. The Eichler-Shimura map €S in [CHJ17, Definition 4.12] can be factorized for v € U
as

Vu — Héroét(XCw ODZS/I) — Héroét(Xm(O)& ODi)

lju
ESy

le)roét (Xm (0)07 wV)

l

HO (X, wy @ Qo) (1)
where the unlabeled vertical arrow is the map constructed in [CHJ17, Proposition 5.7] and
res is the canonical restriction composed with the canonical specialization map ODj, — ODj.
The composite map £S,, is surjective by the argument in [CHJ17, Proposition 5.8], and the
result follows by restriction to Vi (and multiplicity one) after taking into consideration the
following observation. Recall that the action of Ag(p™) on ODy, is the dual of the action on
locally analytic distributions A7, given in [CHJ17, §3.1] by the formula

(7 u)) = wuler + a)f (257

for v = (g g). For each v € U, this action is equal to the action defined in (Z3]) once xy is
defined to be the square of (any choice of) the critical character © : Z, — I*. O

We now recall an argument in [LZ16, §6.1| to interpret these results in terms of p-adic
Hodge theory. Taking G, -invariants, and looking at Hodge-Tate weights we obtain, Zariski
generically, an isomorphism

£8: (V(1)Bq,Cp)“¥ ~ MiBq,C,.
There is an isomorphism
~ G
(Vi(1)@q,Cp) " = (Dsen (Vi(1)))"

(recall that Dgen(M) is defined by means of the functor M +— DLg(M) from p-adic Gq,-
representations to (¢,I')-modules). We may fix an isomorphism V(1) ~ T ®z, Q, and let
V(1) and Vy (1) denote the inverse images of T ®z, Qp and T~ ®z, Q,, respectively, under

this isomorphism. Now, (Dgen (Vf(l)@Qp(Dp))F =0 and (Dgen (Vf(l)@)@p@p))r is equal to
(Vi (1)@)@17 Cp)F because V| (1) is unramified, and therefore we obtain an isomorphism

(VH(1)®QP CP)GQP = (V]? (1)®Qp CP)F

We thus obtain, Zariski generically, an isomorphisms:

PPN r ~
(7.4) ES: (Vi (1)®q,Cp) ~ Mi®q,Cp.
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Define the I-module D(T™) = (T_@)Zp Z;nr)GQP. Since T, is unramified, we have

Dcris (T;) — (T—®ZPZ;nr)GQP

K

and therefore we have a canonical map sp, : D(T7) — Dis(T}; ).

Theorem 7.2. There exists an isomorphism ng_ : D(T7) 21 of I-modules such that if wr.,
is a generator of the I-modules D(T ™), then sp,.(wr, ) = wr. where wr, is a differential form
attached to Fi.

Proof. We know that the I-module D(T™) is free of rank 1 because the analogue result is
known for the isomorphic Galois representation obtained from elliptic modular forms: see
[ILV11, Proposition 6.4] and [Cas20, Lemma 5.1]. Fix a I-basis wr,_ of the free I-module
D(T™)-module of rank 1. For each v, wr, gives a (canonical, up to the choice of wr_ ) choice
of an element in Dgr (T, ). If we extend the coefficients to C, and identify T ®z, Q, with VT,
this is exactly the image of the v-specialization of the map (7Z.4)) by Theorem O

Recall that T is equipped with a perfect I(1) ® ©2-valued alternating pairing which induces
a perfect and Galois equivariant pairing of free I-modules of rank 1:

(7.5) T xT™ —I(1) @ 6%

Define as before the G g-representation TE = T\TGK ® &1, which we restrict at the decom-

position group at p, obtaining a Gq,-representation, still denoted Tz. Note that the Gq,-

representation T2+ =~ (n,* chcgffl) is unramified. We also define Tz,l = T‘TGK ® €. From

the Galois equivariant pairing (Z5) we construct a map

D(T}7,) — Homy (D(TE), D (I(xeye)))
where we put D (I(xcyc)) = ((]I® Xeye) @ZPZEM)GQP. In particular, the element wr, of
D(T") gives rise to a map

Woo : (— wr., ®O71E): D(TLT) — D (I(xeye)

which is given, as indicated, by pairing with the class wr, and twisting by the Galois character
ol

We now compare with the de Rham pairing for the representations Tz’f. Since Tz’f and
T, are unramified, D(Tz’j) = DFW*(TE’:F) and D(T, ) = Dp, (T, ) for x = dR or x = cris.
We thus get a commutative diagram:

D(T}") —=— D (I(Xcye))

L

DdR(Tg,Jr) L) Dar (Fu(chc)) )

where the map w, is given by pairing agains the class wr, ® (0;'¢,). When v has weight
2, define the twisted modular form F} = F, ® 9, ! (recall that ¥, is the Dirichlet character
of F, in this case). Then the map w, is actually given by pairing with the differential form
wrs @ &, associated with F;, further twisted by ,. Fix a compatible sequence ((pn)n>1 of
p-power roots of unity; so for each integer n > 1, (p» is a primitive p"-th root of unity such
that Cg wt1 = Cprn. This choice defines a generator of Q,(j), denoted e;. Let ¢ denote Fontaine’s

p-adic analogue of 27i, defined, e.g. in [Kat91, Ch. II, §1.1.15]. Then §, = t7" ® e, is a
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generator of the 1-dimensional F, 4-vector space Dgr (F,,7¢(ngc))). Having fixed this basis,
the above diagram becomes:

(7.6) D(TL") —== D (I(Xeye))

[ \

Dar(TL") —— F,.

Consider now the Galois group G = Gal(K/F). Let ¢: G — @; be the p-adic avatar of a
Hecke character of Archimedean type (r,—r) for an integer r € Z. Then ¢x . is unramified
at p. For any Gq,-representation V, denote V(¢) the twist of V by ¢. Fix a basis W of

cyc

the 1-dimensional F,, 4-vector space Dar (Fy,¢(¢Xoe))). One defines (see for example [Cas20]
page 2144]) a map tg: Zp[G] — Dar (Fu¢(dXae))) setting ¢g(o) = ((bXC_yZ)(O')w(bX;yrc on
group-like elements. From this we construct a map

Do DT )82, 2,[G] — Dar(TL (9))
setting sp, 4, = sp, ® g(x) @ 6, where we use the description if the right hand side in terms

of DdR(Tg—F ®F, Fug); Dar(Fu6(@Xeye))) and Dar(Fug(Xeye))). We thus get from (L) a
commutative diagram:

(7.7) D(TE)@ZP Z[G] — D (I(Xeye)) B2, Z,[9]
lspw lspw
Dar(TL () — 22 R,

7.2. The big Perrin-Riou map. Recall that we still denote £: G — I* the Galois char-
acter associated with &: KX\I?X — I*. Define as before the Galois character ¥: G, — I
by U =1, 1chc@§_1- Let Frob, € Gk be an arithmetic Frobenius at p; for each arithmetic
character v: I — Qp, let ¥, = voW. Since k =2 mod 2(p — 1) and, identifying Galois and
adelic character, accordingly with convenience, Xcye(ip(p)) = N (ip(p) ™) (ip(p) 1), a simple
computation shows that W(Frob,) = a;lﬁ(ip (p)), and therefore W, (Froby) = v(a,) L&, (p)p.

Set j = W(Froby) —1 € I. Define J = (j,7cyc — 1) to be the ideal of Z generated by
j and 7yeye — 1, where 7y is a fixed topological generator of I'cye. Say that an arithmetic
morphism v: I — Qp is exceptional if its signature is (2, 1), where 1 is the trivial character,
and V¥, (Froby) = 1, so that j = 0.

Let ¢: G — Q; be a character of Hodge—Tate type of Hodge—Tate weight w and conductor
p™ for some integer n > 0. Write ¢ = Xé‘;,c¢' for some unramified character ¢/. For each v we
may consider the 1-dimensional (over F),) representation V(¥,) = F,(¥,) and its crystalline
Dieudonné module Dgis(V(V¥,)). The crystalline Frobenius acts then on Ds(V(¥,)) by
®, = U, (Frob,) (JBC09, Lemma 8.3.3]). Define &,(¢, v) by

1—p@W¢' (Froby)®,

E(,v) = { 1-pWT1g/(Froby)@y)
p(67) {6(¢1) ST ifn > 1,

—, if n =0,

where, for any Hodge—Tate character : Gal((Qgb /Qp) — Q; , €(1) is the e-factor of the Weil—
Deligne representation D (1)); we adopt the convention in [LZ14] §2.8] for e-factors, and we
refer to loc. cit. for a careful discussion.

Ifo: G — Qp is a character of Hodge—Tate type with Hodge—Tate weight w < —1, then the

finite subspace H}(F, Tzf((ﬁ*l)) of H(F, Tzf((b*l)) coincides with H'(F, Tgf((b*l)); the
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Bloch—Kato logarithm for VVJr ¢ 8ives rise to a map
7+ - 7+ -
log: H'(F,TL (¢71)) — Dar(TE (071)).
By |Cas20), Theorem 3.7|, there exists an injective I[G]-linear map
7+ - 7+ P~ %)
Log: Hiy (Too, Tg) — 71+ T - (D(T¢ )7, 0. [9])

where 6Foo is the completion of the valuation ring O of F, such that for each non-
exceptional v: I — O, and each non-trivial Hodge—Tate character ¢: G — L* of conductor
p™ and Hodge—Tate weight w < —1 as above, the following diagram commutes:

Log

(7.8) H}, (Do, TET)

lspy’qbl
(_1)7w71

——r log Ep(b,v)
_ (—w—1)!
HY(F, T{H (¢71)))

RV (D(T£’+)®ZP@FOO )

JSpwl

Dar(TEH (7).

Combining Diagrams (7.8) and (7.7), the argument in [Cas20, Proposition 5.2| shows that
exists an injective Iy -linear map

(7.9) Ll Hi (oo, TET) — T[0]

with pseudo-null kernel and cokernel, such that for all characters ¢: ' — Qp of Hodge—Tate

type, with Hodge—Tate weight w < —1 and conductor p™, all ) € Hllw(Foo,Tz’Jr) and all
non-exceptional v we have

(-1~

(T10)  spygen (L3 0) = (g @) (w0 @ 9) (l08(5py,0-1 (D))

7.3. p-stabilizations. Let v be an arithmetic morphism corresponding to a p-stabilized form
F = Fy, in Mi(N*tp,O), and let ]:,g be the form in My (N ™, O) whose ordinary p-stabilization

is Fy. Let ék = §,, and define the G k-representation V]T_ﬁ 6 = V]T—ﬁ ® é,;l; let L be the field of

k'Sk k

definition of V;u . O, its valuation ring and O}"" the completion of its maximal unramified
kSk

extension. We consider the Perrin-Riou logarithm map

o+ %) 5 +
Logys ¢+ Hiw (Do, VI, ) — OF [Tl [1/p1EDan (V' )

constructed in this setting in [Mag22, §7.1.1] (see also |[CH18a, §5.3, Theorem 5.1]). Let

prj

pr* = prj — —2% and let w be such that pr*(wFB = Wry¢. Pairing against the class

Fhé ,¢)

Wyt 4 = Wrt @We-1yr @ Op gives then a map

I'o . 1 ,+ Aunr
(7.11) L5 et Hiw(Hom gy, v;g’fk) — OPr[Too][1/p)-

Composing the map EE;OOO in (9) with the specialization map we obtain a second map

£he o o Hi (Hopro m, TET) — O [Doc][1/).

I'e _ pleo
Lemma 7.3. Lz, = ﬁfg,ﬁk opr,.
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Proof. Put Log = Loggz, ¢, , Log! = LOgFﬁ,gk’ W= WF, ¢ wh to simplify the notation.

Fi,d
We have (Log(z),w)qr = (Log(z),pr*(w?))qr and since pr* is adjoint to pr, we also have
(Log(x), pr*(w*))qr = (pr,Log(z),w). By [Ota20, Corollary 5.8] we have

(o) = 5 (o ~ )

So pr, 0 e = pr,. It follows that pr,Log(z) = Log?(pr,(z)) and the result follows. O

8. p-ADIC FAMILIES OF HEEGNER POINTS

8.1. Families of Heegner points. Denote ycy.: Gal(Q/Q) — Z the cyclotomic character,
and let 9: Gal(Q/Q(v/p*)) — Z);/{£1} be the unique character which satisfies 9% = xcyc,

where p* = (—1)%1) (see |LV11, §4.4] for details). For integers n > 0 and m > 1, define
Lepn g = Hepn(ppm). Recalling the notation in §2.6] define Pepyn py, = Zepn m(1). These points
are known to satisfy the following properties:
(1) ]jczﬂn,m € Xm(LCp"gn)§
(2) Pon m = (9(0)) - Pepn m for all o € Gal(Lepn yn/Hopntm);
(3) Vertical compatibility: if m > 1, then ) qm(Pgn 1) = Up - Pepn m—1, where the sum
is over all o € Gal(Lepn,m/Lepn—1,1y,) and Gy, : X,, — X,n,_1 is the canonical projection
map; N N
(4) Horizontal compatibility: if n > 0, then > Pgn,, = Up - Pyn-1,,, where the sum is
over all o € Gal(Lepnm/Lepn—1,m)-
Remark 8.1. See |[CL16, Theorem 1.2] for a proof of the above properties; in loc.cit only the
case of definite quaternion algebras and ¢ = 1 is treated, but it is easy to see that the proof,

which combines results in [LV11] and the description of optimal embeddings in [CH15|, works
in this generality as well.

8.2. Big Heegner points. Fix an integer ¢ > 1 prime to D Np. Recall froin m;che family
of points Pyntm z in X (Lepntm ) and from §6.2] the Jacobian variety Jpn, of X,,. Write
Z; = A X (1+pZy,) with A = (Z/pZ)* and let ej_» denote the projector

ern = —— 3w kD58 € Z,Z7].

p—1
JeA
By [LV11) (42)], ©(0) = (¥(0)) for all 0 € Gal(Lopn+m y,/Hepntm), as endomorphisms of

(ep_g - €°™) - jm(chn+m7m), and therefore, using that U, has degree p (¢f. [LV11], §6.2]),
projecting to the ordinary submodule gives points

d D 0 TFord
Pcpn+m,m = (ek,Q . eor ) . Pcpn+m,m & H (Hcpn+m, Jﬁ; (chn-km,m)‘l-) 5

where Jo'(L) = ¢4 . J,.(L) for any extension L/Q, and for any Gal(Q/Q)-module M, we
denote MT the Galois module M ® ©~!. Corestricting from H, epntm t0 Hepn, we obtain classes
Pcp",m € HO <Hcp”) jxd(chn-{—m’m)T) .

Composing the (twisted) Kummer map we obtain classes X¢pn p, in H 1(Hcpn,Ta;rd(jm)T)
(where Tagrd(Jm) = €4 Ta,(J,,)) and then, using the trace-compatibility properties enjoyed
by the collection of points Pyntm ,, recalled in §2.6] we may define a class

Xepn = lﬂl Uy " Xeprm € HI(HCp",TT)-
m
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Under the assumption that p does not divide the class number of K, using the properties of
the points P ,n+m ,,, once again, we also may define [wasawa classes

cp
Xepoo = L , | Xepn € HIw( 0p°°/HC=T L Hl Hepr, )
n>0
where the inverse limit is taken with respect to the corestriction maps. Since P in totally
ramified in the extension Hpe /H., we have Gal(Hpe/H.) = I'so, 50 we can write

Xepe € Hiy(Doo, TT).

Recall now the notation fixed in §6.3] and let £ be the character of conductor ¢ constructed in
loc. cit. We may thus consider the class

Xe 1= Xopo © € € H, (Too, TY).
Let T'oo = Gal(H, epe/K). Taking corestriction we get a class
(8.1) 3¢ = corp, /i (X¢) € Hiy(Too, T) i= lim H'(Hepn, TL)

n>—1
where H,,-1 := K. Under the condition that the residual Galois representation p attached to
the Hida family f. is ramified at all primes dividing N ™, one can prove that X.,» belongs to
the Greenberg Selmer group (see [CW22, Proposition 4.5]).

8.3. Geometric p-adic L-function attached to big Heegner points Recall the big
Perrin-Riou map EE;OOO in (C9) and define Egj;oo = po EE;OOO, where o: I[Ts] — I[Too]
is the map arising from the canonical map I's, < ['w. Since p is split in K, resq (X¢) belongs
o Hi (Too, TE’”L) by [How(7, Proposition 2.4.5], so the following definitions make sense.

Definition 8.2. .,%gzo EF 5 (resp(3¢)) is the geometric anticyclotomic p-adic L-function
attached to the family Foo

9. RECIPROCITY LAW FOR BIG HEEGNER POINTS

The goal of this section is to derive an explicit reciprocity law for higher weight specialization
of big Heegner points using a reciprocity law for weight 2 specializations; this strategy has
been successively used in a series of paper ([Cas20|, [Cas13], [CL16]).

9.1. Coleman integration on Shimura curves.

9.1.1. Rugid analytic Shimura curves. Recall the Shimura curves X, for integers m > 0, viewed
as Zy,-schemes, and denote X " the rigid analytic space over Q,, associated with Xm, ifm=20

we simply write XJ¢ for X{®. Also recall that we denote X' = Ap[1 /Ha] the ordinary

locus of Xp: the rigid analytic space X ordris pssociated with x5 Ord is the complement in X, g

of residue disks D, corresponding to supersmgular points x in the special fiber of A ord (We
refer e.g. to [Buz97, §3] for the notion of supersingular abelian surface with quaternionic
multiplication).

For any real number 0 < ¢ < 1, denote X, (¢) the open rigid analytic subspace of Xélg

defined by the condition \ﬁg] > |p|%; we view X (¢) as defined over any field extension
L/Qp in which there exists an element x € L with |z| = |p|°. For any integer m > 1, let

Em = m then X (e,) is defined over Q,((pm), and later we will adopt the same

symbol for their base change to finite field extensions L of the cyclotomic field Q,((,=). By
[Bral3, Proposition 6.30], any point z = (A,t, ) in X (e,) admits a canonical subgroup
Cpym C A[p™] of order p?™ (see [Bral3, §3] for the notion of canonical subgroup in this setting;
see also [Kas04, §10] and [Sch15l §3.2] for related results).



34 MATTEO LONGO, PAOLA MAGRONE, EDUARDO ROCHA WALCHEK

Let oy : X — Xy denote the forgetful map. Define Wi (p™) (respectively, Wa(p™)) to

be the open rigid analytic subspace of XTi& whose closed points corresponds to QM abelian
surfaces with level structure x = (A, ¢, «, 8) where:

o (A1) is a QM abelian surface equipped with a Vo(NT)-structure «;

® 3: pym — eCpm is an isomorphism, where as before, we indicate Cym C A[p™] the
canonical subgroup of A of order p?™; thus, (¢pm) is a generator of eCpm;

o o, (x) belongs to Ay (e) (respectively, Xy (em+1))-

We thus have a chain of inclusions of rigid analytic spaces Wy (p™) C Wh(p™) C Xn'.

The Deligne-Tate map ¢ : Xy (em+1) — X (em) is defined by taking quotients by the
canonical subgroup, i.e. we put ¢(A4,¢, ) = (Ao, o, ) where Ag = A/C,, and C, C A[p]
denotes as before the canonical subgroup of A of order p?, and if ¢ : A — A/C,, is the canonical
isogeny, ¢¢ is the polarization induced by ¢ and ¢, and « is the V3 (NT)-level structure induced
by o and ¢. The map ¢ induced by ¢ on the special fibers of X5 (ep+1) and X (g,,) coincides
with the Frobenius map Frob,, and so ¢ : X (em41) = X (em) is also called Frobenius map.
The map ¢ thus obtained can be lifted to a map (denoted with the same symbol and also
called Frobenius map)

(9.1) ¢ : Wa(p™) — Wi(p™)

setting ¢(A, ¢, o, ) = (Ao, o, a0, fo) where By : ppym — A/Cp sends (pm to ¢(Pp1) where
Pry1 € Cymea satisfies pPr, 11 = Py = B((pm).

9.1.2. Semistable models and rigid de Rham cohomology. We denote by Vi, the proper, flat,
regular balanced model of X, over Z[(,=]|. The special fiber of },, is the union of a finite
number of reduced Igusa curves over IF,, meeting at their supersingular points, and two of
these components, denoted Ig., and Igy, are isomorphic to the Igusa curve Ig,, ; over F); we
let Ig,,, denote the connected component corresponding to the canonical inclusion of Ig,, ; into
Vm ®z[pm] I,. We have an involution we ,, attached to the chosen p™-root of unity ¢,m which
interchanges the two components Ig., and Ig, (see [Mor81] and its generalization to totally
real fields in [Car86]).

Remark 9.1. The results of Carayol [Car86] formally exclude the case under consideration
when the fixed totally real number field F' is equal to @, but refers to the paper of Morita
[Mor8&1] for this case. A proof of these facts can also be obtained by a direct generalization of
the arguments in [Buz97, Theorem 4.10| which considers the case m = 1.

Let L be a finite extension of Q,({ym) where ), acquires semistable reduction. Let O,
be the valuation ring of M and kj, its residue field. We denote @ : %;,, — YV ®Zy[¢ym] Or a
semistable model of V,, over O. Let G,, denote the dual graph of the special fiber Y,,, of %;,;
the set V(G,,) of vertices of G, is in bijection with the irreducible components of the special
fiber Y,, of %;,, and the set £(G,,) of oriented edges of G is in bijection with the singular
points of Y,,, together with an ordering of the two components which intersect at that point.
Given v € V(Gp,), let Y, denote the associated component in Y,,, and let Y™ denote the
smooth locus of Y,. Let red : %,(C,) — Y,,(F,) be the canonical reduction map. For any
v € V(Gm), let W, = red (Y, (F,) denote the wide open space associated with the connected
component Y, and let A, = red ! (Y$"(F,) denote the underlying affinoid A, C W,. If
e = (s(e),t(e)) € E(Gm) is a edge, then We = W) N W) is equal to red~1({z.}), where
{Te} = Yy(e) N Yy(e)- The set {Wy, 1 v € V(G)} form an admissible cover of the rigid analytic

space %;,(C,) = X,,(C,) by wide open subsets. Let d : O(V) — Q%ig(V) be the differential
rig

map for any wide open V, where O = O, is the sheaf of rigid analytic functions on %, and

Ql

rig the sheaf of rigid 1-forms; the de Rham cohomology group can be described as the set of
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hyper-cocycles

(w = A{wotvev@m)s {fetece@n) € [ @) x ] Ow.
vEV(gm) eeg(gm)

such that dfe = wye) — wy(e) and fz = —f, for each e = (s(e),t(e) € £(Gy) (where for
each e = (s(e),t(e)), we let & = (t(e), s(e))) modulo hyper-coboundaries, which are elements
of the form (dfy, fie) — fse)) for a set {fu}ev(g,,) of functions f, € Op,. For each edge
e = (s(e),t(e)), we have an annular residue map resy, : Q},/m(We) — €, defined by expanding
a differential form w € ngm(V) as w =) o a,t"dt for a fixed uniformizing parameter ¢ on
W, and setting resyy, (w) = a—1. We say that a class w € Hlg (%) is pure if it has vanishing
annular residues for all v € V(G,,). For pure classes w = (wy, fg), 1 = (M, g) the de Rham
pairing (w, n)qr is computed by the formula

(92) <w7 n>dR = Z resyy, (Fens(e))

e=(s(e),t(e))€€(Gm)
where I is an analytic primitive of the restriction to W, of wy(), which exists because w,
has vanishing annular residues for all v € V(G,,), and is well defined up to a constant (and
since 7, has also vanishing annular residue at v, the value of the pairing is independent of this
choice). See [CI10, §3.5] (or [DRIT, §3.1]) for more details.

The birational map @ : %, = Y, @z, Cym] Op, induces an isomorphism between the generic
fibers; it also induces an isomorphism between two of the components of the special fiber Y,
of %, with Ig, ®p, kr and Igy ®r, kr: we denote Ig  and Ig, these two components of
Y. Let Wao(p™) = red™!(Ig, ) and Wy(p™) = redfl(IgO) be the corresponding wide open
subsets with associated underlying affinoids Ao (p™) and Ag(p™), respectively. The L-valued
points of the rigid anaytic space A (p™) are in bijection with quadruplets (A, ¢, o, 5) where
(A, 1) is a QM abelian surface, o is a Vo(N)-structure and 3 : Hym — €Cpm is an isomorphism
(as before, we indicate C,,, C A[p™] the canonical subgroup of A of order p>™). The L-vector
spaces

m Qi Woo (™))
HlyWas(p™)) = W,
QL Wo(p™))

Hi,Wo(p™)) = —=

rlg( 0(p )) dOWo(pm)
are equipped with a canonical action of Hecke operators Ty for primes ¢ 1 Np, and with canoni-
cal L-linear Frobenius endomorphisms defined by choosing characteristic zero lifts ®,, and @
of the Frobenius endomorphism in characteristic p to a system of wide open neighborhoods of
the affinoids Ao (p™) in Weo (p™) and A (p™) in Wy (p™), respectively. In the case of Shimura
curves, we take &, = ¢ and Py = Wem © oo 0 W, , Where we ,,, is the Atkin-Lehner invo-
lution associated with the choice of (,m which interchanges the two wide opens Wy, (p™) and

Wo(p™).
Let
1 1 Q%ig(w)
resyy : Hag (%) — Hy,(W) = 10w

be the restriction map, where W is an admissible wide open space obtained as inverse image
via the reduction map of an irreducible component of the special fiber of V,,; in particular we
have the two maps res,, = resy__ (™) and resy = resyyy (pm)- Let H le(@m)prim be the subspace
of the de Rham cohomology of %, associated with the primitive subspace of the L-vector space
of modular forms of weight 2 and level N*p™, and H. (WW)P"® is the subspace generated by

rig
pure classes of rigid differentials (i.e. those classes with vanishing annular residues, as before),

for W =Wy (p™) and W = Wy (p™).
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Proposition 9.2. The restriction maps ress, and resy induce an isomorphism of L-vector
spaces

res = rese @ resg @ Hig (%,)P™ ~ Hrlig(Woo (P™))Pre @ Hrlig(Wo(pm))pure

which is equivariant with respect to the action of Hecke operators Ty for €4 Np on both sides,
the Frobenius endomorphism ® acting on the LHS and the Frobenius endomorphism (®s, o)
acting on the RHS.

Proof. The proof of these results can be obtained as in [BE1(, §4.4] using a generalization
of [Col97, Theorem 2.1] to the case of Shimura curves. This generalization does not present
technical difficulties and is left to the interested reader. (]

Fix a finite set of points S of %}, (C,,) which reduce to smooth points in Y,,(IF,). The residue
disk Dg of each @ € S (defined as the set of points of %;,(C,) whose reduction is equal to the
reduction of ) is conformal to the open unit disk D C C, because red(Q®) is smooth, and we
may fix an isomorphism ¢g : Do — D of rigid analytic space which takes @ to 0. For each
@ € S, fix a real number 7g < 1 which belongs to the set {|p|™ : m € Q}. Let Vg C Dg be
the annulus consisting of points x € D¢ such that rg < |pg(z)|, < 1; define the orientation
of Vg by choosing the subset {x € Dg : |p(x)|, < rq} of the set Dy — Vg, which consists in
two connected components. We may then consider the affinoid

As = 9n(Cy) — | Dg
QeS

and the wide open neighborhood

Ws = Ag U U VQ
QeS

of Ag, so that Ag is the underlying affinoid of Wg. We also put

Wae = Waa(p™) = | (Dg — Vo),
QEeS

Wo =Wo(p™) = | (Dg - Vo).
QeS
For a Hecke module M, denote M [F] the eigencompnent corresponding to an eigenform F. Let

Ys = %, — S and let F be a weight 2 newform on X,,,. An excision argument from Proposition
shows that the canonical restriction map res = (resg, ress) induces an isomorphism

(9-3) res : Hip(Vs/L)[F] = Hyi,(Wao)[F] & H}i (Wo)[F].

Moreover, again from Proposition 0.2} a class in Hlz (Ys/L)[F] is the restriction of a class of
H}: (%) if and only if it can be represented by a pair of differentials @o, € Q%ig(Woo) and
@y € Q%ig(Wo) with vanishing annular residues. If w and 7 are classes in H g (%, )P"™, denote
Woo = TeSeo (W), wo = resp(W), Noo = Teses(n), Mo = reso(n). Let Fopy, be any solution of the
differential equation dF = we on Vg, and let Fy)y,, be any solution of the differential equation

dF = wy on V. It follows from ([@.2)) that for each w,n € H}(%,)[F] we have

(9.4) (mw)ar = Y resv(Faoy - Noopy) + Y resy(Fopy - opy)
VT Weo VEW,

where the sum is over all annuli V.
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9.1.3. Coleman primitives. Fix a Z,-algebra R and an ordinary modular form F of weight
2 in My(N*,p™ R), and recall that we denote wr € H°(X,,(R),w®?,) the global section

corresponding to F. Let z = (A,t,a, P) be a point of /l?m which reduces to a smooth point
z = (A,r,@) in the special fiber of Xy, where A = A ®p k and the polarization ¢ and the
level structure & and induced by ¢ and «, respectively (here A is defined over R and k is the
residue filed; we write simply P for (H, P)). Fix a Zy,-basis {x 4,2y} of Ta,(A) such that x4
is a Z,-basis of eTa,(A) and ex’y = 0. As in §33] we consider the formal differential form
Wy = wy, obtained by pull-back of dT'/T along the map sazg\ — Gy, Where 43/7; is the formal
group associated with the universal object <% (see §4.2). Let D, be the residue disk of Z in
éifvm, defined to be the set of points of the associated rigid analytic space whose reduction is
equal to Z. Using the Serre-Tate coordinates around A associated with the choice of the basis
{za,2',}, we may write on D,

(9.5) wr = F(Ty)y.

We further simplify the notation and write (B,t) with ¢ = (¢, ) for a test object where B
is an ordinary QM abelian surface over a Z,-algebra R which reduces to A, equipped with a
principal polarization ¢ and la Uy(NT)-level structure «; we also let (B, t, P) be a test object
in which (B,t) is as before and defined over a p-adic ring R, and P is a p"-torsion point in
Cym C B[p™]. Let finally DY = ¢(D,) be the residue disk in X, of ¢(z) = (AT ¢') with
t' = (/,a’), where the polarization ¢ and the level structure o are induced by ¢ and a and
the Frobenius map Frob = .

Lemma 9.3. ¢*(wr) = pwyr.
Proof. The operator V' is described by the formula (using the previous notation)
VF(B,t, P) = F(By,to, Po)
where:
e By = B/C, is the quotient by the canonical subgroup;
e to = (10, 0, Py) where ¢ and o are induced by the quotient map ¢ : B — By from ¢

ad «a respectively, and Fy is the p-th root of P in Cpm+1.
From this and (@.5]) we thus have

¢ (wr) = (VF)L2)d™ (@)

On the other hand, ¢*(@g(,)) = pws by [Kat81, Lemma 3.5.1] (see also [HB15, Lemmas 4.4,
4.11]), concluding the proof. O

Let a, denote its Up,-eigenvalue of F and define the polynomial L(X) =1 — %”X .

Proposition 9.4. (1) There exists a locally analytic function Fuy on Weo(p™), unique
up to a constant, such that dFy, = wr on Weo(p™) and L(¢*)Fx is a rigid analytic
function on a wide open neighborhood Wee of Axo(p™) contained in Woo (p™).

(2) Let b= We,m ©POWC,m - There exists a locally analytic function Fy on Wo(p™), unique

up to a constant, such that dFy = wr on Wy(p™) and L(¢*)Fy is a rigid analytic

function on a wide-open neighborhood Wy of we¢,m Xm(0) in Wo.

Proof. (1) In We = ¢~ *(Wao (p™) N Wi (p™)) we have L(¢*)ws = 0 by Lemma [0.3) moreover,
L(¢*) induces an isomorphism of the sheaf of locally analytic functions on Wu,(p™) because
the (complex) absolute value of a,, is p'/2. Then (1) follows from [Col94, Theorem 8.1], using
[Kat73, Proposition 3.1.2] (see also [CI10, Lemma 5.1]) to check the condition on regular
singular annuli. For (2), apply (1) to wemwzr. O
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Definition 9.5. The functions F, and Fy in Proposition are the Coleman primitives of
F on W (p™) and Wy (p™), respectively.

Note that (1) of Proposition says that L(¢*)Fs is overconvergent. More precisely, for
any integer m > 1 and any real number 0 < e < g, let &;,,(¢) denote the affinoid subdomain

of Wi (p™) consisting of those points z such that [Ha(am (2))| > |p|; to complete the notation,
when m = 0 and 0 < & < 1, we also denote Xj(¢) the affinoid subdomain of Xéig defined by
the condition [Ha| > |p|°, so that X, (¢) € Xp(e). For any integer k and any integer m > 0,
define the Cp-vector space of overconvergent modular forms of weight k pm X, to be

MES(Ron) = lim HO (% (0), w5, )
£

where 0 < ¢ < &, with € approaching €,,. Then we have L(¢*)F, € MP°(Xy,).

The proof of [Col94, Theorem 10.1]| shows that d(L(¢*)(Fs) = L(¢*)wsr; on the other hand,
L(¢*)wr = wxrpp), where recall that F bl = F — a,VF. Define the overconvergent modular
form

d Y pi = L(9")(Fuo):

Then L(¢*)'d 'wz = Fs. Note that the definition of dilwf[p} depends on the choice of a
constant defining F,, which we fix as follows.

Pick a point x, in the wide open neighborhood Wy, of A (p™) appearing Proposition [0.4}
accordingly with our definitions, red(7o) = (oo, B) belongs to Ig. (F,), so we may consider
the T, -expansion F (T ) of F at x, associated with the choice of a basis {z 4, 2/, } of Ta,(A)
coming from f as described in §8.21 The T}, _-expansion of F ] is then

FT, )= onT)
ptn

for suitable elements o, € Zy" and n > 0 ([HB15, Proposition 4.17] and [Burl7, Lemma
5.2]). Define

. A FR(T, ) =S 2ot
(9.6) FUT:.) %jn+1:M

We may then normalize the choice of F., by imposing that the T},_-expansion of d~'w Flp) 1S
that in (Q.6); more precisely, we introduce the following:

Definition 9.6. Let dilj’-}[gﬁ<> denote the unique overconvergent modular form such that:

o d(d"'FEL) = FV);
e The T, -expansion of ALY s equal to d-'FP(T,_).

The previous definition fixes the choice of d~tw 7l» and, consequently, of Fi, to be dilfyi.
Note that in the residue disk of x, we have d*1.7-"g[£]O = d 1 FIPN T, ).

Definition 9.7. We say that the Coleman primitive F,, in W (p™) appearing in Definition
vanishes at T if the choice of the constant is normalized as in ([@.6]).

With these definitions, if F,, vanishes at z.,, we have

(9.7) dVFP = L(¢") Fue.
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9.1.4. Logarithmic de Rham cohomology. Let Ly be the maximal unramified extension of L.
The work of Hyodo-Kato [HK94] equips the L-vector space H CllR()Z'm /L) with a canonical
Ly-subvector-space N
Hl%)g—cris(@m) — HéR(Xm/L)

equipped with a semi-linear Frobenius operator ¢; by the results of Tsuji [Tsu99], there is a
canonical comparison isomorphism Dag (Vi) ®q, L ~ H}p (X, /L) of filtered ¢-modules, where
Vip = Helt()?m ®q Q, Q). For a Hecke module M, let us denote M [F] the eigencomponent
corresponding to the eigenform JF; we also denote Fr C Qp the Hecke field of F inside
the algebraic closure of Q,. We then have a canonical isomorphism of Ly ®q, Fr-modules
Deis(VF) ~ H} (%,)[F] compatible with the @-action which induces after extending

log-cris
scalars an isomorphism of L ®q, Fr-modules

D (V) = Hig (% /1) [F].
9.1.5. Abel-Jacobi map. Let Jp, = Jac(Xp, ®q, L) and consider the map

¥ Kum =g proj log ~ . %
O+ (L) == H}(L, Ta,(J)) == H}(L, V(1)) R e (Fil’ (Dgr(V£)))

where:
e Kum is the Kummer map;
e proj is induced by the projection map Tap(jm) — VZ and the isomorphism V7 ~ Vz(1)
induced by Kummer duality;
e log is the inverse of the Bloch-Kato exponential map

. Dar(VF(1))
" Fil’(Dgr (V£(1))
which is an isomorphism in our setting;
e The isomorphism

Dar (VF(1))
Fil’(Dar (VF(1))
is induced by the de Rham pairing.

Following [BDP13| §3.4] and [Cas13l §2.2], the map d,, can be described as follows. First,
recall that the Bloch-Kato Selmer group can be identified with the group of cristalline exten-
sions

~ (Fil’(Dar (V£)))"

0— Ve(l) — W 2L qQ, —0
and since Dis(VF(1))?=! is trivial, the resulting extension of ¢-modules
(9.8) 0 — Dqis(VrE(1)) — Deis(W) — Lo — 0
(where Ly is the maximal unramified subextension of L) admits a unique section
STOb s Ly — Deris (W)

with 7P = sFob(1) € Deyis(W)?=1. We also fix a section

st L — Fil®(Dgr (W))
of the exact sequence of L-vector spaces
(9.9) 0 — Fil®(Dgr(V#(1))) — Fil’(Dgr(W)) — L — 0

obtained by extending scalars from Ly to L in (9.8]), using the canonical isomorphism with de
Rham cohomology, and taking the Fil’-parts of the resulting sequence. Define 775[}1 = sa}l(l)

and consider the difference
_ . Frob Fil
nw ="nw  —Nw
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viewed as an element in Dgr(W); this difference comes from an element in Dggr(Vr(1)),
denoted with the same symbol 7y, and its image modulo Fil®(Dgr(Vz(1))) is well defined.
Then we have (see [Casl3] Lemma 2.4] and the references therein)

log(W) = mod Fil’(Dagr (VF(1))).

Let A € J(L) be the class of a degree zero divisor in )Zm, with support contained in the
finite set of points S C X,,(L). Define the map

(9.10) Fom T (L) S HY(L, T () 225 HA(L, V(1))

and consider the class K, (A) € H}(L,V;(l)). Denote Wa the extension class associated
with K, (A). Attached to Wa we then have the class ny, in Dgr(Vz(1)) constructed before,
and we may consider the (weight 2) newform F* associated with the twisted form F ® X]f-l,
where xr denotes the character of F. Let as before wr+ denote the differential form attached
to F*; denote with the same symbol wr+ the corresponding element in Dgygr(Vr+) via the
isomorphism Dyg(Vr+) ~ H(}R()me/L)[f*] (here for a Hecke module M, we denote M [F*]
the eigencomponent corresponding to the eigenform F*, and we also denote Fr+ C Qp the
Hecke field of F* inside the algebraic closure of Q,). Note that wz- belongs to Fil'(Dgr (V+)),
which is equal to Fil’(Dggr(V)); we therefore obtain a class wzs € Fil’(Dgr(V%)).

Lemma 9.8. 0,,,(A)(wr+) = (Mw,, WF)dR-

Proof. Follow the argument in the case of modular curves in [BDP13| §4.1] (the good reduction
case) and [Cas13] §2.2] (the bad reduction case). O

Pick as before a point z in the wide open space Wy,. Let F be the Coleman primitive
of wr+ on Wy (p™) which vanishes at zo, (¢f. Definition @.7]). We may then consider the map
i) Xon(Cp) = Jin(C,) which associates to P the divisor (P) — (o). We simply write ji,
for this map when z, is understood.

Lemma 9.9. Let A = j,,(P) and F% the Coleman primitive of wr« on W (p™) which
vanishes at co. Assume that m > 1. Then (nw,,wr«)dr = Fior. (P).

Proof. The proof follows [DRI17, §4.2] and [CasI3l Proposition 2.9], which adapts the proof of
[BDP13l Proposition 3.21] to the semistable setting. We proceed with the computations using
@D,

Step 1. We first describe the classes 775}2 and nglﬁzb. Let S = {P, 2} and Yg = %,(C,) — S
as before.

The class 775}2 is an element in Fil®(Dgr(Wa)) with de(ng}lA) = 1, where pgr is the top
right arrow map in the following commutative diagram

0 —— Fil®(Dag (VE(1)) ————— Fil'(Dar (Wa)) —22— L ®g, Fr —— 0

I | |

0 —— Fil! (Hlp(%n/1) ) [F] — Fil! (HY(Ys/D)) [F] =3 (L g, Fr)§ — 0

which realizes the exact sequence in the top horizontal line (which is (@9)) as the pull-back
of the bottom horizontal line with respect to the rightmost L ®q, Fr-linear vertical map A
taking 1 to (P, —2); in the bottom horizontal arrow, resg(w) is the residue at Q@ € S of the
differential form w, and the subscript 0 denotes the degree zero elements, i.e. those (zg)ges

in L ®q, F'r with 3_5.gnq = 0. Therefore, we have resP(na}lA) =1 and res;__ (7751}2) = -1



QUATERNIONIC HEEGNER CLASSES AND p-ADIC L-FUNCTIONS 41

Similarly, the class 775152]0 is an element in Deis(Wa)?~! with pcris(ng[ﬁzb) =1, where pgR is

the top right arrow map in the following commutative diagram

Pecris

00— Dcris(V}'(l)) Dcris(WA) E— LO ®Qp F]: —0

I l |+

~ Dres
0 —— Hby oie(Xom/Lo)[FI(1) — Hilg oo (Vs/Lo) [F)(1) — (Lo @q, Fr)§ — 0

which realizes the exact sequence in the top horizontal line (which is (9.8])) as the pull-back
of the bottom horizontal line with respect to the rightmost Ly ®q, Fr-linear vertical map
A taking 1 to (P, —z«); as before in the bottom horizontal arrow, resg(w) is the residue at
Q € S of the differential form w, and the subscript 0 denotes the degree zero elements. By
the discussion closing §9.1.2] (see especially (@.3))), naﬁzb is represented by a pair of sections

(nkrob plroby of 1 W) X QL (Wp). Since naﬁzb is fixed by ¢, we have nEr°P = ¢nfrob 4 dG

rig rig 00 00

for a rigid analytic function G, on VNVOO, and (ngmb) = (¢’ )ngmb + dGy for a rigid analytic

function Gp on Wy. Moreover, we also have reSQ(ngﬁZb) = resQ(na}lA) for all Q@ € S, and
since resg (naﬁzb) = resy, (naﬁzb) for all @Q € S, we may rewrite the last condition in the form

resy, (Mpa”) = resq(niyy ) for all Q € S.

Step 2. (Cf. |BDP13l Lemma 3.20].) We now show that

(9.11) > resy((Fo, ni®)ar) + > resy((F5,n6 ™ )ar) = 0.
VW VW,

We begin by showing that the first summand in (@.I1)) is zero. Recall that n5r°P = ¢nkiob 4
dG . By the Leibeniz rule we then have

d((F5, Goo)ar) = (PF; dGoo)ar + (Pwre, Goo)ar
where we use that d(¢F% ) = ¢dF7, because ¢ is horizontal for d. Therefore, the RHS is exact
on each V, so we have resy((pFL,dG)ar) = —resy({(¢wr+,Goo)ar); on the other hand,

(pwr+, Go)ar is a rigid analytic differential form on W, so the sum of its residues is zero for
all V. We conclude that

(9.12) > resv((9F%, dGoc)ar) = 0.
VTWoo
We then observe that resy((F%,nE°PYqr) = resy((0FL, ontr°P)qr); combing this with the

equation nfroP = ¢nfrob + 4G, and the equation ([@IZ) we conclude that

o
> resy((Fr,mear) = D resy((9F5, nee®)ar)-

VW VTWee

It follows that
L) D resv({Fmvhar) = Y resv({L(0)F, i a)-

Voo VW

Now L(¢)FZ% is rigid analytic, and therefore the RHS is zero; since L(1) # 0, we conclude that
> resy((FL, miy)ar) = 0.
VEWe

A similar argument, replacing )/NVOO with )/NVO, Moo With 19, Goo With Go, F, with Fjj and ¢ by
¢’ shows that

> resy((Fyng™")ar) = 0

VW
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and (@110 follows.
Step 3. (Cf. |IBDP13], Lemma 3.19].) We now show that

(9.13) Z resy(F, Fll)—i— Z resy (Fin Fll) F%(P).
VEWeo VW

Since F vanishes at 2., F2n5l is locally analytic in a neighborhood of 2, and it follows that

res, (FnEl) = 0. On the other hand, since reSP(na}l ) = 1, we have resp(F2 775}1) FX (P),
so we conclude that
> resy(FLnil) = FL(P).
VEWeo
On the other hand, Fo*na}lA is analytic on W), so the second summand in the LHS of (9.13)) is
zero, and (Q.I3)) follows.
Step 4. The result now follows combining (@.11]) and (@.13) with (@.4) and using that, since

m > 1, the wide opens Woo and Wo are disjoint. O
Corollary 9.10. Let A = (P) — (zo) and EZX the Coleman primitive of wr« on W (p™)

which vanishes at co. Assume that m > 1. Then 6y (A)(wr+) = Fiop (P).
Proof. This follows immediately from Lemma and Lemma O

9.2. Weight 2 specializations. Let v an arithmetic homomorphisms of signature (2,1) and
let the conductor of ¥ be p™ for some integer m > 1. Let ¢: KX\I?X — F* be the p-adic
avatar of a Hecke character ¢: K*\Ag — Q" of infinity type (1,—1) and conductor p" for
some integer n > m such that the Galois character ¢: Gal(K?P/K) — F* factors through
foo. The next task consists in computing the (v, qgfl)—specialization of .,?fzo. We put

LE W, 07) = v, (LE0).

For a number field L and the ring of algebraic integers O of a finite extension of Q there is a
canonical exact sequence

0 — J(L) ®7 O — Pic(Xm/L) 07 0 28 0 — 0

and taking ordinary parts, since the degree of U, is p, we obtain a canonical isomorphism

(9.14) I (L) @7 O — Pic(X /L) @7 O.
We denote g, the inverse of this canonical isomorphism. Consider the divisor
Qcp",m = Z ﬁc[;n-kmﬂn ® Xu(a-)
UeGal(Hcpn+m /Hcpn)

where & € Gal(Loyntm ,/Hepn) is any lift of o (the independence of the lift follows the results

recalled in [2.6]). We define a canonical class 0y (Qcprm) in Jn(Q) ©z O, (xy), which is fixed
by the action of Gal(Q/Lyn+m ,,). Tracing through the definition of big Heegner points, we
see (cf. [LV14bl §3.4], see especially [LV14bl (3.6)]) that when n > m > 2

m
v(a
(915) Qm(Qcp",m) = <(Tp)> : Spu(%cp")'
For the next theorem, let v an arithmetic homomorphisms of signature (2,v) such that
v: T — Q; has conductor cond(y) = p™ for some integer m > 2. Let b K*\K* — F* be

the p-adic avatar of a Hecke character ¢: K*\A 5 — QX of infinity type (1, —1) and conductor
cond(zp) = p™ for some integer n > m such that the Galois character ¢: Gal(K?P/K) — F*
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factors through foo. Finally, recall that Zepnm = Zepnm(l) = _ﬁcpn,m. We finally write
dil}"y[lf ;Coo to denote the overconvergent modular form in Definition for F = F,.

Theorem 9.11. Let v and ¢ be as before, so v has signature (2,1) with cond(y)) = p™ with
m>2 and ¢: K*\Ag — Q" of infinity type (1, —1) and cond(¢) = p™ with n > m. Then

L2 d ) = — DS (@8 @ L (rem(a )

Eup (p") - p a€Pic(Ogpn)

Proof. We first relate .,Sfﬂgzo(u, (ifl) to the Coleman primitive. Since (i: I — Qp has Hodge—
Tate weight w = 1 and conductor n > 1, from (I0) we have

%gzo(ya (]3*1) =D, 4 <£E;° (resm(Bg))>

= £ ) - (wy @ 07") (log(sp, 4 (resy(3¢)) ) -
Using that the characters &, and ¢ has conductors p™ and p" respectively, and n > m, by

(@I5) we have
LW o) =6 ) > (&197")(0) log(sp, (resp(corpr, /(X)) (W)

c€Gal(Hpyn /He)

=E(¢7v) Yo (E7197)(0) log(sp, (resy (Xpee ) (wrs)

g€Gal(Hopn /K)
=& 4v) > v(ap) (€ 16 1) (o) log(sp, (resp (Xm))) (wr; )
(917) UEGal(Hcpn /K)

:5<<2f1,v>( P ) S (@) ) (0) os(om Q) (w7
c€Gal(Hyyn /K)

v(ap)

(9.16)

—s@-l,u)( P ) S sa) M E b (0) 08 (om (Bl ) (@i

v(ap) o€Gal(Hqpn /K)

Let FZ be the Coleman primitive of wrs on W (p™) which vanishes at 2. It follows from

@14) that
10g(0m(Pntm 1)) = 108 (Gm (Pntm 1m))-
Applying Corollary 010 (and using linearity) we thus obtain

fng,20<’/a<f3‘1)=5(¢3‘1,v)< (p )> S @) N 1 VOV L (B ).
Vg o€Gal(H.yn /K)

On the other hand, since ﬁcpn+m’m is defined over the subfield Hyn-1((pn) of Lepn, and x, is
a primitive character modulo p™, we see that, after setting ¢ = V(ap)*"é,j l)zyg%*l to simplify
the notation,

SO P ) = O P )= 22 5 () 2 (6B )

(9.18) = Zw V% (Pnim )
- Z T;Z) Vpxoo (ng""'m,m)

where the sum is over all o € Gal(Hepn/K), and the last equation follows from (@.7) and the
fact that d lwzry = d tw 7+p- Therefore,

(9.19) (v, o) =E(0 ", )( 4 ) Y va) T E R () d T R (Pt -

v(ap) o€Gal(Hqpn /K)
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We now observe that

(9.20) U,FL = ( (;”)> Fr.

Since ﬁcpn+m7m = U;”ﬁcpn,m = U} T epn m; it follows from (0.20) and ([@.19) that (use Shimura’s
reciprocity law to keep trace of the Galois action)

921) LW =E6T ) Y wlap) E b o) d T F L (30 ).

o€Gal(Hepn /K)

Since @, = v(a,) (&, (p)p) !, we have

1 c(@v(ay)”
£ ’V)_£u,p(p")-p"

and the result follows. O

9.3. Reciprocity Laws. Fix an algebraic Hecke character A\: K*\Ax — QX as in §5.2
and set & = 5()‘). We fix v and ¢ as in the proof of Theorem Q.I1} so v is an arithmetic
homomorphisms of signature (2,1) with cond(¢) = p™ for some integer m > 2, and ¢ is the
p-adic avatar of a Hecke character ¢: K*\Ajx — Q" of infinity type (1,—1) and conductor
p™ for some integer n > m, so the associated Galois character (]3 factors through foo

Proposition 9.12. Let v and ¢ be as before. Then

€o 71— —1 an 71—
22w = (252 ) Zawa,

Proof. The character éy has infinity type (1,—1), so the character ¢ = él,qg*l has infinity type
(0,0), thus finite order. Recall that, by definition,

(GEG ) = Y L% (@N@ T [ [a)(z)dur, a(2).
acPic O, Zyp

Since ¢! has infinity type (—1,1) and we chose the representatives a such that ((p),a) = 1,
then

¢~ Hla](2) = ¢! (reck (a)reck p(2)) = ¢~ Haiy(2)) = 6~ (@) ' (2)2 7,

where recall that a = a0, N K and ip: Ly — K* denotes the map which takes 2 € Z; = O K
to the element i,(z) with p- component equal to z and trivial components at all the other
places. Hence,

WAEGN = Y LR @N@ e 0) [ 6 ()2 . (2):
aePic(O.) Zyp
By [Hid93| §3.5, (5)] (|[Mag22, (6.7)] for negative exponents), we have
VAEGTN = Y E% @N@ T e (@) - (1951 F L Taw)) -0
aEPiC(Oc)
where d = tx(a)ﬁd(a) is as before the Katz operator. Set Cy(&y, xp,0) = \/—DKp_"g(qﬁgl).
Applying (5.2)), and using the equality N(a)\/—DK(d_l.’F',[f)})a = d_l.’F'[sz]a, we see that

UGEG ) =Co&xnd) D D (G o ) @sp(wd  FL  (a(a) +n(u/p"),

a€Pic(O.) ue(Z/pnZ)*
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Here d_l]:y[p i(a) denotes the overconvergent modular form in Definition for F = F,, where

the basis point is taken to be x(a) instead of the point z, fixed before. Since d~ 1.7-"£p l( 0)
weight 0 and character v, using (4.1 we obtain (recall that a = a0} N K)
4D g (@) wnufp) = 07 (@) F g ([ (e a iy ulpe™)])
To simplify the notation, we temporarily write z,(a) = ([(LK, a~ Yy, (u/p")g("))]) . We have
(0 Yip(u/p™) = ER5 @€ S i/ ™),
SlaVip(u/p")) = &~ (a)dp (w) by (p ™" Jup™"
By B.3), xip(2) = 91/2((2)) for z € Zy = OF . Also, x,,,(p7") = ¢1/2((p"p™™)) = 1 and by
B, &p(2) = Y2((2)) for z € Z, = O[X(m. Therefore, after setting

V=Dr - 9(¢p )0 " ¢p(p")

C(ﬁu, Xv ¢) = CO(gua Xv gb)éu,p (p_n)¢p (pn) =

Eup(P")
we have
ULEG) =Cexmd) Do D (G ) iplu/p)d FL L (za(a)

a€Pic(O¢) ue(Z/pnZ)*

=C&nxmnd) Y. (& %we)(a)d 1;3’1@ <[(LK,a*1§("))]>

ClGPiC(Ocpn )

=Clennmd) Y. (E b)) dFL G (Yo m(a™))
ClGPiC(Ocpn)
where for each a € Pic(Ogpn) we let a = a@cpn N K. We now observe that dilfy[{);;oo and
d_lfy[pi(a) differ by a constant; however, since the character y, is primitive, we can replace
the first with the second in the previous formula. Comparing with Theorem [@.11] the result
follows from the equality €(¢y) = g(gb;l)gbp(— ). O

Theorem 9.13. Let 0_1 ) :=recy(—1). Then in I[Ts] we have:
geo o O—1p ) alg

Proof. The equality holds when specialized at arithmetic primes of weight 2 by Proposition
[@.12] and the result follows because these primes are dense. O

Corollary 9.14. 3. is not I-torsion.

Proof. Since £, Eg is not zero, the same is true for .Z gg any specializations at v: I — Qp has
therefore only a finitely many zeroes. If 3. is torsion, then there are specializations having
infinitely many zeroes, which is a contradiction. (]

10. BiG GENERALIZED HEEGNER CLASSES

We recall some general results on representations of algebraic groups obtained in [Ancl5].
Let G be an algebraic group, (G, D) be a PEL Shimura datum, U a compact open subset of
G(Ay), S the canonical model of the Shimura variety Shy(G, D) of level U over the reflex
field F' and 7w: A — S be the universal PEL abelian variety. Then there is a functor

Hods: CHMp(S) — VHSE(S(C)),

called the Hodge realization functor, from the category CHMp(S) of relative Chow motives
(X,p,n) (where X — S is a smooth projective scheme, p € CHY™X) (X xg X)p satisfies
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p? = pand n € Z), to the category VHS(S(C)) of variations of F-Hodge structures over S(C)
(see ibid. Example 3.3(i) and Proposition 3.5). Under the functor Hodg, R!7,F corresponds
to h'(A) € CHMp(X), the degree 1 part of the relative Chow motive of A over S/F, and
decompositions into direct summands in VHSz(S(C)) lift to decompositions in CHM g (.S) (cf.
ibid. Théroréme 6.1). By ibid. Théoréme 8.6, the canonical construction functor ([Pin90l
§1.18]) lifts through Hodg to a functor

Ancg: Repp(G) — CHMEp(S),

where Repr(G) is the category of F-representations of G, with the following properties:

e Ancg is F-linear, preserves duals and tensor products;
e If V is the standard algebraic representation of G, Ancg (Ve (F)) = h'(A) (following
the normalization in [LSZ22] Remark 6.2.3], see also [Tor20l §8]).

See [Anclhl §2] for properties of the decomposition of Chow motives.

10.1. Generalized Heegner cycles. Let m € Z>. We present the definition of generalized
Heegner cycles over the curves X, adopting, as discussed before, a motivic approach as in
[JLZ21]; in this paper we are primarily interested in the cases m € {0,1}.

Let k > 2 be an even integer and fix, as in [Mag22] §2.4.2], the QM abelian surface with
CM by Ok given by A= FE x E, where E = C/Ok. Let Wy, ,, 1= %271 X x, AF/2=1 be the
generalized Kuga-Sato variety introduced in [HB15| §2.6], where A¥27 g the (k/2 —1)-fold
fiber product over the Shimura curve X,, of the universal QM abelian surface A,, — X,,.
Since A,, can be defined over Q, as well as X,,, and A can be defined over the Hilbert class
field H of K, the variety W, ., has a model, which we fix, defined over H.

Fix an integer n > m and, as before, an integer ¢ > 1 prime to NDgp. Let Fn+ be the
ray class field of K modulo 9" and Fiyt opn the smallest abelian extension of K containing
both Fiy+ and Hepn; note that Fis opn corresponds by class field theory to the group Ust cpn

of elements = € @CXpn such that x = 1 mod MT. To simplify the notation, we forget the

dependence on MT and set Fupn 1= Fype .

Let e4 € Corry,, ( fn/z_l) be the projector defined in [Bes95, Theorem 5.8|, and define the

projector €4 € Corr® 2(A, A) to be the image of e 4 when specializing all the factors of Aﬁ{%l

to A. Finally, define ey = e4€4 € Corr];(/jfl(Whm, Wim). Let

A[c];J”7m = EW(gTaPh(gbt:p"))k/zil € EWCI'IIWI(VVk,m ®u Fopr)q

denote the generalized Heegner cycle, constructed in [HB15| §6.2], associated with the canon-
ical cyclic cp™-isogeny
Gepn: A=C/Og x C/Og — Acpn = C/Oppn x C/Ogpn,
which is defined over Fi,n.
The Chow group of codimension k — 1 cycles in Wy, ,,, can be interpreted as a motivic

cohomology group [MVWO06, Corollary 19.2] and the generalized Heegner cycle is in its ep-
component:

mot

(10.1) Al e e CH (Wi @1 Fopn)q = ew H25 2 (Wi @1 Fopn, Q(k — 1)).
Denote
(10.2)  7er: ew H2R 2 (Wi @1 Fopr, Q(k — 1)) — e H2F"2(Whn @51 Fopn, Qp(k — 1))

the étale realization. We can use Lieberman’s trick on the étale cohomology groups to replace
the base scheme W, with the simpler Shimura variety X,,, to the cost of having a slightly
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more complicated coefficient system. We now describe the trick in our context. From Kiinneth
theorem ([Mil80L Theorem 8.21]),

HE2(Wim, Q) = €D HL(AY?, Q) @ H (A2, Q).
itj=2k—2
Let w4, : Am — X and m4: A — X, be the canonical projections. Since the Leray spectral
sequence degenerates at page 2 (c¢f. [Del68|, §2.4]), each of the groups in the right-hand side
decomposes as

Hgt(Afr{2717Qp) - @ Hgt(Xm7Rb7TAm7*(Qp))7
a+b=1
HL(AY2,Qp) = €D HE(Xom, B'7a+(Qy))

a+b=j
and the image of the projectors €4 and €4 are motives whose Betti realizations are of type
((k—1,0),(0,k —1)), as in [Bes95| (see the proof of Theorem 5.8 and the paragraph after the
proof of Proposition 5.9 in op. cit.). Therefore, the only summand remaining after applying
the projectors corresponds to the indexes ¢t = j =k — 1, so

ew H2F 2 (Wi, Qp) = HY (Xom, TSym* (e R'm4,,Q,)) @ Hk (X, TSym*2(eR'74..Q,))

i

Hgt (Xm, TSymkiQ(eleA,*Qp) ® TSymkiQ(eRlﬂ'A,*Qp)) ,

where we write le*Qp = ele*Qp &) éRlﬂ'*Qp for the decomposition in isomorphic factors
induced by the idempotents e and € from §2.2} note that the action of e is built in the definition
of the projector ey (ibid., Theorem 5.8); the map PD is Poincaré duality (see for example
IMil80, Corollary 11.2]). Finally, one can twist by & — 1 to achieve

(10.3)

ew HE 2 (Wi, Qplk = 1)) — HE, (Xon, TSym" 2 (eR'74,.Qp) & TSym"? (eR'74,.Q,)(k — 1))
It will be convenient to have the twists distributed in the following way: denoting
My = TSym" 2 (eR'r 4, Qp(1)) © TSym"2(eR'r4.,Q,),
we have that
(10.4) TSym"2?(eR'7 4. Q,) ® TSym* 2(eR 14, Q,)(k — 1) = s (1).
The composition of the étale realization rg with the Lieberman’s trick map (I0.3]) and the
map induced by the isomorphism above gives a map
(10.5) ew H2E 2 (W @1 Fopn, Q(k — 1)) — HZ (Xon, @ Fopn, Mer (1)) .
(k]

cp™,m

by (I0.5) is the generalized Heegner class Py

cp™,m*

Definition 10.1. The image of A

10.2. Representations associated to motives. Consider the motive
M = TSym"2(eh!(A,,)(1)) ® TSym"* 2 (ehl(A)),

whose étale realization is .#z. Under Ancona’s functor, each factor comes respectively from K-
representations of the algebraic groups G := Resg/q(B*) and H := Resg/q(G,;,) as follows.

We first study the representations of G. The algebraic group G is associated to the PEL
Shimura curve X,,. Since G(K) = GL(B ®q K) and dimg (B ®q K) = 4, the standard
representation of G over K is K*. By [Ancl5l, Corollaire 2.6], h'(A,,)Y = h'(A,,)(1) and,
since e(h!(An))Y = (eTh'(A,))Y, we have

eh (An)(1) = (eTh (An))Y.
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The idempotents ef and e split K* into K2 @ K? = el K* @ e' K*. Therefore,
752 2 TSymh 2 (e (A,0))" ) = Ancg (TSym*2((K)")) = Ancg ((Sym"?(K2)") .

We next study the representations of H. We fix a field F' of characteristic 0 equipped with
an embedding op: K — F; assume that the image of 6p(z) := op(Z) (a priori defined in a
Galois closure of F', where x — Z is the action of the non-trivial element of Gal(K/Q)) is still
contained in F. For all pairs of integers (¢1,¢3), we define the F-representation 0? ® 6?2 of H
by ( 42)(36 ®a) = cwf;1 (x)&i? (x) for all x € K and all elements a € A* for a Q-algebra
A. For F K and ok the identity map, we simplify the notation and write ¢©* ® & for

Zl . Recall the group U+ pn corresponding to Fipn = Fiyt opn by class field theory. The
PEL Shlmura variety of level Uy+ .,n associated to the torus H is zero-dimensional, admits a
canonical model Sg,» defined over K, and is identified with the Gal(F,yn /K )-orbit of elliptic
curves defined over Fi,» with CM by OK, see [Mil05, Proposition 12.11] and [AGHMP17| §1.3|.
Recall that A = E x E, where E is an elliptic curve with CM by O (thus defining a point
in Sepn), and that this isomorphism is equivariant respect to the action of My(Ok). Since
jle) = (§9), we have eh'(A) = h'(E), and h'(E) corresponds to a relative Chow motive in
CHME (Sepn). Let V' € Rep g (H) be such that Ancg (V) = h!(E). For an integer 0 < j < k—2,
one can consider the (k—2 — j, j)-component V*=277J of V, where the complex multiplication
by x € Ok acts as the multiplication by 2¥=277z7. Then V*~273J = ¢*¥=277 © 57. We define

h*F=2733)(A) = Ancg (" 277 @ 57).

We finally study the representations of G x H. Piecing all of the above together, we get a
K-representation

V#=2-30) = (TSym*2(K?)V) K (6" 27 @ 67) € Repy (G x H)
(here, as usual, X denotes the external tensor product). Therefore, defining
(10.6) M F2700) = k=2 @ p (k22000 (4),
we find that AnchH(V(k*Q*j’j)) = #/k=2-33) in CHM g (X, X Sepn).

10.3. Vectors from CM points. We now use CM points to construct basis elements of
the representation V(k*Q*j_’j) base-changed to suitable p-adic fields. We begin by observing
that the fixed embedding Q < Q,, and the canonical inclusion K C Q induce an embedding
g, K — Qp whose image is contained in Q, because p is split in K. Fix a subfield L C Qp,
therefore we obtain two embeddings o7 : K < L and o1 : K — L satisfying o7 (z) = or(Z).
The map tx: K < B induces an embedding of algebraic groups i: H — G and, as before,
for each pair of integers (¢1,¢3), we have a one-dimensional L-representation aé ® 65{ of H.
Recall that the choice of ¥ is normalized with respect to tx so that ¢k (z )( ) =or(z ( )
More generally, we can similarly define vectors eqn € L? attached to CM points [(tf, & (" )] as
follows. First, write & = by for some b € BX and u(™ € U,,; then 9opn 1= (b)) ~1(09)
is an eigenvector for ign = (b)) igb™ | and ign(H) acts on ven = ("L(ﬂlcp")) € L?
as the representation o; note that, under the isomorphism (of compact Riemann surfaces)
Xn(C) 2 T\, \H in §2.8] the point [(¢x, &) is sent to the class of the point ¥m. Dually,
setting Jgn = —1 /ﬁcpn, a simple computation shows that e.n := ("L(’izp")) an eigenvector
for the dual (L?)" of the standard representation L? of H, i.e for each x € K we have
(iepn () ") T (epn) = o7 (¥)eepn (where AT denotes the transposed matrix of a matrix A).
Define e[c];’nj] i= (eepn )2F279) . (Epn)®7 in TSym*2((L?)V) where éqpn = (aL(ﬁ:p”)). Then
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[k.j]
Ecpn

defines an element in the L-representation
Véki%j’j) := TSym((L*)V) K J(ka%j) ® 51

of H, which is invariant under the diagonal action of K by i¢pn ® id.
10.4. The j-component of generalized Heegner classes. Each of the embeddings i.yn

induces an embedding of d,n: H — G x H, defined by depn = (icpn,id), where id is the
identity map. By [Tor20, Theorem 9.7|, we have a commutative diagram

0* n
Repy(G x H) — ", Repy(H)
Ancag xH Ancy
| ) |

CHM g (X X Sepn) —— CHMg (Sepn )

where the top map 07,n: p + depn 0 p is the restriction via dcpn of representations, and the
bottom map dg,» is the pullback of motives via the map dgpn: Xy X Sepn — Sepn induced
by dcpn. Via the functoriality of the étale realization, the maps described above descend to
maps of lisse étale shaves over L. To simplify the notation, denote X, x S,,» the K-scheme
(X ®@QK) X Sepn (i.e. we simply view X, as a K-scheme and take the product as K-schemes).

Let ///é(tk_Q_j’j) be the étale realization of the motive .#*~277) = Ancg (V¥ 2779)) in
CHM g (X, X Sepn ) introduced in (I0.6)); consider the motive d;,n (%étk_Q_j’]))) in CHM g (Sepn ).
Composing the Gysin map (see [KLZ20, Definition 3.1.2, §5.2])

. Py k2 ji
Hé)t <SCP"’6cp"('%é(t J]))) — Hé2t <Xm X Scp"a%é(t ]J)(l))
with the isomorphism
Py N Ry
HE, (X X Sy 270 (1)) 5 HE (Xon @i Fopn, ol 2779(1))

that comes from the identification of Sc,n as a K-variety with the Gal(Fe,n /K )-orbit of 0¢pn,
we obtain a map

. k—2—j,j k—2—3j,j
(10.7)  Oepnn: HY, (scpn, 8 (M ”)) — H2 <Xm @ Fopn, M P27 ”(1)) .

Definition 10.2. The image of eg;ﬁ} under the map ¢pn » in (I07) is the j-component zL’;;Z}m
of the generalized Heegner class zﬁ’;Lm

The above construction is useful for the p-adic interpolation of the vectors e[c];’nj] as way

to interpolate generalized Heegner classes. However, there is an equivalent and simpler con-
struction of the classes zL’;ﬁ}m The projection of TSym*~2(h!(A)) onto the direct summand
h(k=2-33)(A) is a correspondence .# — .##~2733) in Cort (Wi m), which induces, under
)

the étale realization of motives, a projection .#z — ///é(ff%j’j
map in the étale cohomology

and therefore a pushforward

(10.8) HE, (X ©q Fopn M (1)) — HE, (X 0 Fopr, 4E279(1))

(K]

cp™,

[k,]

under which z.,» ,,, maps to the class z.,n,.
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10.5. The Abel-Jacobi map. The degeneration at page 2 of the Hochschild-Lyndon—Serre
spectral sequence [Nek00, §1.2] yields an isomorphism

(10.9)  HE (Xin 0 Fopn, A2 70(1)) 25 HY (Fopn, Hy (Xom 00 Q79 (1)))

Recall the motive TSym*~2(eh!(A,,)(1)) = #*~2 introduced in §6.1] and its étale realization
YX=2 an étale lisse sheaf over L. The right-hand side of (I0) can be further rewritten as
(10.10)

H' (o Hy (X 90 @ Al 1))) = H' (o H (X 90 Q172 (1) 00177 70))

Here th g ] denotes the étale realization of the H- representatlon %277 @ 57: concretelly,

the recnpromty map induces an isomorphism (1 + ‘ﬁ*(’)K)X >~ Gal(K® /Fy+), and the char-
acters o, 0et: Gal(K?/Fyy) — Q) are given by o — o '(z,) and # — 7 '(z,) on
(1+ ‘RJF@K)X, respectively (recall that the reciprocity map is geometrically normalized). The
composition of the maps (I0.1]), (I0H), (I01), (I09) and ([I0I0) gives the p-adic Abel-Jacobi
map

(10.11)

okl ey CHF Y (Wi n @ Fopn)q — H' (Fcp VHA (X ©q Q, 7 2(1) @ of 72 ﬂagt)> :

Note that the image of A[c];}m’n under (I0.I1) is the j-component zﬁ’;’,{}m introduced above, i.e

) glkal Ay

cp ,m cp™n

10.6. Classes associated to quaternionic modular forms. Let F € My (NTp™, L) be a

quaternionic newform of weight k over X,,. Since V]]; = Vi(1 - k/2) =2 VEe(k/2), as Gp -

(k2]] k/2—1

representations we have Vi ® O'k 2= O'gt = VJr Ogt Gl Xcye ), so there is a projection

map (cf. [KLZ17, §2.8])
(10.12)

prr: H* <FCP"’Hé1t(Xm ®QQ,7/£72( )®Jk - ]Uét) — H' <Fcp ’VJT‘®( Lo gtxlgy/g 1))

Definition 10.3. The class z[};lﬂ ‘=Dprr (z[k}bﬂ > is the generalized Heegner class associated

cpt,m cpt,m

to Fand j with 0 <j <k —2.

Lemma 10.4. Let £ be a Hecke character of ’mﬁm'ty type (k — 2 — 3,7) of conductor ¢ prime
7,

to Np. Then the generalized Heegner class ch m
subspace of HY(Fupn, V]_- ® 5)(&{3 1),

belongs to the Gal(Fypn/Hepn)-invariant

Proof. The argument is taken from [JLZ21, Proposition 3.5.2]. The 0-dimensional variety
Sepn has an action of Opyn /Unyt opn = (Z/N1Z)*, and the embedding depn intertwines this

action with the action of (Z/N*1Z)* on X,, given by diamond operators. Now F has trivial

. . k—2—
character, and £ has conductor prime to NT, so ¢ restricts to the character og, J agt on

Gal(Fyn /Hepn ), thus extending o*/2~ 17757~ (k/2=1) to Gal(K?P /H,pn). This proves the result,

in light of Shimura reciprocity law and the fact that ZLZ,:A{LL lies in the finite dimensional

subspace of classes which are unramified outside Np. O

The map & — & XIC%{CQ lisa bijection between Hecke characters of infinity type (¢1,¢2) and
those of infinity type (¢1 — (k/2 —1),¢3 — (k/2 — 1)). The inflation-restriction exact sequence
and the irreducibility of Vr induce for all such & an isomorphism

Gal(F,yn /Hepn )
> D P ~ Hl(Hcpn’V}(gé)

(10.13) (Hl(Fcpn, Viee
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Definition 10.5. Suppose that £ is an algebraic Hecke character of infinity type (¢, —¢) with
—(k/2—1) <{¢<(k/2—1),and let and j = k/2 —1 — £. The {-component of the generalized
Heegner class 259 i its image of via the isomorphism ([0I3]) “untwisted” by &, that is, the

cp™,m
[F.4]

class 257, © €1 € H' (Hepn, V]J[-)

The &- Component of a generalized Heegner class can naturally be restricted to Fipn, giving
a class 2157 ®E& 1€Hl(Fcp,V)

cpm

10.7. p-adic families of basis vectors. As in §35] let  C X = Homczo:t(Z;,Z;) be a

connected open neighborhood of an integer kg € Z and k: I' < A be its universal character.
Let Ay be the Iwasawa algebra of %. For a character o: R* — T', where R is a p-adic ring,
we write 0"% := k¢ oo, which naturally extends the exponentiation by an integer power. For
any pair of integers (61,62) we also write o7 TGl = (ghu ) Floligtz Let €(Z,, A[1/p])
be the A[l/p]-module of continuous A[l/p]-valued functions on Z, equipped with the left
action of the monoid ¥ = GLy(Q,) N M2(Z,) given by v - f(Z ) = ky (bZ +d)f(Z - v), where
Z -y = ‘ggig for v = (2%). The canonical embedding Sym*~%(L?) — %(ZP,A[l/p]) defined
by P(X,Y) — P(Z,1) with Z = X/Y is equivariant with respect to this action, which reduces
to the weight k£ action from the beginning of Section 6l The dual of this embedding gives the
moment map

mom*~2: Dy, = Homy,, (1/p) (€' (Zp, A[1/p]), Ao [1/p]) — TSym"~2((L*)")

defined by the integration formula
(10.14) (mom"“‘Q(u)> (p) = /Z e(x,1)dp(z),
P

for each ¢ € Sym*~2(L?).

Lemma 10.6. o(,n) = agnp” for some agn € 7.

cp™

Proof. The question is local. Write b = ip(b(”)) to simplify the notation. Recall that

£(n by () and fn (’919)( On }) since ¥ € Z, and § € Z), then, locally at p,

we have b(™ = (19 ’9)( 01 )uo for some element ug in GLy(Z,). Therefore, using again that

§ € Z,, we see that (L)1 = ul(pa" *pl_n)( b ) for some u; = uy' € GLa(Z,). Tt

follows that Jepn = p™"uy (79 ) Now recall that the pair [(1x,£™)] is an Heegner point on

X, for all m > 0, therefore u(™ satisfies the congruence u(™ = (6 j:) mod p™ for all m > 0,
from which we conclude that u; = (0 d) with a € ZX de Z; and b € Z,. Therefore we have
Depn = p~"a( — V) for a suitable a € Z, and the result follows. O

Thanks to Lemma [[0.6] we can define ey ,n € Dy by the integration formula

e .an(p) = /Z (@)eq o (1) = p(o(9%yn))

P

for any continuous function ¢ € € (Z,, A[1/p]).

Lemma 10.7. The distribution ey o,n has the following properties:

o The action of icpn ((Ocpn & Zyp)™) on €y epn is vVia 0~ "% .

k72( [kvo}

e For all integers k > 0 we have mom" ™= (€ cpn) = €cyn

Proof. For the first statement, recall that i.,» is an optimal embedding of Oy~ into the Eichler

order R, = B*NU,y,. For win (Opn ® Zy)*, we have (icpn (u)_l)T(ﬁzlﬂ") = o H(u) (79211’") (see
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§10.3). Let u act by (g %). For each ¢ € €(Z,, A[1/p]) we then have

icp" (u)ile%,cp" (90) - / (P(x)d(%p" (u)ile%,cp”)(x)

Zy

azx + cp”
— be + d)o [ ) ey o
/me/(er )@(berd)ezz,p(x)

ac(V: n) + cp”
ba(z?cpn) +d
=" (u)p(a(Tgpn))
=o"% (u)e“/ﬁ/,cp"(go)'
Therefore, we conclude that the action of icyn(u) on the measure ey opn is just the product

o hu (“)eq/wn, which is the first statement. For the second, take P € Symk_z(L2); then we
have

(mom* (e ) (P) = [ Plasl)dey (o) = P (0(030).1) = i),
Zyp

concluding the proof of the second equality. O

We now define eLﬁ o = €U e (677 ® &7), where - is the symmetrized tensor product.

Lemma 10.8. The distribution egj} has the following properties:
]

o The group iepn ((Ocpn ® Zp)*™ ) acts on e, .. via the representation o~ (kw3 gi
-2 ] L) = olFal

e For all integers k > 0 we have mom”

€ epn cpn
Proof. This follows immediately from Lemma I0.71 O
10.8. p-adic interpolation of generalized Heegner classes. Let o,,” —J agt the étale real-

ization of o*%-igJ. We then have a map

Sopm

(10.15)  HY, <S 0y 850 (Dyy @ 0% J))

é cp™s Yepn He2t (X ®KFCP 7DW/( )®U . ]Utjet>

Definition 10.9. Let j > 0 and n > m > 1 be integers. Define the j-component of the big
(4]

generalized Heegner class to be Zyl},cp",m = 5cpn7*(e% epn )

The Gysin map for the interpolated coefficient systems is compatible with the one in (I0.7)
via the moment maps; more precisely, for each k € Z N % with k > j we have, writing

Xm=Xm®qQ and Dy @ ob” jaét = 9557273',]‘) to simplify the notation,
(10.16)

6(: o i ~ _ o i
HY, (scpmcp (92 “>)) et g2 (Xm®Fcpn,@é<f 2 m) S B (Fapn, Hy (X, 25 72799))

— — -2
lmomk 2 l/mom’C 2 lmomk

HE, (Sep 02y (AE2)) 225 12, (X @ B, A9 (1)) 25 Y (Fage, HY (Ko, A2 (1)),

The class ZLZ/] epn.m 81Ves an element of HY(Fopn, H, (X ®q Q, .@k 2 “))) via Diagram

(I0.16), and it follows from the definitions and Lemma I8 that for each k € Z N % with
k.j]
( ] ) [

k > j we have mom” 2y cpnm) = Zephm-

Lemma 10.10. COTCSE 11 /Fopn (z Lgcan ) = U’ Z[Wj/}cp m foralln >m >0 and all j > 0.

Proof. The generalization of the proof of [JLZ21l, Proposition 5.1.2] presents no difficulty and
is left to the reader. O
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10.9. Big Heegner classes associated to quaternionic Hida families. We now consider
the special case m = 1 in the previous constructions. Let F, be the quaternionic Hida family
fixed before, passing through the p-stabilized modular form Fy of weight kg = 2 (mod 2(p—1))
and trivial character. The universal character kg is the restriction of 92: Z; — 1" to %
(recall that the extension I/A is locally étale at the point z + =2 in X). We still denote
Foo the restriction of of F, to % ; we also denote in this section by k an integer in Z N % and
by Fj the specialization of Fo, at k (note that for all such k, the modular form Fj, has trivial
character, and k =2 mod p—1). Let a,(Fk) = ap(fy,) be the U,-eigenvalue (as before, vy, is
the arithmetic morphism corresponding to k). We consider the Galois representation

Vo = Hj (X1 ®@q Q, A[1/p])® a1 /p A [1/p].

Then the restriction of T[1/p] to % is isomorphic to V34(1) = ¢4V, (1). For each k € ZN%
the canonical specialization map Ay [1/p] — Fj, induces a map V34(1) — Vz (here Fj is the
image of the Hecke field of F} in Qp). By projection, we therefore obtain a map

(10.17) H <Fcpn,A[1/p](1)® K= J)—>H (Fcpn,vgj (1) ® ol Jaﬂ).

Definition 10.11. The (Fu,j)-th component of the generalized big Heegner class is the

o iy Of the generalized big Heegner class 7] n 1 in Definition 0.9 under

image, denoted z Y cp

the map (I0.17).

As in [JLZ21), §3.5|, observe that the groups appearing above may be infinite dimensional
over Ay [1/p]. For a Gg-module M, we shall denote Hy (K, M) = H*(Gal(Kx/K), M), where
K is the maximal extension of K unramified outside the set 3 of all places dividing Np. Then,

accordingly with this notation, Z[;‘Z’pfjl belongs to Hs(Fupm, V3I(1) @ o5 7 51).

We now interpolate the characters o767 for j > 0. Let Fopo = U2y Fepr; the Galois
group Gal(Fpe /F¢) is isomorphic to the group Gal(Hp~/H.) (because, since (cp, N) = 1,
Fy+ and Hpn are linearly disjoint over K'), and this Galois group is isomorphic to the group
I'o in §6.3] (because P is totally ramified in Hepeo). For any integer n > 1, let I',, denote the
subgroup I'y, = Gal(Fypeo /Fepn) of I'sg. By class field theory, the reciprocity map induces an
isomorphism TI'y = (Ox ® Z,)* /7, so the character 0/5: (O ® Zy)* /Z, — Z, induces
a Galois character oet/ger: I1 — ZY. We view Ay = Z,[I'1] as Gal(Q/F,,)-module via
the canonical projection and the canonical embedding of group-like elements I'y < Ay; also,
denote by A1(dst/0e) the Galois module A; equipped with the twisted action by the inverse
of o4t /0e. For each integer j and each integer n > 1, there is a canonical specialization
map Aq(Get/06t) — 05’ 02, from the category of Gal(Q/F.,)-representations to the category
of Gal(Q/F.pn)-representations which takes u € Aj(Get/0et) to ( chpn dp) (et /o). Finally,

define g% =gl .= gru @ZPAl(ﬁét/aét). We therefore obtain a map

(10.18)  mom;: H* (vag (1)@, 00" JOJ) H (Flpn, VEI(1) @ 0% 50,).
Proposition 10.12. There exists an element z[%“"ﬂ € H! <Fcp,VO (D)®z, 057 Jo" > such
that mom; (zgcj;]) a;”zg";;fl] 1 foralln >1 and all j > 0.

Proof. This follows from [LZ16, Proposition 2.3.3] with h = XA = 0 and Lemma [I0.10l O

For each k € Z N %, composing with the weight k specialization, we also have a map

~ R k—2—
momy._s5: H' (Fop, V2 (1)87,05% 5L, ) — H' (Fopn, V3, @ 0l 5,).

Theorem 10.13. For each k € ZN% with k > j, we have momy,_s ; (Z[gf‘);;ﬂ) = a;”(fk)zgﬁ:{].
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Proof. By construction, for each k € Z N % with k > j, the image (which we denoted e })

cp™,1
of zgc Il under the map ([I0.I2)) is the image of ZLZ/";;ZL] , under the weight %k specialization map.
Therefore the result follows from Proposition [10.12] O

10.10. Specialization of big Heegner classes. Let (6ét/aét)“%/2: 'y = A* be the com-
position of dg;/ost: 1 — Z; with the character 9: Z; — A*. Using the isomorphism
0(Ok ® Zy)* = 7, we see that o"% g7 = 9%, where 9 is the composition of ¥ with
the norm map. Therefore, o4 (Get/0et)%/? = 9. Define V;/ = V3i(1) ® 071 As
G i-representations, we then have

(10.19) VEd(1)&z, 05 (5e/06) /? = V1.

The element in Proposition [0.12] corresponds to an element zy ., in Ha(Fp, Vl;/). As before,
using that F, has trivial character and that Hé(Fcp7 V;) is finite dimensional, we see that
Zy ¢p i invariant under the action of Gal(F,/H.,), and therefore may be regarded as an
element in Hi(Hep, V:[g) For each finite order character x and each k € ZN % , we thus have
specialization maps

SPuy,x * Hé(HCP’Viz/) — HI(HCpa TzT/k (X))

where le(x) is the twist of T:r,k by x, where v, is the arithmetic morphism associated with
k. The following result is then an immediate consequence of our constructions:

Theorem 10.14. For each algebraic finite order character x of conductor cp™ for somen > 1,

Firk/2—1
we have spy, , (2 cp) = Z£p",1/ 'ox

11. RESuULTS

11.1. Specializations of big Heegner points. We consider the construction of generalized
Heegner classes in §I0 for the case m = 0 and j = k/2 — 1. Let .7-",5 be a p-ordinary newform
on Xy of weight k¥ = 2 mod 2(p — 1) and trivial character, and consider the self-dual twist

V]J[.ﬁ = V:(k/2) of the Deligne Galois representation associated with J:IE. Let Wy, = W0 and
k

‘1>[]__kéj] =pryg o oIl ey CHF Y (W), @ Fepn)q —> H' (Fcp VI 7 ® (06 bRty k2= 1>
k

the p-adic Abel-Jacobi map. Taking & = XIC%{CQ ! in Lemma [[0.4] we obtain a map

% ew CHF Y (Wy, @5 Fupn)q — H' (Fupm, V;,g)'

Set Acpn = Agpn; then we have generalized Heegner classes q’iﬁu(Acp") for n > 0 as in
k

Definition Let u. = §(0%)/2 and « the unit root of the Hecke polynomial at p acting on
J:IE. We normalize these points to obtain a non-compatible family of quaternionic generalized
Heegner classes by setting (here recall that Frob, is the Frobenius element at p and similarly
denote Frobg the Frobenius element at p)

pk/2-1 pk/2-1 .
* Zpt. = ulc <1 - Frobp) < Frobp) -@‘;ﬁg(Ac);

k

° Z]:,g,cp" - <1 - pT) ' q).é;ﬁ (ACP") for n > L.

Then coresy,_ .,/ 1 (25 cp") azps o, , forall n > 1 ([Mag22) §7.1.2]) and we can define
c ko

(using Shapiro’s lemma for the 1somorph1sms)
: « € HY, (Do, V1) = HY(H,, V], @ 00w ]);
k k

e . =lima™"

n

o 2 = coresyy, /K(a:c) € H} (I’OO,V;) ~ H(K, V;u ® O[Lso]).
k k

2t
F1Cp
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For any character y: oo — Q; , we can then consider the specialization map, and obtain an
element ch € H'Y(H,, VJr ) here VT = VTﬁ ® X.

Let Fo be the quatermomc H1da famlly passmg through the modular form F;. We also
assume that the residual p-adic representation py is irreducible, p-ordinary and p-distinguished.
Define 3, = 97! <ﬂ) 3. and write as before 3.(v) for v(3.).

C

Theorem 11.1. For all v of weight k =2 mod 2(p — 1), we have (pr,)(3.(v)) = 25

Proof. Let v be as in the statement, let 7, = F,, and .7-",2 the form whose ordinary p-stabilization
is Fy. Let ¢: Dog — QX be the p-adic avatar of a Hecke character ¢ of infinity type (k/2, —k/2);

then x = ¢§k is a finite order character. Consider the map E; °°£ obtained by composing the
oSk

map ﬁf?g in (ZI1)) for fk = &, with the canonical map arising from the inclusion I'y, — T
oSk
Combining Theorem [0.13] Theorem 5.4l and [Mag22 Theorem 7.2|, we have:

AL = v () )G (by Theorem BT

_ (ﬂ) < —kv/2+1 p V,g,,(éfl)) (by Theorem [5.4])
—Dx

= (ﬂ) < —k”/2+1$ﬂ7§u((§_1)) (by Lemma [5.7))

—Dg
ke /2—1
/—D ~ n
= (=1)k/2-1. c,f—_zc% (resyp(2£ ))(¢~") (by [Mag22, Theorem 7.2]).
v k? k

Because of the injectivity of .t °°£ oresy (cf. [Cas20, Lemma 6.4] and the proof of [Cas20)
k

k’

k/2—1
Theorem 6.5]), it follows from Lemma [3] that pr, (v(3¢)) = <_7V_DK) 2% Now we

c? &k
have 9, (u) = uF/>~! for u € Z,; , and the result follows. O

Remark 11.2. We shall compare Theorem [[T.Jl with analogues results by Castella [Cas20] and
Ota |Ota20]. We first observe the difference in the Euler factors are implicit in the use of pr,,
while [Ota20] uses the map (pry)s (this formulation is similar to the one in [JLZ21]). Compar-
ing Theorem [[T.J] with the analogue result in the GLa case obtained in [Cas20, Theorem 6.5]
(especially [Cas20, Equation (6.9)]), the reader should notice the correction factor v (;VCEDK)
which is present in our paper and does not appear in [Cas20]. This difference is due to two
minor corrections: the first one is in [CHI8al Theorem 4.9] (noticed by Kobayashi [Kob23]|
and fixed in [Mag22, Theorem 7.2]) and explains the contribution of v/—Dp; the second one,
explaining the contribution of ¢, arises from the comparison result in Theorem [5.4] which is not
considered in [Cas20, Equation (2.5)]. Accordingly with [Ota20, Theorem 1.2], the correction

factor v <_ . C_QDK > (in the GLa-case) should not appear in [Cas20]. The reason for the discrep-

ancy between [Cas20, Theorem 6.5] (in the corrected form of Theorem [IT.1]) and Ota’s result
[Ota20, Theorem 1.2] is the following. In the proof of [Cas20), Proposition 4.4|, the author
claims that the Heegner points considered in loc. cit. and [CHI18a] coincide with those con-
sidered in [How07]; comparing the two set of points explains this discrepancy. For simplicity,
we only treat the case of the elliptic curve E., whose complex points are E. ,(C) = C/Opn.
Recall that the p-power level structure in [How(7] is (in the current notation) ¢ € O, which
gives rise to a p™-torsion point in C/Ogyn. On the other hand, the p™-level structure in [Cas20]

is defined in [CHIR8a] and amounts to consider the level structure pyn — Een[p"] < Eenlp"]
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which takes (ps to the idempotent e, (in [CH18a] the idempotents e, and ej coincide with those
chosen in §2.2)); however, note that ¢t = (e, + e5) = cle, + clej as elements in O @ Zy,.
This implies that the Heegner points considered in [How(7| and [CHI18a, [Cas20] are Galois
conjugate to each other, explaining the correction factors appearing in Theorem [IT.11

11.2. Big Heegner points and big generalized Heegner classes. Let % be a sufficiently
small fixed neighborhood of k € Z with k¥ = 2 mod 2(p — 1). Since k — 2 is even for all
ke ZN%, we can define j = k/2 = k4 /2 and define

Ze 1= COTOSp_ /K (Zq/@p) € Hé(K, Viy)
Theorem 11.3. There exists a sufficiently small neighborhood % of k where 3. = 2.

Proof. By Theorem [[0.14] for each finite order character x of Gal(K?/K) of conductor p™ for
some integer n > 1 and each v corresponding to k € Z N % , we see that the image sp%x(zc)

of ze in HY(K,Th,(x)) is 251> @ x. Therefore, pr, (sp,, (7)) = pr.(sp, +(3c) by

Theorem [[T.Tl Since pr, is an isomorphism, we have sp,, , (z.) = sp,, , (3c) for all such v} and

X- Since HE(K, VT%) is a finitely generated Ag-module, the result follows. O

Remark 11.4. Theorem [IT.3] only works over neighborhoods of integers points in X. Even
if the construction of big generalized Heegner classes can probably (at least in the ordinary
case) be extended to the whole Hida family I, the strategy to prove Theorem [[T.3 involves a
comparison result at integer points in X', which does not immediately extends to bigger sets
in I. We hope to come to this problem (at least in the ordinary case) in a future work.
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