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BIG HEEGNER POINTS, GENERALIZED HEEGNER CLASSES AND

p-ADIC L-FUNCTIONS IN THE QUATERNIONIC SETTING

MATTEO LONGO, PAOLA MAGRONE, EDUARDO ROCHA WALCHEK

Abstract. The goal of this paper is to study the p-adic variation of Heegner points and
generalized Heegner classes for ordinary families of quaternionic modular forms. We com-
pare classical specializations of big Heegner points (introduced in the quaternionic setting in
[LV17] by one of the authors in collaboration with S. Vigni) with generalized Heegner classes,
extending a result of Castella [Cas20] to the quaternionic setting. We also compare big Heeg-
ner points with p-adic families of generalized Heegner classes, introduced in this paper in the
quaternionic setting, following works by Jetchev–Loeffler–Zerbes, [JLZ21], Büyükboduk–Lei
[BL21] and Ota [Ota20]. These comparison results are obtained by exploiting the relation
between p-adic families of generalized Heegner classes and p-families of p-adic L-functions,
introduced in this paper following constructions of [HB15] and [BCK21].

1. Introduction

The goal of this paper is to study the p-adic variation of Heegner points and classes for
ordinary families of quaternionic modular forms. The main result is a comparison between,
one the one side, quaternionic big Heegner points and their classical specializations introduced
in [LV17], and, on the other side, p-adic families of quaternionic generalized Heegner classes
and their classical specializations defined in this paper following the works of [JLZ21] and
[BL21] in the GL2 case. The connection between these two objects is made possible by their
relations with quaternionic families of p-adic L-functions, defined in this paper. We now
explain more carefully the main goals and results of this paper.

1.1. Higher specializations of Big Heegner points. Big Heegner points were introduced
by Howard [How07] in the case of Hida families for GL2; soon after, big Heegner points were
generalized to Shimura curves over totally real fields by Fouquet [Fou13] and to Shimura curves
over Q by [LV11]. The main idea in these papers is to define a compatible system of Heegner
points in a tower of modular or Shimura curves of increasing p-power level and tame level
Γ0(N), and form suitable (inverse) limits of these points. While it is clear how specializations
of big Heegner points at weight 2 arithmetic primes in the Hida family are related to Heegner
points on the modular or Shimura curve of p-power level, their specializations at higher weight
arithmetic primes are less clear. However, building on the relation in weight 2, Castella
established in [Cas20] and [Cas13] a relation between big Heegner points and families of BDP-B
p-adic L-functions (here, following [Kob13] and [KO20], BDP-B refers to the p-adic L-function
constructed in [BDP13] and [Bra11]); using the well-known relation between BDP-B p-adic
L-functions and generalized Heegner cycles in [BDP13] and [CH18a], one obtains an explicit
relation between higher weight specializations of big Heegner points and generalized Heegner
classes. As may be observed, this approach is in some sense local, going through the study
of specific p-adic L-functions; a global approach is instead used by Ota [Ota20] to obtain the
same results.

The first goal of this paper is to pursue this program in the quaternionic setting, following
especially [Cas13] and [Cas20]. The crucial ingredients are, as remarked above, the study of
weight 2 specializations of quaternionic big Heegner points obtained in Theorem 9.11, and
the explicit reciprocity law proved in Theorem 9.13 explaining the relation between the p-adic
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family of analytic BDP-B p-adic L-functions constructed in Section 5 (see especially §5.3)
and the p-adic family of geometric p-adic L-functions, obtained by applying a big Perrin-Riou
logarithm to quaternionic big Heegner points. The main result, Theorem 9.13, states the
equality (up to a simple explicit factor):

(1.1) L
geo
I,ξ

·
= L

alg
I,ξ

where:

• I is the p-adic Hida-Hecke algebra corresponding to a primitive p-adic family of quater-
nionic modular forms of tame level N+ and attached to an indefinite quaternion al-
gebra B/Q of discriminant N−; here N+ and N− are two coprime integers such that
p ∤ N = N+N−, and N>1− is a square-free product of an even number of primes; (see
§3.5, §3.6 for details);

• ξ : K×\K̂× → I× is a continuous character of conductor c, where K/Q is a quadratic
imaginary field where p is split; here c and DK are prime to each other, and prime
to Np; moreover, we require that all primes dividing N− are inert in K, while those
primes dividing N+ are split in K (see §5.2 for details);

• L
geo
I,ξ and L

alg
I,ξ are continuous functions on I[[Γ∞]] where Γ∞ is a finite index subgroup

of the anticyclotomic Zp-extension of Hc, the ring class field of conductor c of K; here
L

geo
I,ξ is obtained as the image, via a big Perrin-Riou map, of the big Heegner point

of conductor c (see §10.3 for details), while L
alg
I,ξ has a more analytic construction

and interpolates BDP-B p-adic L-functions at arithmetic points of I (see §5.3 for the
construction, and §5.4 for the relation with BDP-B quaternionic p-adic L-functions for
a fixed modular form).

Equation (1.1) is obtained by a continuity argument from a direct comparison (following similar
strategies in [DR17], [Cas20], [Cas13], [CL16]) at weight 2 primes, where the specialization of
big Heegner points is explicit, since it comes directly from the construction and interpolates
Heegner points. The resulting explicit reciprocity law at weight 2 specializations is explained

in detail in Proposition 9.12. Since the specialization of L
alg
I,ξ is known, thanks to a result

of Magrone [Mag22], to interpolate generalized Heegner cycles at arithmetic points of I of
trivial character and even weight k ≥ 2, we see that the higher weight specialization of big
Heegner points is explicitly related to generalized Heegner cycles; a more precise statement
(see details in Theorem 11.1) says that for all arithmetic points ν ∈ Spec(I)(Q̄p) of weight
k ≡ 2 mod 2(p − 1), we have

(1.2) (pr∗)(zc(ν)) = z♯
c

where:

• zc is (obtain from) the big Heegner point of conductor c in the quaternionic setting,
and zc(ν) is its specialization at ν (see §8.2);

• z
♯
c is a generalized Heegner cycle of conductor c (see §11.1);

• pr∗ is a combination of the two degeneracy maps involving curves of level N+ and
N+p (see §6.1).

1.2. Generalized Heegner classes. More recently, other approaches to the p-adic variation
of Heegner points have been proposed, and extended to Coleman families, by Jetchev–Loeffler–
Zerbes [JLZ21], Büyükboduk–Lei [BL21], Ota [Ota20] and, for Shimura curves over totally real
number fields, Disegni [Dis22]. These approaches differ from each other in many ways, but a
common feature can be recognized in the fact that the p-adic variation of the geometric ob-
jects is obtained by varying the coefficients in the cohomology of the fixed modular or Shimura
curve of level Γ0(Np), as opposite to consider towers of modular or Shimura curves. In other
words, the strategy of Hida [Hid86] to construct big Galois representations via the tower of
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modular curves of increasing p-power level is replaced by the approach of Stevens [Ste94] and
Pollack–Stevens [PS11] via locally analytic distributions interpolating polynomial represen-
tations attached to modular curves. In particular, the paper [JLZ21] takes this perspective
and proposes a motivic construction of p-adic families of generalized Heegner classes in the
case of Coleman families. The second goal of our paper, achieved in Section 10 (see especially
§10.9), is to propose an analogue motivic construction of generalized Heegner classes in the
quaternionic ordinary case.

1.3. Comparison. The third (and final) goal of this paper is to compare p-adic families of
quaternionic Heegner points and p-adic families of quaternionic generalized Heegner classes.
This comparison is made possible by the fact that both families specialize in higher weight to
quaternionic generalized Heegner classes, and the conclusion follows from a density argument,
restricting both families to suitable open affinoids. The main result is Theorem 11.3, which
shows that quaternionic big Heegner points and big generalized Heegner classes agree in a
suitable connected open affinoid of the weight space.

1.4. The quaternionic setting. The quaternionic setting presents some technical difficulties
and interesting features with respect to the GL2 case. We list some of them.

We need to set up a sufficiently explicit integral theory of p-adic quaternionic modular forms,
suitable for computations with Serre–Tate coordinates which are crucial for the definition of
analytic p-adic L-functions in Section 5. For this, we need to extend in Sections 2 and Section 3
some results of Buzzard [Buz97], and Brasca [Bra13, Bra14, Bra16]; we note that for the results
in [LV11] there is no need of such a theory, since the required properties in [LV11] are obtained
by identifying the Hida big Galois representation with the representation constructed by means
of the inverse limit of p-adic Tate modules of Jacobians of Shimura curves of increasing p-power
level. Since Shimura curves are moduli spaces for quaternionic multiplication abelian surfaces,
it becomes necessary, as usual in this context, a careful use of certain idempotents to be able
to cut the dimension of the relevant cohomology groups.

A crucial ingredient for the explicit reciprocity law is the interpolation in p-adic families of
the Eichler–Shimura isomorphism, for which we use the new approach of Chojecki–Hansen–
Johansson [CHJ17] via perfectoid techniques; we also make use of some of the results by
Barrera–Gao [SG17], generalizing to the quaternionic setting the paper by Andreatta–Iovita–
Stevens [AIS15].

An other crucial ingredient for the explicit reciprocity law is the use of Coleman integration
to describe Perrin-Riou logarithm, and we extend to the quaternionic setting the relevant
results of the theory for p-power level Shimura curves, which, to the best knowledge of the
authors, have not been settled properly elsewhere.

Results related to this paper, especially on the construction of quaternionic generalized
Heegner classes, have been sketched in a recent preprint [Wan23], based on a work in progress
by Jetchev, Skinner and Wan. However, on this side, we would like to remark that the focus
on this paper is rather on the comparison between quaternionic generalized Heegner classes
and quaternionic big Heegner points.

1.5. Organization of the paper. The paper is organized as follows. In Section 2 and
Section 3 we review (and extend to the required level of generality) the integral theory of
Shimura curves of p-power level and the theory of quaternionic ordinary families of integral
modular forms. In Section 4 we review the theory of Serre–Tate coordinates, which allows
to define T -expansions of quaternionic families of modular forms. In Section 5 we apply the
previous results to the construction of the analytic families of BDP-B p-adic L-functions,
which is the first result of this paper. After reviewing the construction of p-adic families
of Galois representations in Section 6, big Perrin-Riou maps in Section 7, and big Heegner
points in Section 8, in Section 9 we prove the second result of this paper, the equality between
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geometric and analytic families of p-adic L-functions, where the geometric p-adic L-function is
defined to be the image of quaternionic big Heegner points by the big Perrin-Riou map. The
construction of p-adic families of generalized Heegner classes is outlined, in the case of Hida
families, in Section 10. Section 11 contains the main results of this paper. In §11.1 we prove
the specialization result relating quaternionic big Heegner points and quaternionic generalized
Heegner classes, answering a question in [LV11]; this is our third result. Finally, in §11.2 we
relate quaternionic big Heegner points and quaternionic families of generalized Heegner classes,
showing that these two objects coincide on suitable affinoid subsets of the weight space; this
is our forth result. Of course, a similar result should hold in the GL2-case; we do not state
the result in the GL2-case, but the reader will encounter any problem in stating it.

1.6. Notation. We set up some notations which will be used throughout the paper. Fix a
square-free integer N− which is the product of an even number of primes, and integer N+ ≥ 5
coprime with N−, and a prime number p ∤ N = N+N−; we suppose that N− > 1, since
the case N− = 1 is the GL2-case, where our results have been already established. We also
fix an imaginary quadratic field K of discriminant −DK such that all primes dividing N−

are inert in K and all primes dividing N+p are split in K. We fix throughout the paper
embeddings ι∞ : Q →֒ C and ιp : Q →֒ Qp. We fix a p-stabilized newform f0 of even weight
k0 ≥ 2 and tame level Γ0(N), ordinary at p. We assume throughout the paper that the residual
Galois representation ρ̄ attached to f0 is absolutely irreducible, p-distinguished and ramified
at all primes ℓ | N−; we also assume the multiplicity one hypothesis [LV11, Assumption
9.2], which ensures that the quaternionic Hida family passing through f0 has multiplicity one
(a generalization of [CKL17, Theorem 3.5] to the present setting would prove that [LV11,
Assumption 9.2] holds under the current hypothesis on ρ̄, but we will not consider this result
in this paper).

Acknowledgements. The authors would like to thank Stefano Vigni and Francesc Castella for
useful discussions and remarks on a preliminary version of this paper.

2. Shimura curves

2.1. Quaternion algebras. Let B be the (indefinite) quaternion algebra over Q of discrim-
inant N−. Since K splits B, we may fix an embedding of Q-algebras ιK : K →֒ B. Define
δ =
√
−DK and ϑ = D′+δ

2 , where D′ = DK if 2 ∤ DK and D′ = DK/2 if 2 | DK . For each
place v | N+p∞ of Q, choose an isomorphism iv : Bv

∼= M2(Qv) satisfying

iv(ϑ) =

(
TK/Q(ϑ) −NK/Q(ϑ)

1 0

)
.

(Here for any field extension L/F , we denote by TL/F and NL/F the trace and norm maps.)
For each prime ℓ ∤ Np, choose isomorphisms iℓ : Bℓ

∼= M2(Qℓ) such that iℓ(OK,ℓ) ⊆ M2(Zℓ),
where OK,ℓ = OK ⊗Z Zℓ. In particular, for each divisor M of N+pm and each integer m ≥ 0,
we obtain isomorphisms

iM : OB ⊗Z (Z/MZ) ∼= M2(Z/MZ).

For each integer m ≥ 0, let Rm be the Eichler order of B of level N+pm with respect to the

chosen isomorphisms iℓ for all finite places ℓ ∤ N−. Let Um = R̂×
m = (Rm ⊗Z Ẑ)× and let Ũm

be the subgroup of Um consisting of those elements g whose p-component is congruent to a
matrix of the form

(
1 b
0 d

)
mod pm.

Remark 2.1. Following Mori [Mor11], other papers (including [HB15], [Bur17], [Lon23]) choose
different isomorphisms by fixing a so called Hashimoto model for B, for which one needs to
chose a quadratic real field M which splits B. This is useful, among other things, to fix a
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global idempotent element which is fixed by the involution x 7→ x† (see §2.3); our choices are
more directly comparable with those in [CH18b], [CH15], [CH18a].

2.2. Idempotents. Define the following elements in K ⊗Q K:

e =
ϑ⊗ 1− 1⊗ ϑ
(ϑ− ϑ̄)⊗ 1

and ē =
1⊗ ϑ− ϑ̄⊗ 1

(ϑ − ϑ̄)⊗ 1
.

We will often write simply ϑ− ϑ̄ = δ for the denominators of e and ē. A simple computation
shows that e and ē are orthogonal idempotents such that e+ ē = 1.

Let ℓ | N+p be a prime number. Then ℓ splits in K ad ℓ = l̄l, where l be the prime
corresponding to the chosen embedding Q →֒ Qℓ, so Kℓ = K ⊗Q Qℓ splits as the direct sum
Qℓel ⊕Qℓēl of two copies of Qℓ. We have a canonical map

jℓ : K ⊗Q K −֒→ K ⊗Q Qℓ −֒→ Bℓ
iℓ−→ M2(Qℓ)

and one computes that jℓ(e) =
(
1 0
0 0

)
and jℓ(ē) =

(
0 0
0 1

)
.

Denote by i : K →֒ M2(Q) the Q-linear map which takes ϑ to
(
TK/Q(ϑ) −NK/Q(ϑ)

1 0

)
. Choose

any isomorphism IB : B ⊗Q K
∼→ M2(K) such that, if we denote ιB : B →֒ M2(K) the em-

bedding obtained by composition of the canonical map B →֒ B ⊗Q K and IB , then we have
ιB ◦ ιK = i, where we view i : K →֒ M2(K) via the canonical inclusion M2(Q) ⊆ M2(K). We
thus obtain a further map

j : K ⊗Q K −֒→ M2(K)

defined by j(x⊗ y) = i(x)y, and one computes again that j(e) =
(
1 0
0 0

)
and j(ē) =

(
0 0
0 1

)
.

Remark 2.2. If we work over a sufficiently big extension containing both K and M , where
M is a real quadratic field as in Remark 2.1, the choices of the idempotents made above and
those obtained from the Hashimoto model are essentially equivalent; see [Mor11, Remark 2.1]
for details.

2.3. Quaternionic multiplication abelian varieties. We introduce a class of abelian sur-
faces which play a central role in the theory of Shimura curves.

Definition 2.3. Let S be a scheme. A quaternionic multiplication (QM) abelian surface (A, ι)
over S is an abelian scheme A→ S of relative dimension 2 equipped with an injective algebra
homomorphism ι : OB →֒ EndS(A).

Remark 2.4. QM abelian surfaces are often called fake elliptic curves. We often write (A, ι)/S,
or even A/S if the quaternionic action need not to be specified, to denote QM abelian surfaces;
if S = Spec(R), we also write (A, ι)/R or A/R for (A, ι)/S and A/S, respectively.

Definition 2.5. An isogeny (resp. an isomorphism) of QM abelian surfaces is an isogeny
(resp. an isomorphism) of abelian schemes commuting with the OB-action.

Let t ∈ OB be such that t2 = −DK < 0, which exists because B splits over K, and define
the involution † given by b† := t−1b̄t, where ·̄ denotes the main involution on B. Each QM
abelian surface over S can be equipped with a unique principal polarization such that for each
geometric point s of S the corresponding Rosati involution of End(As), where As is the fiber of
A→ S at s, coincides with the involution x 7→ x† on OB ([Mil79, Lemma 1.1]; see also [DT94,
Lemma 5], [Buz97, §1]). If π : A→ B is an isogeny, taking duals and composing with principal
polarizations gives an isogeny π∨ : B → A. We say that π has degree d if the composition of
π∨ ◦ π is, locally on A, the multiplication by a unique integer d.
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2.4. Shimura curves with naïve level structures. Given a group G and a scheme S, we
write GS for the constant group scheme of value G over S; when the context is clear, we often
simplify the notation and write G for GS .

Definition 2.6. Let M | N+p be a positive integer and (A, ι) a QM abelian surface over a
Z[1/M ]-scheme S. A naïve full level M structure on A is an isomorphism

α : OB ⊗Z (Z/MZ)
∼−→ A[M ]

of S-group schemes locally for the étale topology of S which commutes with the left actions of
OB given by ι on A[M ], and the multiplication from the left of OB on the constant S-group
scheme OB ⊗Z (Z/MZ).

Remark 2.7. Notice that a full level M -structure is equivalent via iM to an isomorphism
M2(Z/MZ)

∼→ A[M ] of finite flat group schemes over S, which commutes with the left action
of OB given by ι on A[M ] and by left matrix multiplication on M2(Z/MZ). Also note that,
if k is an algebraically closed field, to give a full level M structure on a QM abelian surface
defined over S = Spec(k) is equivalent to fix a Z/MZ-basis of the group A[M ](k).

The group (OB ⊗Z (Z/MZ))× acts from the left on the set of full level M structures on
a QM abelian surface (A, ι) as follows. If g ∈ (OB ⊗ (Z/MZ))×, then right multiplication
rg(x) = xg by g defines an automorphism of the group (OB ⊗ (Z/MZ))× which commutes
with the left action of (OB⊗(Z/MZ))× on itself by left multiplication; for a naïve full level M

structure α : (OB ⊗ (Z/MZ))×
∼→ A[M ] on (A, ι), we see that αg = α ◦ rg is a naïve full level

M structure on (A, ι), and the map α 7→ αg gives a left action of (OB⊗Z (Z/MZ))× on the set

of naïve full level M structures on (A, ι). For any subgroup U of Ô×
B (where ÔB = OB ⊗Z Ẑ

and Ẑ is the profinite completion of Z), we obtain an action of U on full level M structures

by composing the action of (OB ⊗Z (Z/MZ))× with the map U ⊆ Ô×
B

π̂M
։ (OB ⊗Z (Z/MZ))×

(where π̂M is the canonical projection).

Definition 2.8. Let (A, ι) be a QM abelian surface over a Z[1/M ]-scheme S and U a subgroup

of Ô×
B . A naïve level-U structure is an equivalence class of full level M structures under the

left action of U .

We say that two triples (A, ι, α) and (A′, ι′, α′) consisting of QM abelian surfaces equipped
with level-U structures are isomorphic if there is an isomorphism of QM abelian surfaces
ϕ : A→ A′ such that ϕ ◦α = α′. The functor which takes a Z[1/(MN−)]-scheme S to the set
of isomorphism classes of such triples (A, ι, α) over S is representable by a Z[1/(MN−)]-scheme
XU , which is projective, smooth, of relative dimension 1 and geometrically connected.

We are especially interested in V1(M) and V0(M)-level structures, where V0(M) ⊆ Ô×
B is

the inverse image via π̂M of the subgroup of (OB ⊗Z (Z/MZ))× consisting of matrices which
are upper triangular modulo M , and V1(M) is the subgroup of V0(M) consisting of elements
g such that π̂M (g) =

(
a b
0 1

)
for some a, b. We also note that the map g 7→ g′ = norm(g)g−1

defines an anti-isomorphism of V0(M) to itself, and from V1(M) to U1(M), the subgroup of
U0(M) = V0(M) consisting of elements g such that π̂M (g) =

(
1 b
0 d

)
for some b, d. We thus get

an induced right action of U0(M) and U1(M) on full naïve level M structures, and two such
structures are equivalent under the right action of U0(M) (respectively, of U1(M)) if and only
if they are equivalent under the left action of V0(M) (respectively, of V1(M)). We simply say
that two full naïve level structure are U1(M) or U0(M)-equivalent in this case, understanding
the right action.

Remark 2.9. The representability result is due to Morita [Mor81, Main Theorem 1] for naïve
full level M structures. A complete proof of the general case can be found in [Buz97, §2] (see
especially [Buz97, Corollary 2.3 and Propositions 2.4 and 2.5]) combining the representability
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result of [BBG+79, Theorem §14, Exposé III] and the proof in [Buz97, Lemma 2.2] that the
moduli problem FU is rigid. See also [DT94, §4] and [HB15, Theorem 2.2].

2.5. Shimura curves with Drinfeld level structures. Let m ≥ 1 an integer. Recall
that we have a left action of OB on A[pm] and therefore we also obtain a left action of
OB,p = OB ⊗Z Zp on A[pm]; thus, through ip, we have a left action of M2(Zp) on A[pm].
Recall the idempotent e ∈ OB ⊗Z Zp such that ip(e) =

(
1 0
0 0

)
. We have a decomposition

A[pm] = ker(e)⊕ ker(1− e).
The element w ∈ OB,p satisftying ip(w) =

(
0 1
1 0

)
induces an isomorphism of group schemes

w : ker(e)
∼→ ker(1− e), and we have eA[pm] = ker(1− e) and (1− e)A[pm] = ker(e).

Definition 2.10. Let (A, ι) be a QM abelian surface defined over a scheme S. A Γ1(p
m)-level

structure on A is the datum of a cyclic finite flat S-subgroup scheme H of eA[pm] which is
locally free of rank pm, equipped with the choice of a generator P of H.

A simple generalization of [Buz97, Lemma 4.4] shows that, for a QM (A, ι)/S over a Qp-
scheme S, there are canonical bijections between Γ1(p

m)-level structures and V1(p
m)-level

structures (and therefore also with U1(p
m)-level structures, accordingly with our definitions).

Remark 2.11. Comparing with [Buz97, Lemma 4.4], the reader will notice that in loc. cit. is
shown the existence of a canonical isomorphism between V1(p)-level structures and the choice
of a generator Q of a finite flat subgroup scheme T of ker(e) ⊆ A[p]; after the generalization
to the case of higher powers of p of loc. cit., which does not present any difficulty and is left
to the reader, in our notation, the generator of eA[pm] is then P = wQ and the subgroup is
H = wT .

We denote (A, ι, α, (H,P )) quadruplets consisting of a QM abelian surface (A, ι)/S over a
scheme S equipped with a naïve U -level structure α and a Γ1(p

m)-level structure (H,P ) on
A. Two such quadruplets (A, ι, α, (H,P )) and (A′, ι′, α′, (H ′, P ′)) are said to be isomorphic
if there is an isomorphism ϕ : A → A′ of QM abelian surfaces which takes α to α′ and such
that ϕ(H) = H ′ and ϕ(P ) = P ′. The functor which takes a Z(p)-scheme S to the set of
isomorphism classes of such quadruplets (A, ι, α, (H,P )) over S is representable by a Z(p)-
scheme XU,Γ1(pm), which is proper and finite over XU (here XU is viewed as a Z(p)-scheme).
Moreover, there is a canonical isomorphism of Q-schemes between the generic fiber of XU,Γ1(pm)

and the generic fiber of XU∩U1(pm). We sometimes understand H and simply write (A, ι, α, P )
for (A, ι, α, (H,P )).

Remark 2.12. The proof of this result is similar to the proof of [Buz97, Proposition 4.1] which
only considers the case m = 1; the extension to the general case does not present difficulties
and is left to the reader.

2.6. CM points on Shimura curves. Combining [CH18b], [CH15], [CL16], [CKL17] (in the
definite setting) and [Cas20], [CH18a], [BCK21] (for the indefinite case), we introduce a more
explicit version of the families of Heegner points introduced in [LV11].

Recall the imaginary quadratic field K. Fix an integer c ≥ 1 with p ∤ c and for each integer
n ≥ 0 let Ocpn = Z+ cpnOK be the order of K of conductor cpn. Class field theory gives an
isomorphism Pic(Ocpn) ∼= Gal(Hcpn/K) for an abelian extension Hcpn of K, called the ring
class field of K of conductor cpn. Define the union of these fields Hcp∞ =

⋃
n≥1Hcpn . Since

c is prime to p, Hc ∩Hp∞ = H, where H = H1 is the Hilbert class field of K, so we have an
isomorphism of groups

Gal(Hcp∞/K) ∼= Gal(Hc/K)×Gal(Hp∞/H).

Since p is split in K, we have Gal(Hp∞/H) ∼= Z×
p ; as usual we decompose Z×

p
∼= ∆× Γ, with

Γ = (1 + pZp) and ∆ = (Z/pZ)×.
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Let H± = C\R, equipped with the action of B× by fractional linear transformations via the
embedding i∞ : B× →֒ GL2(R). We will often identify H± with HomR(C, B∞). Recall, from

§2.1 Um, and Ũm, equivalently characterized by Um = U0(N
+pm) and Ũm = U0(N

+)∩U1(p
m).

For any integer m ≥ 0, define the Riemann surfaces (see [LV11, §2] for details)

(2.1) Xm(C) = B×\(H± × B̂×)/Um
∼= Γm\H,

(2.2) X̃m(C) = B×\(H± × B̂×)/Ũm
∼= Γ̃m\H,

where Γm (respectively, Γ̃m) is the subgroup of norm 1 elements in B× ∩ Um (respectively,

B× ∩ Ũm). We will write [(x, g)] for the point in any of the two Riemann surfaces Xm(C) and

X̃m(C) represented by the class of the pair (x, g) in H±× B̂×. Then there are algebraic curves

Xm and X̃m, defined over Q, whose complex points are canonically identified with Xm(C) and

X̃m(C), respectively; moreover, the curves Xm and X̃m are the generic fibers of Xm = XUm

and X̃m = XŨm
, respectively.

We refer to [LV11, Definition 3.1] for the definition of Heegner points on Xm and X̃m in
terms of optimal embeddings; to fix the notation, for c ≥ 1 an integer prime to pNDK (and

N = N+N−) the point x = [(f, g)] represents a Heegner point on Xm (respectively, X̃m) if

f(Ocpn) = f(K) ∩ gUmg
−1 (respectively, f(Ocpn) = f(K)∩ gŨmg

−1, plus a natural condition
on the images of the elements congruent to 1 modulo cpn); here f : K →֒ B is viewed as a

point in H± by scalar extension to R. Moreover, for a ∈ K̂×, by Shimura reciprocity law we

have xσ = [(f, f̂(a−1)g)] where f̂ : K̂ → B̂ is the adelization of f , recK(a) = σ, and recK is
the geometrically normalized reciprocity map ([Shi71, Theorem 9.6]).

Let c = c+c− with c+ divisible by primes which are split in K and c− divisible by primes
which are inert in K. Choose decompositions c+ = c+c̄+ and N+ = N+N̄+. For each prime
number ℓ and each integer n ≥ 0, define

• ξℓ = 1 if ℓ ∤ N+cp.

• ξ(n)p = δ−1
(
ϑ ϑ̄
1 1

)(
pn 1
0 1

)
∈ GL2(Kp) = GL2(Qp).

• ξℓ = δ−1
(
ϑ ϑ̄
1 1

)(
ℓs 1
0 1

)
∈ GL2(Kl) = GL2(Qℓ) if ℓ | c+ and ℓs is the exact power of ℓ

dividing c+, where (ℓ) = l̄l is a factorization into prime ideals in OK and l | c+.
• ξℓ =

(
0 −1
1 0

)(
ℓs 0
0 1

)
∈ GL2(Qℓ) if ℓ | c− and ℓs is the exact power of ℓ dividing c−.

• ξℓ = δ−1
(
ϑ ϑ̄
1 1

)
∈ GL2(Kl) = GL2(Qℓ) if ℓ | N+, where (ℓ) = l̄l is a factorization into

prime ideals in OK and l | N+.

We understand these elements ξ⋆• as elements in B̂× by implicitly using the isomorphisms

iℓ defined before. With this convention, define ξ(n) = (ξℓ, ξ
(n)
p )ℓ 6=p ∈ B̂×. Define a map

xcpn,m : Pic(Ocpn) → Xm(C) by [a] 7→ [(ιK , aξ
(n))], where if a is a representative of the ideal

class [a], then a ∈ K̂× satisfies a = aÔcpn ∩ K; here a ∈ K̂× acts on ξ(n) ∈ B̂× via left
multiplication by ι̂K(a). We often write xcpn,m(a) or xcpn,m(a) for xcpn,m([a]). One easily
verifies that xcpn,m(a) are Heegner points of conductor cpn in Xm(Hcpn), for all a ∈ Pic(Ocpn),

and all integers n ≥ 0 and m ≥ 0. More generally, we define a map x̃cpn,m : K×\K̂× → X̃m(C)

by x̃cpn,m(a) = [(ιK , aξ
(n))], and again verify that x̃cpn,m(a) are Heegner points of conductor

cpn in X̃m(Hcpn), for all a ∈ K̂×, and all integers n ≥ 0 and m ≥ 0.

We consider the pro-Zp-scheme (viewing X̃m as a Zp-scheme by scalar extension)

X̃∞ = lim←−
m

X̃m.

Then we have a uniformization H± × B̂× → X̃∞(C) and define the point x(a) = [(ιK , a
−1ξ)]

for each a ∈ K̂×. If a is an integral ideal of Oc such that (a,N+p) = 1, then if a ∈ K̂× satisfies

a = aÔK ∩ Oc and aq = 1 for all q | N+p, we write x(a) = x(a) (one easily checks that this
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definition does not depend on the choice of a). The points x(a) are rational over Hcp∞ in

the following sense: for each m the canonical projection xm(a) of x(a) to X̃m(C) belongs to

X̃m(Hcp∞).

2.7. Igusa towers. Let (A, ι) be a QM abelian surface over a Zp-scheme S. For an integer
m ≥ 1, let A[pm]0 be the connected component of the identity of the pm-torsion subgroup
A[pm] of A, and let A[p∞]0 be the connected component of the identity of the p-divisible
group A[p∞] of A. Let µp∞ (respectively, µpm) denote the S-group scheme of p-power roots
of unity (respectively, of pm-th roots of unity).

Definition 2.13. An arithmetic trivialization on A[p∞] (respectively, A[pm]) is an isomor-

phism β : µp∞ × µp∞
∼→ A[p∞]0 (respectively, an isomorphism β : µpm × µpm

∼→ A[pm]0) of
finite flat group schemes over S which is equivariant for the OB,p = OB ⊗Z Zp-action, where
the action of OB,p on µp∞ × µp∞ is by left matrix multiplication via ιp.

Remark 2.14. The existence of an arithmetic trivialization on A[p∞] implies that A is an
ordinary abelian scheme over S.

One can easily show that an arithmetic trivialization of A[p∞] is equivalent to an isomor-

phism β : µp∞
∼→ eA[p∞]0, and similarly an arithmetic trivialization of A[pm] is equivalent to

an isomorphism β : µpm
∼→ eA[pm]0 of finite flat connected group schemes over S, equivariant

for the action of eOB,p (where the action of eOB,p on µp∞ is defined through the isomorphism
with e(µp∞ × µp∞) ∼= µp∞ given by the first projection). An arithmetic trivialization β of

A[p∞] induces for each integer m ≥ 1 an arithmetic trivialization β̄(m) : µpm
∼→ eA[pm]0. An

arithmetic trivialization βm of A[pm] is said to be compatible with a given arithmetic trivial-
ization β of A[p∞] if the composition

µpm
βm−→ eA[pm]0

(β̄(m))−1

−→ µpm

is the identity.
Let us denote X0 viewed as Z(p)-scheme. Let Ha be the Hasse invariant of the special

fiber X0 of X0, and let H̃a be a lift of Ha to X0 ([Kas04, §7]). Then X ord
0 = X0[1/H̃a] is

an affine open Z(p)-subscheme of X0 representing the moduli problem which associates to any
Z(p)-scheme S the isomorphism classes of triplets (A, ι, α) where (A, ι) is an ordinary QM

abelian surface over S and α a naïve U0(N
+)-level structure.

Let Aord → X ord
0 be the universal ordinary abelian variety and for any Z(p)-algebra R define

Aord
R = Aord⊗Z(p)

R; for R = Z/pnZ, we set Aord
n = Aord

Z/pnZ. Denote Aord
n [pm]0 the connected

component of the pm-torsion subgroup scheme Aord
n [pm] of Aord

n . For integers m ≥ 1 and
n ≥ 1, let

Pm,n(S) = IsomOB,p

(
µpm × µpm ,Aord

n [pm]0
)

be the set of arithmetic trivializations on Aord
n [pm], where for two group schemes G and H

equipped with a left OB,p-action, IsomOB,p
(G,H) denotes the set of isomorphisms of groups

schemes G → H which are equivariant for the action of OB,p. The moduli problem Pm,n is
represented by a Z/pnZ-scheme Igm,n, the pm-layer of the Igusa tower over Z/pnZ, which is
finite étale over Ig0,n (see [Hid04, Chapter 8], [Hid02, §2.1] or [Bur17, §2.5]). We also note

that, by the universality ofAord
n , the Z/pnZ-scheme Igm,n represents the moduli problem which

associates to any Z/pnZ-scheme S the set of isomorphism classes of quadruplets (A, ι, α, β)
consisting of a QM abelian surface (A, ι) over S equipped with a U1(N

+)-level structure α
and an arithmetic trivialization β of A[pm]. For each m ≥ 0, each integer n ≥ 1 and each
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Z/pnZ-scheme S, the canonical monomorphism µpm →֒ µpm+1 of S-group schemes induces a
canonical map Igm+1,n → Igm,n. We can therefore consider the Z/pnZ-scheme

Îgn = lim←−
m

Igm,n.

The Z/pnZ-scheme Îgn represents then over Z/pnZ the moduli problem

Pn(S) = IsomOB,p

(
µp∞ × µp∞ ,Aord

n [p∞]0
)

classifying the set of arithmetic trivializations of Aord
n [p∞], or, equivalently, the moduli problem

which associates to a Z/pnZ-scheme S the set of isomorphism classes of quadruplets (A, ι, α, β)
for each integer m ≥ 1 consisting of a QM abelian surface (A, ι) over S equipped with a
U1(N

+)-level structure α and a family of arithmetic trivializations βm of Aord
n [pm], one for

each integer m ≥ 1, such that there is a trivialization β of Aord
n [p∞] for which βm is compatible

with β, for all m ≥ 1. Define finally the Zp-formal scheme

Îg = lim−→
n

Îgn

where the direct limit is computed with respect to the canonical maps induced by the canonical
projection maps Z/pn+1Z ։ Z/pnZ for each n ≥ 1.

Recall the point x(a) = [(ιK , a
−1ξ)] in the pro-Qp-scheme X̃∞(Hcp∞) defined before, which

corresponds to the sequence (xm(a))m≥0 of points in X̃m(Hcp∞). Let xm(a) correspond to

a quadruplet (Aa, ιa, αa, βa,m). The abelian variety Aa can be defined over V = Kab ∩ Zunr
p ,

and is p-ordinary because p is split in K, so there exists a unique arithmetic trivialization
βa compatible with the arithmetic trivializations defined by βa,m; therefore, the point x(a)

corresponds to a point, still denoted x(a) = (Aa, ιa, αa, βa), in the Igusa tower Îg.

3. Modular forms

3.1. Geometric modular forms. Following [Bra14], we introduce the notion of quaternionic
geometric modular forms. Let S be a Zp-scheme and (A, ι) a QM abelian surface over a S;
denote π : A → S the structural map. Then π∗ΩA/S , where ΩA/S is the bundle of relative
differentials, inherits an action of OB . For S = Spec(R), we write ΩA/R = ΩA/Spec(R).
Tensoring the action of OB on π∗ΩA/R with the scalar action of Zp we obtain an action of
OB,p on π∗ΩA/R, and therefore the sheaf π∗ΩA/R is equipped with an action of the idempotent
element e considered in §2.4. Define the invertible sheaf ωA/R = eπ∗ΩA/R.

Definition 3.1. Let R be a Zp-algebra. A test object over a R-algebra R0 is a quintuplet
T = (A, ι, α, (H,P ), ω) consisting of a QM abelian surface (A, ι) over R0, a U0(N

+)-level
structure α on A, a Γ1(p

m)-level structure (H,P ) on A and a non-vanishing global section of
the line bundle ωA/R0

of relative differentials. Two test objects are isomorphic if there is an

isomorphism of QM abelian surfaces which induces isomorphisms of V1(M) and Γ1(p
m)-level

structure and pulls back the generator of the differentials of A′ to that of A.

Definition 3.2. Let R be a Zp-algebra and k an integer. A R-valued geometric modular

form of weight k on X̃m is a rule F that assigns to every isomorphism class of test objects
T = (A, ι, α, (H,P ), ω) over an R-algebra R0 a value F(T ) ∈ R0 such that the following two
conditions are satisfied:

• Compatibility with base change: F(A′, ι′, α′, (H ′, P ′), ω′) = ϕ
(
F(A, ι, α, (H,P ), ϕ∗(ω′)

)

for any morphism ϕ : R0 → R′
0 of R-algebras, where A′ = A ⊗R,ϕ R

′
0, and ι′, α′ and

(H ′, P ′) are obtained by base change from ι, α and (H,P ), respectively;
• Weight condition: F(A, ι, α, (H,P ), λω) = λ−kF(A, ι, α, (H,P ), ω), for any λ ∈ R×

0 .

We denote Mk(N
+, pm, R) the R-module of R-valued weight k modular forms on X̃m.
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We also need to recall an alternative definition of modular forms. First, any test object
gives rise to a test quadruplet over a R-algebra R0 is a quadruplet T = (A, ι, α, (H,P )) by
forgetting the differential form; we say that two such quadruplet are isomorphic if, as before,
there is an isomorphism of QM abelian surfaces which induces isomorphisms of V1(M) and
Γ1(p

m)-level structure.

Definition 3.3. Let R be a Zp-algebra and k an integer. A R-valued geometric modular

form of weight k on X̃m is a rule F that assigns to every isomorphism class of test quadruplet
T = (A, ι, α, (H,P )) over an R-algebra R0 a section F(T ) of ω⊗k

A/R0
which is compatibility with

base change, i.e. F(A′, ι′, α′, (H ′, P ′)))ω′ = ϕ
(
F(A, ι, α, (H,P ))

)
ϕ∗(ω′) for any morphism

ϕ : R0 → R′
0 of R-algebras, where A′ = A ⊗R,ϕ R

′
0, and ι′, α′ and (H ′, P ′) are obtained by

base change from ι, α and (H,P ).

The equivalence between Definitions 3.2 and 3.3 is given the map F 7→ G defined by

G(T ) = F(T, ω)ω⊗k

for any choice of a section ω. We also note that both definitions are equivalent to the existence

of a global section of ω⊗k
m,R, where ωm,R = ωA /R and Am → X̃m is the universal QM abelian

surface (here we view X̃m and Am as defined over R; see [HB15, §3.1] for details). We denote

ωF the global section of ω⊗k
m,R associated with F as in Definitions 3.2 and 3.3.

We have an action of (Z/pmZ)× on Γ1(p
m)-level structures of a QM abelian surface A over

R0, denoted (H,P ) 7→ u · (H,P ) = (H,u · P ), and defined by taking the generator section P
to the section u · P (multiplication of P by u). We define an action of (Z/pmZ)× on F ∈
Mk(N

+, pm, R) by setting (F|〈u〉)(T ) = F(u·T ) where for any test object T = (A, ι, α, (H,P ))
defined over a R-algebra R0, we define u · T = (A, ι, α, u · (H,P 〉). It is easy to check that
F|〈u〉 still belongs to Mk(N

+, pm, R).

Definition 3.4. Let ψ : (Z/pmZ)× → R be a finite order character. We say that a modular
form F ∈Mk(N

+, pm, R) has character ψ if F|〈u〉 = ψ(u)F for all u ∈ (Z/pmZ)×.

We denote Mk(N
+pm, R) the R-submodule of Mk(N

+, pm, R) consisting of those modular
forms with trivial character; if p is invertible in R, then an element in Mk(N

+pm, R) is a
rule T 7→ F(T ) defined on test objects T = (A, ι, α,H, ω) (obtained from a test object as in
Definition 3.1 by forgetting the generator P of H) and satisfying similar compatibilities as
before. See [Bra14, Definition 1.3] for more details.

3.2. p-adic modular forms. Recall that a p-adic ring R is a Zp-algebra which is complete
and Hausdorff with respect to the p-adic topology, so that R ∼= lim←−n

R/pnR.

Definition 3.5. Let R be a p-adic ring. The space Vp(N
+, R) of p-adic modular forms of

tame level N+ on B is a global section of ÎgR = Îg⊗Zp R.

For a p-adic ring R, define IgR,m,n = Igm,n ⊗Zp R. Accordingly with Definition 3.5, for a
p-adic ring R we have

Vp(N
+, R) ∼= lim←−

n

lim−→
m

H0(IgR,m,n,OIgR,m,n
).

An element in Vp(N
+, R) is then a rule F that for each p-adic ring R0 with an R-algebra

structure and each pair of integers m ≥ 1 and n ≥ 1 assigns to each quaternionic multipication
abelian surface (A, ι, α, β), with U0(N

+)-level structure α and an arithmetic trivialization
βm of A[pm], over the R/pnR-algebra R0/p

nR0 a value F(A, ι, α, βm) ∈ R0/p
nR0 which is

compatible with respect to the canonical maps which are used to compute the direct and
inverse limit, depends only on the isomorphism class of the quadruplet and is compatible
under base change given by continuous morphisms between R-algebras.
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The action of Γ = 1 + pZp on Aord
n [p∞] by left multiplication on compatible sequences of

p-power torsion sections give rise to an action of Γ on arithmetic trivializations β of A[p∞],
denoted β 7→ u · β for u ∈ Γ, obtained by composition

u · β : µp∞
β

// Aord
n [p∞]

u
// Aord

n [p∞].

Alternatively, if u : µp∞ → µp∞ denotes the action of u ∈ Γ on the p-power roots of unity
given, for any Zp-algebra R and any ζ ∈ µp∞(R), by ζ 7→ ζu (raise to the u-power), then

u · β is equal to the composition u · β : µp∞
u→ µp∞

β→ Aord
n [p∞]. The R-module Vp(N

+, R) is

equipped with a structure of ΛR = R[[Γ]]-module F 7→ F|〈λ〉 for F ∈ Vp(N+, R) and λ ∈ ΛR,
defined for u ∈ Γ by

(F|〈u〉)(A, ι, α, β) = F(A, ι, α, u · β)
and then extending by R-linearity.

Definition 3.6. Let ψ : 1 + pZp → µp∞(Qp) be a finite order character and k ∈ Zp a p-adic
integer. We say that a p-adic modular form F is of signature (k, ψ) if for every u ∈ 1 + pZp,

we have F|〈u〉 = ukψ(u)F .

3.3. Geometric modular forms and p-adic modular forms. Let R be a p-adic ring and F
an R-valued modular form of weight k on Xm. Consider a QM abelian surface (A, ι, α, β) over
R equipped with a U0-level structure α and an arithmetic trivialization β, and let A = A⊗Rk,
with k = R/mR the residue field of R. The trivialization β determines by Cartier duality a
point xβ in e†Tap(A∨)(Fp) (see for example [Mag22, §3.1]), where Tap(A

∨)(Fp) is the p-adic
Tate module of the dual abelian variety A∨ of A (use that the abelian S-scheme A is equipped

with a unique principal polarization θA : A
∼=→ A∨ such that the associated Rosati involution

of End(A) coincides with the involution b 7→ b† on OB). Now recall from [Kat81, page 150]

that Tap(A
∨)(Fp) ∼= HomZp(Â, Ĝm), where Â is the formal group of A and Ĝm is the formal

multiplicative group over R, and therefore we have

e†Tap(A
∨)(Fp) ∼= HomZp(eÂ, Ĝm).

Let ϕβ ∈ HomZp(eÂ, Ĝm) denote the homomorphism corresponding to xβ. Thus, we can

consider the pull-back ωβ = ϕ∗
β(dT/T ) of the standard differential dT/T of Ĝm. Then ωβ is a

formal differential form on Â, which is then identified with a differential form on A, denoted
with the same symbol. Moreover, β defines a Γ1(p

m)-level structure as follows. Fix a generator
of µp∞ , which induces a generator of µpm , call it ζpm ; then β(ζpm) gives a point P in A[pm]0 of
exact order pm, which gives a Γ1(p

m)-level structure (H,P ), where H is the subgroup scheme
generated by P . Define

F̂(A, ι, α, β) := F(A, ι, α, (H,P ), ωβ).

The map F 7→ F̂ is compatible with base change, only depends on the isomorphism class of
(A, ι, α, β) and it is compatible with the maps occurring in the direct and inverse limit in the

definition of p-adic modular forms; thus F 7→ F̂ establishes a map

(3.1) Mk(N
+, pm, R) −→ Vp(N

+, R)

from geometric to p-adic modular forms. If the character of F is ψ (cf. Definition 3.4) then

the signature of F̂ is (k, ψ). We say that a p-adic modular form is classic if it belongs to the
image of the map (3.1).
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3.4. U and V operators. Following [Gou88, §II.2, II.3], we recall the definitions for the V
and U operators on the space Vp(N

+, R) of p-adic modular forms over a p-adic ring R. Given a
triple (A,α, β) over an R-algebra, with A = (A, ι) ordinary QM abelian surface, α a U0(N

+)-
level structure and β an arithmetic trivialization as in Definition 2.13, we can consider the
quotient A0 = A/Cp of A by its canonical subgroup Cp. Write φ : A ։ A0 for the canonical
projection; then (A0, ι0) is a QM abelian surface, where ι0 is the principal polarization induced
by ι. Since φ has degree prime to N+, it induces an isomorphism φ : A[N+] → A0[N

+],
which defines a U0(N

+)-level structure α0 = φ ◦ α on A0. Also, the isogeny φ is étale, so it

induces an isomorphism on formal completions φ̂ : Â0 → Â, and therefore also an isomorphism

φ : eÂ0 → eÂ. As in §3.3, the trivialization β determines by Cartier duality a point xβ in

e†Tap(A∨)(Fp) and therefore a morphism ϕβ : eÂ→ Ĝm. Hence we obtain an isomorphism

ϕβ0 : eÂ0
φ̂−→ eÂ

ϕβ−→ Ĝm,

which corresponds to an arithmetic trivialization β0 on A0.

Definition 3.7. The operator V : Vp(N
+, R)→ Vp(N

+, R) is defined for any p-adic modular
form f over R by the equation (V f)(A,α, β) = f(A0, α0, β0), with α0 and β0 as above.

Definition 3.8. The operator U : Vp(N
+, R)→ Vp(N

+, R) is defined for any p-adic modular

form f over R by the equation (Uf)(A,α, β) = 1
p

∑
(Ai,αi,βi)

f(Ai, αi, βi), where the sum is

over the set of equivalence classes of triples (Ai, αi, βi) such that (A,α, β) is obtained from
(Ai, αi, βi) by quotient by the canonical subgroup.

For any F ∈ Vp(M,R), we then have V UF = F . The limit limn→∞Un! defines an idem-
potent acting on Vp(N

+, R), which we denote by eord (see [Hid00, Lemma 3.2.7] and [Hid00,
pag. 238]).

Definition 3.9. The R-module Vp(N
+, R)ord := eordVp(N

+, R) is the ordinary submodule of
Vp(N

+, R).

If F ∈ Vp(N+, R) is a p-adic modular forms over the valuation ring R of a finite extension
of Qp, which is an eigenform for the operator U with eigenvalue λ, then, F is ordinary if and
only if |λ|p = 1, i.e. if λ is invertible in R, where | · |p denotes the p-adic absolute value, which

we normalize so that |p|p = 1/p. Also in this case we have eord · F = F .

Definition 3.10. We define the p-depletion of a p-adic modular form F in Vp(N
+, R) to be

F [p] := (Id−UV )F .
3.5. Ordinary families of modular forms on GL2. Fix as in Section 1 an embedding
ιp : Q →֒ Qp (sometimes, we simply write x for ιp(x). We begin by recalling some notation
and results on I-adic families of modular forms on GL2. Let O be the valuation ring of a finite
extension L of Qp and N = N+N− as above with p ∤ N . Define Γ = 1+pZp and Λ = O[[Γ]]. If

I is a finite flat extension of Λ, we say that a O-linear homomorphism ν : I→ Qp is arithmetic

if its restriction to Λ is of the form ν(γ) = ψν(γ)γ
kν−2 for a finite order character ψν : Γ→ Q

×
p

and an integer ν ≥ 2. We call kν the weight of kν , ψν the wild character of ν and the pair
(kν , ψν) the signature of ν. Let

f∞ =
∑

n≥1

anq
n ∈ I[[q]]

be a primitive branch of the Hida family of modular forms of tame level N . Then for each
arithmetic morphisms ν : I→ Qp of signature (kν , ψν), the ν-specialization

fν = ν(f∞) =
∑

n≥1

ν(an)q
n =

∑

n≥1

an(fν)q
n
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of f∞ is the q-expansion of a modular form of level Γ1(Np
r) (where r = max{1, cond(ψν)}),

weight kν and character ψIψνω
−(kν−2), for a character ψI : (Z/NpZ)

× → Q
×
p , independent of

ν, called tame character. We assume that the following condition is satisfied: There exists
an arithmetic morphism ν0 such that f0 = fν0 ∈ Sk(Γ0(Np)) has even weight k0 ≥ 2 with
k0 ≡ 2 mod p− 1 and trivial character. When this condition holds, ψI is trivial and f0 is an
ordinary p-stabilized newform (either f0 is a newform of level Γ0(Np), or f0 is the ordinary
p-stabilization of a newform f0 of level Γ0(N)).

Let X = Homcont
Zp

(Z×
p ,Z

×
p ) be the group of continuous Zp-linear homomorphisms of Z×

p into

itself; we view Z as a dense subset of X via the map Z →֒ X which takes k to [x 7→ xk−2].
The p-adic Lie group X is isomorphic to p− 1 copies of Γ; for a connected open neighborhood
U of k0 ∈ Z, let κU : Γ →֒ Λ× be the universal character of U . Since Λ →֒ I is étale at k0, if
U is sufficiently small we can identity U with a neighborhood in I of the unique arithmetic
morphism lying over x 7→ xk−2; in this case, for any k ∈ Z ∩ U , we let νk the arithmetic
morphism lying over k, and put fk = fνk , which is a modular form of weigh k, level Γ0(Np)
and trivial character.

3.6. Quaternionic ordinary families of modular forms. We now study the quaternionic
analogue of the notion of Hida families. For this, we introduce the notion of quaternionic I-adic
(ordinary) modular forms, and prove a version of a p-adic Jacquet–Langlands correspondence
between these forms and Hida families; the results of this subsection are probably well-known,
however we discuss some details for lacking of precise references. We fix I as before.

Definition 3.11. The I-module Vp(N
+, I) = Vp(N

+,O)⊗̂ΛI is the I-module of quaternionic
I-adic modular forms.

An element in Vp(N
+, I) is then a rule F that for each integer m ≥ 1, each integer n ≥ 1,

and each integer r ≥ 1, assigns a value F(T ) ∈ I/mr
I to each quadruplet T = (A, ι, α, β)

consisting of a QM abelian surface (A, ι) over a O/pnO-algebra R, a U0(N
+) naïve level

structure α on A and a trivialization β of A[pm], where mI is the maximal ideal of I; the rule
(A, ι, α, β) 7→ F(A, ι, α, β) is compatible with respect to the canonical maps for varying n, m
and r, depends only on the isomorphism class of the quadruplet and is compatible under base
change. If ν : I → Oν is an arithmetic character, where Oν is the valuation ring of the finite
extension Fν of Qp containing the Fourier coefficients of fν , and F is a I-adic modular form,
we obtain a p-adic modular form Fν via the canonical map Vp(N

+, I)→ Vp(N
+,Oν).

Definition 3.12. The I-module Vp(N
+, I) = V ord

p (N+,O) ⊗Λ I is the I-module of ordinary
I-adic modular forms.

Recall that V ord
p (N+,O) is a finitely generated Λ-module by [Hid02, Theorem 1.1]; also, we

have a canonical map V ord
p (N+, I)→ Vp(N

+, I) and, for each arithmetic character ν : I→ Oν ,

a specialization map V ord(N+, I)→ V ord(N+,Oν) denoted F∞ 7→ Fν .

Theorem 3.13. The I-module V ord
p (N+, I) is free of rank 1. In particular, there exists an

I-adic modular form F∞ such that for any arithmetic weight ν, Fν is a classical modular form
sharing the same eigenvalues as fν .

Sketch of proof. This result is well-known, and is an instance of p-adic Jacquet–Langlands cor-
respondence, developed in different frameworks in [Che05], [LV17] and [GS16]. In the present
context, it can be deduced from the existence of the quaternionic eigencurve Cord, proved in
[Bra16], [Bra13], combined with results of Chenevier [Che05] to identify the connected com-
ponent of the GL2-eigenvariety corresponding to the fixed Hida family f∞ with a connected
component of Cord, which we denote CI. More general results on the p-adic Jacquet–Langlands
correspondence are available in [Han17], [New13]. The reader is in particular referred to
[Han17, Theorem 5.3.1] for a general result in this direction. �
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Remark 3.14. Since V ord(N+, I) is torsion free, the canonical map V ord(N+, I) → V (N+, I)
of Λ-modules is injective. We will then identify V ord(N+, I) as a I-submodule of V (N+, I) in
the following.

For a given Hida family f∞ for GL2, we say that F∞ in Theorem 3.13 is the I-adic quater-
nionic modular form associated with f∞; note that actually F∞ is only well defined up to units
in I, because q-expansions are not available in the quaternionic setting, so we shall understand
that we fix a choice F∞, which is unique up to units; note that the specializations Fν are also
well defined up to p-adic units. Our results, however, do not depend on those choices.

4. Power series expansion of modular forms

4.1. Serre–Tate coordinates for Shimura curves. Following [Kat81], we introduce the
Serre–Tate deformation theory for ordinary abelian varieties, which provides a way to attach
power series expansions to modular forms on Shimura curves, replacing classical q-expansions
for elliptic modular forms that are not available in the quaternionic case.

Consider an ordinary abelian variety A over Fp, i.e. A[p](Fp) ∼= (Z/pZ)dim(A). Let A∨

denote the dual abelian variety, which is isogenous to A and hence ordinary too. Denote the
p-adic Tate modules of A and A∨ by Tap(A) and Tap(A

∨), respectively; then Tap(A) and
Tap(A

∨) are free Zp-modules of rank g := dimA = dimA∨. Let C be the category of artinian

local rings with residue field Fp.

Definition 4.1. If R is an object of C , a deformation of an ordinary abelian variety A/Fp

to R is an abelian scheme A/R equipped with an isomorphism A ⊗R Fp
∼= A over Fp. Two

deformations A/R and A′/R of A/Fp are said to be isomorphic if there exists an isomorphism

between the abelian R-schemes A and A′ that induces the identity on A/Fp.

We denote by R 7→ DA(R) the functor DA : C → Sets which takes a ring R in C to the set
of isomorphism classes of deformations of A/Fp to R. The functor DA is pro-representable by

a complete noetherian local ring RA with residue field Fp. Let AA/RA be the universal object.
To describe the ring RA, one uses Serre–Tate coordinates. For this, let R ∈ C , and write mR

for its maximal ideal. Following a construction due to Serre, the Weil pairing induces, for each
deformation A/R of A/Fp, a Zp-bilinear form

qA/R : Tap(A)× Tap(A
∨) −→ Ĝm(R) = 1 +mR,

where Ĝm is the completion of the multiplicative group scheme Gm over Fp. By [Kat81,
Theorem 2.1], the construction A/R 7→ qA/R establishes a bijection, functorial in R, between

the set DA(R) and the set of Zp-linear homomorphisms Tap(A)⊗Zp Tap(A
∨)→ Ĝm(R). Let

now R be a complete noetherian local ring with maximal ideal mR and A/R a deformation
of A/Fp, i.e. as above an abelian scheme A/R endowed with an isomorphism A ⊗R Fp

∼= A

over Fp. Set
qA/R = lim←−

n

qA/(R/mn
R
).

This gives a Zp-linear homomorphism Tap(A)⊗Zp Tap(A
∨)→ Ĝm(R), so if we pick Zp-bases

{x1, . . . , xg} and {y1, . . . , yg} of Tap(A) and Tap(A
∨), respectively, then for each deformation

A/R we have g2 elements Tij(A/R) = qA/R(xi, yj) − 1 ∈ R. The elements Tij(AA/RA) are
called Serre–Tate coordinates and the maps defined by Tij 7→ Tij(AA/RA) establish a non-

canonical ring isomorphism Zunr
p [[Tij ]]

∼→ RA, where Zunr
p is the ring of Witt vectors of Fp

([Kat81, §3.1]).
Fix now an ordinary QM abelian surface (A, ι) over Fp with a U1(N

+) naïve level structure
α and write x = (A, ι, α). Let DA = Spf(RA) be the deformation functor associated with
A/Fp and AA/RA be the universal object as before. Consider now the subfunctor Dx of DA,
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which sends an artinian local ring R with residue field Fp to the set of deformations of A, as a
QM abelian surface with U1(N

+)-level structure, to R, i.e. deformations A of A to R together
with an embedding OB →֒ EndR(A) deforming the given embedding OB →֒ Endk(A) and a
U1(N

+)-level structure on A deforming the given U1(N
+)-level structure on A. Note that the

U1(N
+)-level structure automatically lifts uniquely, as A[N+] is étale over R.

The Tate module Tap(A) attached to A inherits an action of OB and hence of OB ⊗ Zp,
which is identified with M2(Zp). Consider the idempotent e = ( 1 0

0 0 ) ∈ M2(Zp) acting on
Tap(A). Since Tap(A) = eTap(A)⊕ (1− e)Tap(A), we can find a Zp-basis {x1, x2} of Tap(A)
such that ex1 = x1 and ex2 = 0. Recall that A is equipped with a unique principal polarization
θA : A

∼→ A∨ satisfying θA(b(P )) = b†θA(P ) for all b ∈ OB and all P ∈ A(Fp). We thus ob-

tain an isomorphism of Zp-modules θTap(A) : Tap(A)
∼→ Tap(A

∨) which satisfies the condition

θTap(A)(b(x)) = b∨θTap(A)(x) for all b ∈ OB and all x ∈ Tap(A). Given a point P ∈ A(Fp) we

define P∨ = θA(P ) ∈ A∨(Fp); also, given x ∈ Tap(A), we set x∨ = θTap(A)(x). By [Kat81,
Theorem 2.1, 4)] (see also [HB15, Proposition 4.5] and [Mor11, Proposition 3.3]), the sub-
functor Dx of DA is pro-representable by a ring Rx that is the quotient of RA by the closed
ideal generated by the relations qAA/RA

(bx, y) = qAA/RA
(x, b†y) for all b ∈ B, x ∈ Tap(A) and

y ∈ Tap(A
∨). Furthermore, there is an isomorphism Rx

∼= Zunr
p [[T ]], where T = T11 = t11 − 1

and t11 = qAA/RA
(x1, x

∨
1 ). In particular, if we denote by Ôx the completion of the local ring

of X ord
0 ⊗Z(p)

Zunr
p at x, then Dx

∼= Spf(Ôx) as Zp-formal schemes.

4.2. T -expansions of modular forms. Fix a point x = (x̄, β) ∈ Îg(Fp) in the Igusa tower,
i.e., the isomorphism class of a quadruple (A, ι, α, β), lying above a point x̄ = (A, ι, α) in
Xord(Fp) and equipped with an arithmetic trivialization β of A[p∞]. Then β determines a

point x∨β ∈ e†Tap(A∨)(Fp) as in §3.3. Take xβ = θTap(A∨)(x
∨
β ) ∈ eTap(A)(Fp), where θA∨ is

the dual of θA (again a principal polarization). We fix the Serre–Tate coordinate tx = t(x̄,β)
around x̄ to be tx(A/R) = qA/R(xβ, x

∨
β ), for each deformation of QM abelian surface A of A.

As before, denote by
(
Ax̄, ιx̄, αx̄

)
the universal object of Dx̄; in particular, recall that Ax̄ is a

QM abelian variety over Rx̄
∼= Zunr

p [[Tx]], with Tx = tx − 1.

Definition 4.2. Let F ∈ Vp(M,Zunr
p ) be a p-adic modular form and x = (x̄, β) ∈ Îg(Fp)

with x̄ = (A, ι, α) ∈ Xord(Fp). The formal series F(Tx) = F
(
Ax̄, ιx̄, αx̄

)
in Zunr

p [[Tx]], where
Tx = tx − 1, is the Tx-expansion of F .

For the case of I-adic modular forms (with I as before a primitive branch of the Hida
family passing through a p-stabilized newform f of trivial character and even weight), let

Ĩ = I⊗̂OZunr
p and Vp(N

+, Ĩ) = Vp(N
+, I)⊗̂IĨ. For any F∞ ∈ Vp(N+, Ĩ) and x ∈ Îg(Fp), we

can then form the Tx-expansion of F∞

F∞(Tx) = F∞
(
Ax̄, ιx̄, αx̄

)
∈ Ĩ[[Tx]].

The canonical map O →֒ Zunr
p induces an injective map I →֒ Ĩ and we may define the Tx-

expansion of F∞ ∈ Vp(N+, I) to be the Tx-expansion of the image of F∞ in Vp(N
+, Ĩ).

Lemma 4.3. Let F∞ be as in Theorem 3.13. Then for each arithmetic morphism ν we have
an equality of formal power series Fν(Tx) = ν(F∞(Tx)).

Proof. This is clear from the functoriality properties of modular forms and T -expansions. �

4.3. Serre–Tate coordinates of CM points. Recall the point x(a) = [(ιK , a
−1ξ)] defined

in §2.6, which corresponds to the sequence (xm(a))m≥0 of points, each in X̃m(Hcp∞). Fix an
integer n ≥ 1. For any x in Qp, define the ⋆-action of n(x) on the point x(a) by the formula

x(a) ⋆ n(x) = [(ιK , a
−1ξn(x)]
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where n(x) denotes the element in B̂× whose p-component has image equal to
(
1 x
0 1

)
in GL2(Qp)

via the map ip and whose components at other primes are trivial. A simple computation (see
also [CH18a, page 587]) shows that for any u ∈ Z×

p we have

ξ · n(u/pn) = ip(u/p
n)ξ(n) ·

(
u−1 u−1

0 1

)
,

where ip(u/p
n) is the element of K̂× having all components equal to 1 except the p-component,

equal to u/pn. We thus obtain

(4.1) x(a) ⋆ n(u/pn) = [(ιK , a
−1ξn(u/pn))] =

[(
ιK , a

−1ip(u/p
n)ξ(n) ·

(
u−1 u−1

0 1

))]
.

By [BCK21, Proposition 4.1], for any u ∈ Z×
p , (x(a)⋆n(u/pn)) is still a CM point defined over

V. Moreover, we have (x(a) ⋆ n(u/pn))⊗V Fp = x̄(a) and

tx(a)(x(a) ⋆ n(u/p
n)) = ζ

−uN(a−1)
√
−DK

−1

pn ,

where for an ideal c ⊆ Oc, we define N(c) = c−1 · ♯(Oc/c).

5. The analytic p-adic L-function

5.1. p-adic L-functions of modular forms. Recall that p is split in K and fix embeddings
ι∞ : Q →֒ C and ιp : Q →֒ Qp as before. Write p = pp̄ in OK and let p be the prime

ideal corresponding to the fixed embedding ιp. For an element x ∈ A×
K , let xp ∈ K×

p and

xp̄ ∈ K×
p denote the components of x at p and p̄, respectively. For an algebraic Hecke character

ξ : K×\A×
K → C×, write ξ = ξfinξ∞ with ξfin : K̂

× → C× and ξ∞ : K×
∞ → C× the finite and

infinite restrictions of ξ respectively, where K̂× and K×
∞ are respectively the groups of finite

and infinite ideles. We say that ξ : K×\A×
K → C× has infinity type (m,n) if ξ∞(x) = xmx̄n,

and in this case denote by ξ̂ : K×\K̂× → Q
×
p its p-adic avatar, defined by

ξ̂(x) = (ιp ◦ ι−1
∞ )(ξfin(x))x

m
p x

n
p̄ .

To simplify the notation, we sometimes write ξ̂(x) = ξ(x)xmp x
n
p̄ for x ∈ K̂×, understanding

that ξ(x) denotes (ιp ◦ ι−1
∞ )(ξfin(x)). If ξ is a Hecke character of conductor c ⊆ OK and b is an

ideal prime to c, we write ξ(b) for ξ(b), where b ∈ K̂× is a finite idele with trivial components

at the primes dividing c and such that bÔK ∩K = b.
Fix F ∈ Mk(M,R) of signature (k,1), where 1 denotes the trivial character, M = N+ or

M = N+p, and R a p-adic ring obtained as the ring of integers of a finite extension of Qp, and
an anticyclotomic Hecke character ξ of infinity type (k/2,−k/2). We recall the construction of
the p-adic L-function associated with F and ξ in [Mag22, §4.6] (see also [BCK21, §4]). Denote
Zunr

p (ξ) the extension of Zunr
p obtained by adjoining the values of ξ and R. Let cOK be the

prime to p part of the conductor of ξ and recall the CM points x(a), defined in §2.6, for each
a ∈ Pic(Oc). As before, since x(a) has a model over V = Zunr

p ∩ Kab, we can consider the

reduction x̄(a) = x(a)⊗W Fp of x(a) modulo p. For each ideal class [a] ∈ Pic(Oc) with a ⊆ Oc,
define the Zunr

p (ξ)-valued measure µF ,a over Zp by

(5.1)

∫

Zp

txadµF ,a(x) = F
[p]

(
t
N(a)−1

√
−DK

−1

a

)
∈ Zunr

p (ξ)[[Ta]],

where F [p] = FV U−UV is the p-depletion of f defined e.g. in [Bur17, (5.2)] or [Mag22, §4.4],

with U and V defined in [HB15, §3.6], and F
[p] denotes as in Definition 4.2 the Ta-espansion

of F [p] seen as a p-adic modular form in Vp(M,R) via the map in (3.1) (also, recall that
Ta = ta − 1 and ta = tx̄(a) is the Serre–Tate coordinate at x̄(a), and N(a) = c−1♯(Oc/a)). The

measures µF ,a are supported on Z×
p ([Mag22, Remark 4.2]).
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Recall that recK : K×\K̂× → Gal(Kab/K) denotes the geometrically normalized reciprocity
map, where Kab is the maximal abelian extension of K; let recK,p : K

×
p → Gal(Kab

p /Kp) be

the local reciprocity map, and view Gal(Kab
p /Kp) as a subgroup of Gal(Kab/K) by the fixed

embedding Q →֒ Qp. Define Γ̃∞ = Gal(Hcp∞/K) and let OCp be the valuation ring of the

completion Cp of Qp. For each continuous function ϕ : Γ̃∞ → OCp , and each ideal class

[a] ∈ Pic(Oc), define the continuous function ϕ
∣∣[a] : Z×

p → OCp by the formula

ϕ|[a](u) = ϕ (recK(a)recK,p(u)) ,

where a ∈ K̂× is a finite idele with trivial components at the primes lying over cp such that

aÔc ∩K = a and we view an element u ∈ Z×
p as an element in K×

p via the canonical inclusion

Z×
p ⊆ K×

p .

Define a Zunr
p (ξ)-valued measure LF ,ξ on Γ̃∞ by the formula

LF ,ξ(ϕ) =
∑

a∈Pic(Oc)

ξ(a)N(a)−k/2

∫

Z×
p

ξp(u)(ϕ
∣∣[a])(u)dµF ,a(u)

for any continuous function ϕ : Γ̃∞ → OCp , where, as before, ξ(a) denotes ξ(a) for a ∈ K̂×

finite idele with trivial components at the primes dividing the conductor of ξ and such that

aÔc ∩K = a.
We recall some results from [Mag22] and [BCK21]. For any ideal a ⊆ Oc, any continuous

function φ : Z×
p → OCp and any power series G(Ta) ∈ W [[Ta]], define the formal power series

([φ]G)(Ta) ∈ Zunr
p (φ)[[Ta]], where Zunr

p (φ) is the extension of Zunr
p generated by the values of

φ, by the formula ([φ]G)(Ta) =
∫
Z

×
p
φ(t)txadµf,a(x). Define

F
[p]
a (Ta) := F

[p]
(
(Ta + 1)N(a)−1

√
−DK

−1
)
.

By [Mag22, Proposition 4.5] (see also [BCK21, Proposition 4.1]), if φ : (Z/pnZ)× → Q
×
p is a

primitive Dirichlet character, and [a] is an ideal class in Pic(Oc) with p ∤ c as before, we have

(5.2) ([φ]F
[p]
a )(0) = p−ng(φ)

∑

u∈(Z/pnZ)×

φ−1(u)F(x(a) ⋆ n(u/pn)),

where g(φ) is the Gauss sum of φ.
We finally recall the following result which will be useful later. Suppose that F is a modular

form of level N+p which is the ordinary p-stabilization of a newform F ♯ of level N+; in other
words, we have F = F ♯ − apF ♯|Wp where Wp is the quaternionic Atkin–Lehner involution,

and ap is the eigenvalue of the Tp-operator acting on F ♯ (see [LV14a, Eq. (28)] for details).

Lemma 5.1. LF ,ξ = LF♯,ξ.

Proof. In light of Definition 5.1, it is enough to observe that F
[p]
a = F

♯[p]
a for each ideal class

[a] in Pic(Oc). This follows immediately from [Bur17, Lemma 5.2] and the references therein;
see [Mag22, §4.4] for details. �

5.2. Families of Hecke characters. Let GQ = Gal(Q/Q) and χcyc : GQ → Z×
p be the

cyclotomic character. Factor χcyc as χcyc = χtame · χwild, where χtame : GQ → µp−1 takes
values in the group of p − 1 roots of unity in Z×

p and χwild : GQ → Γ takes values in the

group of principal units Γ = 1 + pZp; in other words, if we write an element x ∈ Z×
p as

x = ζx · 〈x〉, where ζx = ω(x) ∈ µp−1 and x 7→ 〈x〉 is the projection Z×
p → Γ from Z×

p

to the group Γ of principal units, then χtame(σ) = ζχcyc(σ) and χwild(σ) = 〈χcyc(σ)〉. We

also denote with χcyc : Q
×\A×

Q → Z×
p , χtame : Q

×\A×
Q → µp−1 and χwild : Q

×\A×
Q → Γ the
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composition of χcyc, χtame and χwild, respectively, with the reciprocity map recQ; we then have
χtame(x) = ζχcyc(x)

and χwild(x) = 〈χcyc(x)〉.
Fix a finite flat extension I of Λ. Let z 7→ [z] be the inclusion of group-like elements

Z×
p →֒ Zp[[Z

×
p ]]

× and Γ →֒ Λ×. Recall the critical character Θ: GQ → Λ× defined in [How07,
Definition 2.1.3] by

Θ(σ) = χ
k0−2

2
tame (σ) · [χ

1/2
wild(σ)],

where x 7→ x1/2 is the unique square root of x ∈ Γ. We still write Θ: GQ → I× for

the composition of Θ with the canonical inclusion Λ →֒ I. Write θ : Q×\A×
Q → I× for

the composition of Θ with the geometrically normalized reciprocity map recQ. We denote
Q

cyc
p = Q(ζp∞) =

⋃
n≥1Q(ζpn) the p-cyclotomic extension of Q, where, for all integers n ≥ 1,

ζpn is a primitive pn-root of unity, and define Gcyc
∞ = Gal(Q(ζp∞)/Q). The cyclotomic char-

acter induces an isomorphism χcyc : G
cyc
∞

∼→ Z×
p . Since Θ factors through Gcyc

∞ , precomposing

it with the inverse of the cyclotomic character, we obtain a character of Z×
p which we denote

with ϑ : Z×
p → I×. If ν : I → Qp is an arithmetic morphism of signature (kν , ψν) we put

θν = ν ◦θ and ϑν = ν ◦ϑ. For any x ∈ Z×
p , if kν ≡ k0 mod 2(p− 1), then we have (also recall

that k0 ≡ 2 mod 2(p − 1))

ϑν(x) = ψ1/2
ν (〈x〉) · x kν−2

2 .

Denote by NK/Q : A×
K → A×

Q the adelic norm map, by NQ : A×
Q → Q× the adelic absolute

value and let NK : A×
K → Q× denote the composition NK = NQ ◦NK/Q. Define the character

χ : K×\K̂× → I× by χ = θ ◦N−1
K/Q. For an arithmetic morphism ν, define χ̂ν = ν ◦χ. Since

χcyc ◦ recQ is the p-adic avatar of the adelic absolute value NQ : A×
Q → Q×, we obtain, for

x ∈ K̂× and kν ≡ k0 mod 2(p − 1), k ≡ 2 mod 2(p − 1),

(5.3) χ̂ν(x) = ψ−1/2
ν (〈NK(x)xpxp̄〉) · (NK(x)xpxp̄)

− kν−2
2 .

Let λ : K×\A×
K → C× be a Hecke character of infinity type (1, 0), unramified at p and whose

p-adic avatar λ̂ : K×\K̂× → Q
×
p takes values in O× (possibly after enlarging O if necessary).

Denote now by λ̄ the complex conjugate character of λ, defined by x 7→ λ(x̄), where x 7→ x̄ is
given by the complex conjugation on K. Then λ̄ has infinity type (0, 1) and the p-adic avatar
of λλ̄ is equal to the product χλ · χcyc,K where χcyc,K = χcyc ◦ recQ ◦NK/Q and χλ is a finite

order character unramified at p. We define a character λ : K×\K̂× → O[[W ]]× by the formula

λ(x) = λ̂(x)[〈λ̂(x)〉1/2], where we view λ̂(x) ∈ O× →֒ O[[W ]]× via the map a 7→ a · 1W , with

1W the identity element of W , 〈λ̂(x)〉 denote the projection of λ̂(x) in W and z 7→ [z] is the
inclusion of group-like elements W →֒ O[[W ]]×.

To define the specializations of λ, we need to extend arithmetic morphisms from Γ to W .
We briefly explain this point. Recall that F is the field of fractions of O and note that
O× ∼= µ(F ) ×Zd

p, as topological groups, where d = [F : Qp]. Therefore each element x ∈ O×

can be written uniquely as a product ζx〈x〉, where ζx is the projection of x in µ(F ) and 〈x〉
is the projection on Zd

p. Let O×
free
∼= Zd

p be the maximal Zp-free quotient of O× and denote

by 〈−〉 the projection O×
։ O×

free. Let W = 〈im λ̂〉 be the projection of the image of λ̂

in O×
free. If λ has conductor c prime to p, then λ̂ factors through Gal(K(p∞c)/K), where

K(p∞c) =
⋃

n≥1K(pnc) and K(pnc) is the ray class field of K of conductor pnc. Since O×
free

is a free pro-p group, the composition 〈λ̂〉 of λ̂ with the projection 〈−〉 factorizes through
the maximal free pro-p quotient of Gal(K(p∞c)/K) which is a cyclic pro-p group isomorphic
to Zp; hence W is isomorphic to Zp and we can see Γ as a subgroup of W of finite index,
cf. [Hid11, pp. 64–65]. Write pm = [W : Γ]. Let w ∈ W be a topological generator of
W such that wpm = γ ∈ Γ is a topological generator. Consider an arithmetic morphism
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ν : I → Oν with signature (ψν , kν), where ψν : Γ → O×
ν is a continuous character of finite

order and Oν is the ring of integer of a finite extension Lν of Qp. Fix a pm-th root u ∈ Qp

of ψν(γ) and consider a finite extension Mν of Lν containing u. We can extend ψν to a
continuous morphism W → O×

Mν
, with OMν the ring of integers of Mν , sending w to u.

We will denote this morphism again by ψν . Then the restriction ν|Γ : Γ → O×
ν of ν to Γ

takes x to ψν(x)x
kν−2 and can be extended to a continuous morphism νW : W → O×

Mν
by

w → ψν(w)w
kν−2, so that νW (v) = ψν(v)v

kν−2 for any v ∈ W . This induces a unique
continuous morphism νO[[W ]] : O[[W ]]→ OMν . Indeed, if O[[W ]] is contained in I, then we can

find u ∈ O×
ν such that ψν(w) = u and up

m
= ψν(γ) (possibly enlarging Oν by adding a pm-root

of ψν(1 + p) as above), so that ν(w) = uwkν−2 and, extending ψν to W by ψν(w) = u, we
can say that ν(v) = ψν(v)v

kν−2 for any v ∈ W . Otherwise, if O[[W ]] is not contained in I,
we can replace I by I⊗̂O[[Γ]]O[[W ]] and extend ν to ν ′ : I⊗̂OO[[W ]]→ OMν , fixing a pm-th root

u ∈ Qp of ψν(γ) as above, which is the map obtained by universal property of (completed)
tensor product from the O-bilinear map I × O[[W ]] → OMν given by (x, y) → ν(x)νO[[W ]](y).

Note that ψν : W → O×
Mν

is still a finite order character; indeed, since ψν is of finite order as

a character of Γ, there exists n ≥ 0 such that ψn
ν is trivial on Γ, so ψnpm

ν is trivial on W . By
the above argument, we can assume in the following that O[[W ]] is contained in I and that ν
restricted to W is given by ν(v) = ψν(v)v

kν−2 for any v ∈W .

We can see λ : K×\K̂× → I× assuming that O[[W ]] is contained in I. Let ν : I→ Qp be an

arithmetic morphism of signature (kν , ψν) and write λ̂ν = ν ◦λ. Then, for x ∈ K̂× and kν ≡ k
mod 2(p − 1), k ≡ 2 mod 2(p − 1), we have

λ̂ν(x) = ψ1/2
ν (〈λ̂(x)〉) · λ(x)kν/2xkν/2p .

Hence λ̂ν is the p-adic avatar of an algebraic Hecke character λν of infinity type (kν/2, 0).

Denote by x 7→ λ̂(x̄)−1 = λ(x̄)−1x−1
p̄ (for x ∈ K̂×) the p-adic avatar of the Hecke character

given by x 7→ λ(x̄)−1 (for x ∈ A×
K) of infinity type (0,−1). Then define the character

λ−1(x̄) = λ̂(x̄)−1[〈λ̂(x̄)−1〉1/2]

which we see as taking values in I×. Consider now the character ξ : K×\K̂× → I× given by
ξ(x) = λ(x) ·λ−1(x̄). Note that ξ|Q̂× is trivial. For any arithmetic morphisms ν, set as above

ξ̂ν = ν ◦ ξ. For any x ∈ K̂× and kν ≡ k mod 2(p − 1), k ≡ 2 mod 2(p − 1), we have

(5.4) ξ̂ν(x) = ψ1/2
ν (〈λ(xx̄−1)xpx

−1
p̄ 〉) · λ(xx̄−1)kν/2 · xkν/2p x

−kν/2
p̄ .

Therefore, ξ̂ν is the p-adic avatar of an anticyclotomic Hecke character ξν of infinity type
(kν/2,−kν/2). If we want to emphasise the dependence of ξ, ξ̂ν and ξν from λ, we write ξ(λ),

ξ̂
(λ)
ν and ξ

(λ)
ν .

5.3. p-adic L-functions for families of modular forms. Fix a primitive branch I of the
Hida family passing through a p-stabilized newform f ∈ Sk(Γ0(Np)) of trivial character and

even weight k ≡ 2 mod 2(p − 1). Let F∞ ∈ Vp(N+, Ĩ) be the quaternionic form associated

with I as in Theorem 3.13, where recall that Ĩ = I ⊗O Zunr
p . Let cOK , with c ≥ 1 and

p ∤ c, be the conductor of x 7→ λ(x)λ−1(x̄). Consider the CM points x(a) with a ∈ Pic(Oc),
defined in §2.6. Recall that x(a) has a model defined over Zunr

p , and define the fiber product

x(a)
Ĩ
:= x(a)⊗W Ĩ. Define now a Ĩ-valued measure µF∞,a on Zp by

∫

Zp

txx(a)dµF∞,a(x) = F
[p]
∞

(
t
N(a−1)

√
(−DK)

−1

x(a)

)
∈ Ĩ[[Ta]],
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where as before Tx(a) = tx(a) − 1 and tx(a) is the Serre–Tate coordinate around x(a)IW ⊗ Fp,

F [p]
∞ is the p-depletion of F∞ and F

[p]
∞ is the Tx(a)-expansion of F [p]

∞ (see Definition 4.2). The

measures µF∞,a are supported on Z×
p .

Definition 5.2. Let F∞ ∈ Vp(N+, Ĩ) and let ξ : K×\K̂× → I× be a continuous character as

in §5.2. The measure LF∞,ξ associated with F∞ and ξ is the Ĩ-valued measure on the Galois

group Γ̃∞ = Gal(Hcp∞/K) given for any continuous function ϕ : Γ̃∞ → Ĩ by

LF∞,ξ(ϕ) =
∑

a∈Pic(Oc)

χ−1ξ(a)N(a)−1

∫

Z
×
p

(ϕ
∣∣[a])(u)dµF∞ ,a(u).

Definition 5.3. Define the analytic anticyclotomic p-adic L-function L an
I,ξ ∈ Ĩ[[Γ̃∞]] to be the

power series corresponding to the measure LF∞,ξ in Definition 5.2.

For any continuous character ϕ : Γ̃∞ → Q
×
p and any arithmetic morphism ν : I → Oν we

adopt the common notations L an
I,ξ(ν) = ν(L an

I,ξ) and L an
I,ξ(ν, ϕ) = ϕ(ν(L an

I,ξ )).

5.4. Interpolation. Let I be the fixed Hida family passing though f ∈ Sk(Γ0(Np)) with

k ≡ 2 mod p − 1, and let F∞ ∈ Vp(N+, Ĩ) be as in the previous subsection. The following

result generalizes [Cas20, Theorem 2.11] to the quaternionic setting. Fix λ : K×\A×
K → Q

×

be an algebraic Hecke character of infinity type (1, 0) of conductor c ⊆ OK prime to p whose

p-adic avatar takes values in O× and let ξ = ξ(λ).

Theorem 5.4. Let ν : I → Qp be an arithmetic morphism of weight kν ≡ k mod 2(p − 1),

and recall that k ≡ 2 mod 2(p− 1). Then L an
I,ξ(ν) = ϑ−1

ν (c)LFν ,ξν .

Proof. By Lemma 4.3 we have that, for any point x = x(a), the T -expansion of Fν at x and
the specialization at ν of the T -expansion of F at x are equal, that is Fν(Tx) = ν(F∞(Tx)).

Denote again by ν : Ĩ → Zunr
p (ν) the natural extension of ν, where Zunr

p (ν) denotes the finite

extension of Zunr
p obtained by adjoining the image of ν. Then for any continuous ϕ : Zp → Ĩ,

using its Mahler expansion, we obtain for a ∈ Pic(Oc):

ν

(∫

Z
×
p

ϕ(u)dµF∞,a
(u)

)
=

∫

Z
×
p

(ν ◦ ϕ)(u)dµFν ,a
(u).

Recall that, for an ideal a ⊆ Oc, we write N(a) = c−1♯(Oc/a); if a = aÔc ∩K for an element

a ∈ ÔK , we have N(a) = c−1 ·N−1
K (a). Choose representatives a of Pic(Oc) such that p ∤ a

and p̄ ∤ a; by (5.3) we then have

χ̂−1
ν (a) = χ̂−1

ν (a) = NK(a)kν/2−1 = N(a)−kν/2+1c−kν/2+1

and ξν(a) = ξ̂ν(a). Therefore, since ξν is unramified at p, we have

LF∞,ξ(ν, ϕ) =
∑

a∈Pic(Oc)

(χ̂−1
ν ξ̂ν)(a)N(a)

−1

∫

Z×
p

(ν ◦ ϕ
∣∣[a])(u)dµF∞ ,a(u)

=
∑

a∈Pic(Oc)

c−kν/2+1N(a)−
kν
2 ξν(a)

∫

Z
×
p

ξν,p(u)(ν ◦ ϕ
∣∣[a])(u)dµFν ,a(u)

= c−kν/2+1
LFν ,ξν (ν ◦ ϕ).

In particular we have LF∞,ξ(ν,1U ) = c−kν/2+1LFν ,ξν (1U ) for any open compact subset U

of the Galois group Γ̃∞, where 1U is the characteristic function of U . We conclude by the

equivalence between Zunr
p (ν)-valued measures on Γ̃∞ and additive functions on the set of open

compact subsets of Γ̃∞ with values in Zunr
p (ν). �
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We recall the interpolation properties satisfied by this p-adic L-function. Let fν be the
specialization at ν of the Hida family f∞, and suppose that fν ∈ Sk(Γ0(Np)) has trivial
character. Then, since fν is ordinary, either fν has weight 2 and is a newform of level Np, or

there is a newform f ♯ν ∈ Sk(Γ0(N)) whose ordinary p-stabilization is fν. Suppose we are in the

second case. If ϕ̂ : Γ̃∞ → Q
×
p corresponds via recK to the p-adic avatar of an anticyclotomic

Hecke character ϕ of infinity type (n,−n) for some integer n ≥ 0, then
(
L

an
I,ξ(ν, ϕ̂)

)2
= C · L(f ♯ν , ξνϕ, kν/2)

where C is a non-zero constant depending on ν, ξν , ϕ and K, and, up to a p-adic unit, on
the choice of F∞ (this follows immediately from Theorem 5.4 and Lemma 5.1 combined with
[Mag22, Theorem 4.6]).

6. Galois representations

We first recall a standard notation for the symmetric tensors (see [KLZ17, §2.2] for details).
For a free abelian group of finite rank H and an integer m ≥ 0, denote Sm the symmetric
group on m elements, acting over H⊗m by permutation of the factors. Let Symm(H) denote
the quotient of H⊗m by the action of Sm, i.e. the group of Sm-coinvariant elements of H⊗m.
We also define the submodule of H⊗m consisting of the elements which are Sm-invariant,
which is denoted by TSymm(H); the ring TSym•(H) =

⊕
m≥0 TSym

m(H) is equipped with

a ring structure, obtained by symmetrization of the tensor product (x, y) 7→ x · y; for x ∈
TSymm(H) and y ∈ TSymn(H) we thus have x · y ∈ TSymm+n(H) (see [KLZ17, (2.2.1)]).
There is a natural homomorphism Symm(H)→ TSymm(H), which is an isomorphism if H is a
module over a ring where m! is invertible, and a canonical duality isomorphism Symm(H∨) ∼=
(TSymm(H))∨ (for a R-module M , we denote M∨ the R-linear dual of M). The module
TSymm sheafifies in the étale cohomology (see [KLZ17, §3.1] and [Kin15] for more details).

If F is a field, let Symm(F 2) denote the left representation of GL(F 2) afforded by the space
of homogeneous polynomials P in two variables with coefficients in F and degree m, given by((

a b
c d

)
· P
)
(X,Y ) = P (aX + cY, bX + dY ). The vector space TSymm(F 2) is equipped with

the dual left action of GL2(F ) as follows: if we fix an isomorphism F 2 ∼= (F 2)∨, then for
ϕ ∈ TSymm(F 2) and P ∈ Symm(F 2), we set (γ · ϕ)(P ) = ϕ(γ−1 · P ).

6.1. Galois representations. Recall the discrete valuation ring O fixed in §3.5, and its
fraction field L = Frac(O). Let m ≥ 0 be an integer and let Mk = Mk(N

+, pm, L) or

Mk = Mk(N
+pm, L); in the first case, let C = X̃m and in second case let C = Xm. In both

cases, let π : A → C be the universal abelian surface. Fix F ∈ Mk which is an eigenform
for all Hecke operators. We consider the motive h1(A), the degree 1 part of the relative
Chow motive of A over C, whose étale realization is R1π∗Qp (see [Anc15, §2, Exemple 3.3(ii),
Proposition 3.5]). The idempotents e and ē defined in §2.2 induce a decomposition into
isomorphic factors R1π∗Qp = eR1π∗Qp ⊕ ēR1π∗Qp, which lifts to a decompositon of motives
h1(A) = eh1(A)⊕ ēh1(A) ([Anc15, Théorème 6.1]). Form the motives

V
k := TSymk−2(eh1(A)(1)) and (V k)∨ = Symk−2(eh1(A)),

where ∨ denotes the dual motive, notice that eh1(A)(1) ∼= eh1(A), by [Anc15, Corollaire
2.6]. Denote by V k

ét = TSymk−2(eR1π∗Qp(1)) and (V k
ét)

∨ = Symk−2(eR1π∗Qp) their étale

realizations. Put CQ = C ⊗Q Q. The subspace

VF ⊆ H1
ét

(
C
Q
, (V k

ét)
∨
)
⊗Qp FF

(here FF ⊆ Qp is the Hecke field of F) corresponding to the Hecke eigenspace for F is the
Deligne p-adic Galois representation attached to F , characterized by requiring that the trace
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of the geometric Frobenius element at a prime ℓ ∤ Np is equal to aℓ(F), the Hecke eigenvalue of
Tℓ. The dual, or contragredient, Galois representation V ∗

F of VF is then the maximal quotient

H1
ét

(
CQ,V k

ét(1)
)
⊗Qp FF −։ V ∗

F ,

where the dual Hecke operators T ′
ℓ act by aℓ(F), for all ℓ ∤ Np, and U ′ acts by ap(F), the

Hecke eigenvalue of U ; see [KLZ17, §2.8].
If F ∈Mk(N

+p, L) is the ordinary p-stabilization of a newform F ♯ ∈Mk(N
+, L), then we

have two isomorphic Galois representations VF and VF♯ , and an explicit isomorphism is

(6.1) pr∗ = (pr1)∗ −
(pr2)∗
α

: VF −→ VF♯ ,

where pr1,pr2 : X1 → X0 are the canonical degeneration maps and α is the p-adic unit-root
of the Hecke polynomial of Tp acting on F ♯ (this follows from a standard generalization of
the argument in [KLZ17, Proposition 7.3.1]). By [Ota20, Corollary 5.8] (whose proof works in
the quaternionic case also), the maps pr1 and pr2 are related to Hida ordinary projector eord

([LV11, S 6.2]) by the formula

(pr1)∗ ◦ eord =
α(π1)∗ − (π2)∗
α− α−1pk−1

.

6.2. Big Galois representations. Define J̃m = Jac(X̃m) and

Tap = lim←−
m

(
Tap(J̃m)⊗Zp O

)
.

The O-module Tap(J̃m) ⊗Zp O is equipped with an action of Hecke operators Tℓ for primes
ℓ ∤ Np and Uℓ for primes ℓ | Np attached to the indefinite quaternion algebra B ([LV11, §6.2]).
Taking the projective limit of these Hecke algebras one defines a big Hecke algebra acting on
Tap. Consider the ordinary submodule Taordp = eordTap of Tap. Since I is a primitive branch

of the Hida ordinary Hecke algebra hordN , again as a consequence of the Jacquet-Langlands
correspondence for p-adic families of modular forms ([LV11, Proposition 6.4]; see also [Che05]),
one has that T = Taordp ⊗hordN

I is a free I-module of rank 2 equipped with a GQ = Gal(Q/Q)-

action, having the following property: T is unramified outside Np and the characteristic
polynomial of the arithmetic Frobenius element Frobℓ at a prime ideal ℓ ∤ Np is equal to

Pℓ(X) = X2 − TℓX + (χcycΘ
2)(ℓ).

For each arithmetic character ν : I→ Fν , where Fν is a finite extension of Qp, Tν = T⊗I,ν Fν

is isomorphic to V ∗
Fν

.

Let v be the place of Q over p corresponding to the fixed embedding Q →֒ Qp, and let

Dv
∼= GQp = Gal(Qp/Qp) denote the decomposition group of GQ at v and Iv ⊆ Dv the inertia

subgroup, isomorphic to the inertia subgroup IQp of GQp via the isomorphism Dv
∼= GQp . Let

ηv : Dv/Iv → I be the unramified character defined by ηv(Frobv) = Up, where Frobv is an
arithmetic Frobenius element of Dv/Iv ; we identify ηv with a character of GQp/IQp . There is

a short exact sequence of GQp-modules (depending on the choice of v, and thus on Q →֒ Qp)

(6.2) 0 −→ T+ −→ T −→ T− −→ 0

such that both Fil+(T) and Fil−(T) are free I-modules of rank 1, and GQp acts on Fil+(T)

via η−1
v χcycΘ

2 and acts on the unramified quotient Fil−(T) via ηv; see [LV11, §5.5] and [LV11,
Corollary 6.5] for details. As GQp-representations we have then an isomorphism

T ∼=
(
η−1
v χcycΘ

2 ∗
0 ηv

)
.
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Define the critical twist of T to be the twist T† = T⊗Θ−1 of T by the Galois action of Θ

([LV11, §6.4]). Then T
†
ν = T† ⊗I,ν Fν is isomorphic to the self-dual twist V †

Fν
= VFν (k/2) of

the Deligne representation VFν . Fix a continuous character ξ : K×\K̂× → I× as in §5.2, and

denote by the same symbol the associated Galois character ξ : GK → I×. Let T
†
|GK

denote

the GK -representation T† obtained by restriction to the subgroup GK ⊆ GQ. Define the

GK -representation T
†
ξ = T

†
|GK
⊗ ξ−1. From (6.2) we obtain a filtration of Dv

∼= GQp-modules

(recall that p is split in K)

0 −→ T
†,+
ξ −→ T

†
ξ −→ T

†,−
ξ −→ 0

and as GQp-representations we have an isomorphism

T
†
ξ
∼=
(
η−1
v χcycΘξ−1 ∗

0 ηvΘ
−1ξ−1

)
.

Define the Galois character Ψ: GK → I× by Ψ = η−1
v χcycΘξ−1.

Lemma 6.1. Ψ: GKp
→ I× is unramified.

Proof. Since λ has infinity type (1, 0) and it is unramified at p, we have λ̂ˆ̄λ = χcycβ, with
ˆ̄λ : x 7→ λ̂(x̄) and β a character of finite order and unramified at p. Since k ≡ 2 mod 2(p−1), a

simple computation shows that η−1
v χcycϑξ

−1 = η−1
v β−1 ˆ̄λ2[〈β〉−1/2][〈ˆ̄λ〉], and the result follows

because η−1
v is unramified as a GKp

-character and β−1 ˆ̄λ2[〈β〉−1/2][〈ˆ̄λ〉] is unramified at p seen
as the p-adic avatar of a Hecke character. �

For each arithmetic morphism ν : I → Oν , where Oν is the valuation ring of the finite

extension Fν of Qp, define T
†
ξν

= T
†
ξ ⊗I,ν Fν , where the tensor product is taken with respect

to ν, composed with the inclusion Oν ⊆ Fν as indicated. We have then an exact sequence of
GQp-modules

0 −→ T
†,+
ξν
−→ T

†
ξν
−→ T

†,−
ξν
−→ 0

where T
†,±
ξν

= T
†,±
ξ ⊗I,ν Fν are Fν -vector spaces of dimension one.

6.3. Specializations. Fix a prime P of Q over p. Denote F = Hc,P the completion of Hc

at P, F∞ = Qunr
p the maximal unramified extension of Qp (which contains F and is also

the maximal unramified extension of F because p ∤ c) and L∞ = Hcp∞,P, the completion of
Hcp∞ at P. Recall that L∞ = F (F) is obtained by adjoining the torsion points of the relative
Lubin–Tate formal group F of parameter π/π̄, where if δ is the order of p in Pic(Oc), then
pδ = (π) with π ∈ Oc (see [Shn16, Proposition 8.3] for the proof; see also [CH18a, page 604]).
Let K∞ = L∞(µp∞) and define G = Gal(K∞/F ), Γ∞ = Gal(L∞/F ), Γcyc = Gal(F (µp∞)/F ).

We also notice that if we let H̃cpn = Hcpn(µpn) and H̃cp∞ =
⋃

n≥1 H̃cpn, then K∞ = H̃cp∞,P

is the completion of H̃cp∞ at P. We thus have the following diagram of local fields:

(6.3) K∞

GF (µp∞)

Γcyc ■■
■■

■■
■■

■

✈✈✈✈✈✈✈✈✈

L∞

F

Γ∞
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For any finite extension L of F in L∞, and any G-stable subquotient M of T†
ξ, define

H1
Iw(L∞/L,M) = H1

Iw (Gal(L∞/L),M) = lim←−
L′

H1(L′,M)

where L′ runs over the finite extensions of L contained in L∞.
Let (ν, φ) be a pair consisting of an arithmetic morphism ν : I → Oν and a Hodge–Tate

character φ : G → Q
×
p of Hodge–Tate weight m ∈ Z; we adopt the convention that the Hodge–

Tate weight of the cyclotomic character χcyc : GQp
→ Z×

p is +1, so φ = χm
cycψ for some

unramified character ψ : G → Q
×
p . For • being +, − or no symbol, let T†,•

ξν
(φ) denote the twist

of the representation T
†,•
ξν

by φ. We then have specialization maps

spν,φ : H
1
Iw(Γ∞,T

†,•
ξ )

∼−→ H1(F,T†,•
ξ ⊗̂II[[G]]) −→ H1(F,T†,•

ξν
(φ))

where the first map is induced by Shapiro’s isomorphism.

7. Big Perrin-Riou logarithm map

7.1. Big Eichler–Shimura isomorphisms. Faltings Eichler-Shimura isomorphism is con-
structed in the quaternionic case by [SG17]. Faltings Eichler-Shimura isomorphism in the
quaternionic setting is constructed in [SG17, Section 2], following the approach of Faltings

[Fal87]. Recall the Shimura curve X̃m in (2.2), which we view as defined over Qp. Let

Ãm → X̃m be the universal QM abelian surface and set Gm = Tap((eÃm[p∞])) and, for any

integer k ≥ 2 and any finite extension of Qp, define Vk−2(L) = Symk−2(G)⊗L (tensor product
as Zp-modules). Put ωm = ωÃ∨

m/X̃m
= eπ∗(ΩÃ∨

m/X̃m
). Then by [SG17, Proposition 2.1] there

is an isomorphism (where the tensor product is over L)

(7.1) H1(X̃m,Vk−2(L))⊗ Cp(1) ≃
(
H0(X̃m, ω

k
m)⊗ Cp

)
⊕
(
H1(X̃m, ω

−k−2
m )⊗ Cp(k − 1)

)

of Cp-vector spaces, which is GL = Gal(Qp/L) and Hecke equivariant. We use the results by
[CHJ17] to interpolate this isomorphism along the Hida family I.

Let V be the sheaf of distributions on Zp defined in [CHJ17, §4.2], and M† the sheaf of
perfectoid modular forms defined in [CHJ17, §4.3]; also, let C = CV = CM† be the eigencurve
constructed by the eigenmachine in [CHJ17, §5.1] (see especially [CHJ17, Proposition 5.2]).
The Hida family I corresponds to an irreducible component CI of C, which coincides with the
base-change of the eigencurve in the proof of Theorem 3.13; let VI andMI be the restrictions
of V andM† to CI. By [CHJ17, Theorem 5.12], the GQ-representation VI(1) is isomorphic to
the base change of the big Galois representation T considered before. Moreover, the sheaf of
perfectoid modular forms MI is canonically isomorphic to the base change of the sheaf of p-
adic modular forms constructed from the Igusa tower (see [BHW22, §3.4] for the argument over
modular curves, which extends to the quaternionic setting; also, note that [BHW22] work over
the anticanonical tower while [CHJ17] work over the canonical tower, which are isomorphic
by the Arkin-Lehner involution, as explained in [BHW22, §3.2]). By [CHJ17, Theorem 5.12],
the sheaves VI and MI are locally free of rank 2 and 1 respectively. Denote

ES : VI(1)⊗̂QpCp −→MI⊗̂QpCp

the restriction of the Eichler-Shimura map constructed in [CHJ17, Theorem 5.3]. The kernel
ker(ES) and the image im(ES) are both locally free sheaves of rank 1. By [CHJ17, Theorem
5.14] we have, outside a Zariski closed subset of dimension 0 disjoint from the subset of classical
points, a splitting

(7.2) VI(1)⊗̂QpCp −→ (MI⊗̂QpCp)⊕ ker(ES).
Proposition 7.1. Zariski generically, the map (7.2) interpolates (7.1).
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Proof. This is one of the main results of the paper [CHJ17] (see especially [CHJ17, §5.2]).
However, the paper [CHJ17] does not explicitly mention specializations at arithmetic mor-
phisms with arbitrary wild ramification. For this reason, we sketch the construction of this
specialization morphisms by modifying the relevant maps in [CHJ17]; we advise the reader to
keep her/his copy of the paper [CHJ17] for the notation which is not fully introduced here. A
similar result can be obtained by adapting in the same way the techniques of [SG17], which
relies on a quaternionic analogue of [AIS15]. However, we remark that in the ordinary case
one can probably obtain finer results using measures instead of distributions, and only working
directly over the ordinary locus instead of its neighborhoods of overconvergence. To keep the
proof at a reasonable length, we prefer to explain how to modify the more general result of
[CHJ17].

We follow closely, in this proof only, the notation in [CHJ17], which we briefly recall and
adapt to our setting. For any m ≥ 0, we denote ∆0(p

m) (respectively, K0(p
m) or K1(p

m)) the
semigroup (respectively, the group) of matrices γ =

(
a b
c d

)
in M2(Zp) ∩ GL2(Z) (respectively,

in GL2(Zp)) with c ≡ 0 mod pm and d ∈ Z×
p (respectively, c ≡ 0 or c ≡ 0 and d ≡ 1) modulo

pm. For K = K0(p
m) or K = K1(p

m), denote XK the adic Shimura curve with U0(N
+)-level

structure, and K-structure at p, and let X = XK0(p) and Xm = XK1(pm) (cf. [CHJ17, §2.2];

all these curves are viewed as adic spaces over Spa(Qcyc
p ,Zcyc

p ); also, XK0(pm) and XK1(pm) are

the analytifications of the curves previously denoted Xm and X̃m). The perfectoid Shimura
curve considered in this proof is X∞ ∼ lim←−

m

Xm; this is not exactly the same object considered

in [CHJ17, Theorem 2.2], where Xm is replaced by Shimura curves with full level structure;
however, the arguments used in [CHJ17] work as well in our setting, since X∞ is a perfectoid
space as well ([Sch15, Proposition 3.2.34]). The perfectoid space X∞ is equipped with the
Hodge-Tate map πHT : X∞ → P1 and the variable z ∈ H0(V1,O+

X∞
) is z = z ◦ πHT with

V1 = π−1
HT(V1) and z = −y/x the standard variable in V1 = {[x : y] : x 6= 0}, so that we have

γ∗(z) = az+c
bz+d for all γ =

(
a b
c d

)
∈ K0(p) (see [CHJ17, §2.2] for details; alternatively, one can use

a different affine subset of P1 and obtain a new variable z′ as in [BHW22] satisfying γ∗z′ = az′+b
cz′+d ,

but we prefer to follow more closely the computations in [CHJ17]). Let Xm(0)c denote the
canonical component of the ordinary locus Xm(0) of Xm, and X∞(0)c = q−1

m (Xm(0)c), where
qm : X∞ → Xm is the canonical projection map. Let ω = π∗HT(O(1)) and let s ∈ H0(X∞(0)c, ω)
be the (fake) Hasse invariant defined in [CHJ17, §2.4], satisfying the transformation formula
γ∗(s) = s(bz+d) (alternatively, as in [BHW22], one could work over the anticanonical ordinary
tower instead, which is isomorphic to the canonical tower by an Atkin-Lehner operator, and has
the advantage of being directly related to Katz convergent modular forms as noticed before).

Step 1. Twist distributions and polynomials by finite order characters. In [CHJ17, §3.1],
replace the Qp-vector space of powerbounded ps-locally analytic functions As,◦

k on Zp with the
Qp-vector space As,◦

ν , which coincides with A
s,◦
k as Qp-vector space, but the right ∆0(p)-actions

is defined by replacing the automorphic factor x 7→ (cx+d)k−2 with x 7→ ψν(cx+d)(cx+d)
kν−2.

Equip then the linear dual Ds,◦
ν with the dual left action as in [CHJ17, §3.1] (here, working in

the ordinary setting, one could even use measures instead of locally analytic distributions, but
the modifications required to adapt the notation in [CHJ17] would led to a too long proof).
Similarly, for a ring A, replace the A-module of polynomials Lk(A) with coefficients in A and
degree at most k − 2 with the A-module Lν(A), which coincides with Lk(A) as A-module,
but the left M2(A)-action is twisted by ψν as follows: for f ∈ Lν(A), put

(7.3) (f ·ν γ)(X) = ψν(d)(d + bX)kν−2f

(
c+ aX

d+ bX

)
.

Replace then L ◦
k with L ◦

ν = Lν(Zp) and Lk with Lν = Lν(Qp). Change the map ρk appear-
ing before [CHJ17, Definition 3.2] with the map ρν : Ds,◦

ν → L ◦
ν defined by the integration
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formula

ρν(µ) =

∫

Zp

ψν(x)(1 +Xx)kν−2dµ(x)

with the convention that if ψν is non-trivial, then ψν(x) = 0 for x ∈ pZp, and ψν(x) = 1
otherwise. A standard computation shows that the map ρν is then ∆0(p

m)-equivariant for
m = max{1,mν}:

∫
(1 + xX)kν−2d(γ · µ) =

∫

Zp

ψν(cx+ d)(cx+ d)kν−2

(
1 +

ax+ b

cx+ d
X

)kν−2

dµ(x)

=

∫

Zp

ψν(d)(cx + d+ (ax+ b)X)kν−2dµ(x)

= ψν(d)

∫

Zp

(bX + d+ x(aX + c))kν−2dµ(x)

= ψν(d)

∫

Zp

(bX + d)k−2

(
1 + x

aX + c

bX + d

)kν−2

dµ(x)

=

(∫
(1 + xX)k−2dµ

)
|νγ

where we use that ψν(cx + d) = ψν(d) because γ ∈ ∆0(p
m). We also need to consider twists

at the level of overconvergent distributions as follows. Replace ODs
k(V ) in [CHJ17, §4.5] with

ODs
ν(V ) = (Ds

ν⊗̂QpÔXm(V∞))K1(pm)

where V ∈ (Xm)proét and V∞ = V ×Xm X∞. The integration map ρν gives then a map

ρν : ODs
ν(V ) −→ (Lν⊗̂QpÔXm(V∞))K1(pm),

which is equivariant for the actions of ∆0(p
m) on both sides.

Step 2. Let Am → Xm be the universal QM abelian surface. Define the Zp-modules

Gm = eAm[p∞] and Tm = Tap(Gm), and the sheaf T̂m = Tm ⊗Zp ÔXm . Form the sheaf

V̂ν = Symkν−2(T̂m). As in [CHJ17, Lemma 4.13], by [CHJ17, Lemma 4.1] we obtain a canonical
isomorphism

V̂ν(V ) ≃ (Lν⊗̂QpÔXm(V∞))K1(pm)

for each qcqs V ∈ (Xm)proét; we equip V̂ν with the left ∆0(p
m)-action by γ ·ν x = ψν(d)(γ · x)

for γ =
(
a b
c d

)
, where γ · x denotes the untwisted action considered in [CHJ17, §4.5]. We thus

get a map still denoted ρν : ODs
ν → V̂ν , which is equivariant for the action of ∆0(p

m).
Step 2. Let ωm = eLie(Am/Xm). Then ω = q∗m(ωm) = π∗HT(O(1)) (see [CHJ17, Theorem

2.8]). The Hodge-Tate map gives a map Tm → ωm and we thus obtain a map V̂ν → ω
⊗(kν−2)
m ;

we twist the usual action of ∆0(p
m) on the target by ψν to obtain the sheaf ων so that there

is an equivariant map jν : V̂ν → ων . This map can be described as in [CHJ17, Lemma 4.15]
as follows. For any qcqs open subset V of Xm(0)c, define

ω̂m =
(
ÔXm(V∞)|X∞(0)c

)K1(pm)
.

Let ω̂ν be the sheaf sheaf ω
⊗(kν−2)
m with ∆0(p

m) action twisted by ψν . By [CHJ17, Lemma

4.14], the map f 7→ f · s⊗(kν−2) defines then an isomorphism ω̂ν
∼= ων which is equivariant for

the action of ∆0(p
m). Define a map Lν⊗̂QpÔXm(V∞) → ÔXm(V∞) by Xi 7→ zi. Restricting

to Xm(0)c and taking K1(p
m)-invariants, we thus obtain the explicit description of the map
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jν : V̂ν → ων . By the argument in [CHJ17, Lemma 4.15], we thus obtain a commutative
diagram on which ∆0(p

m) acts equivariantly:

ODs
ν

ρν
��

jν
// ω̂ν

V̂ν .
Xi 7→zis⊗(kν−2)

==④④④④④④④④

Step 3. The Eichler-Shimura map ES in [CHJ17, Definition 4.12] can be factorized for ν ∈ U
as

VU
∼=

//

ESν

))❘
❘❘

❘❘
❘❘

❘❘
❘❘

❘❘
❘❘

❘❘
❘❘

❘❘
❘❘

❘❘
❘❘

❘❘
❘❘

❘❘
❘❘

❘❘
❘❘

❘❘
H1

proét(XCp ,ODs
U )

res
// H1

proét(Xm(0)c,ODs
ν)

jν
��

H1
proét(Xm(0)c, ω̂ν)

��

H0(Xm, ων ⊗ Ω1
XK(pm)

)(−1)

where the unlabeled vertical arrow is the map constructed in [CHJ17, Proposition 5.7] and
res is the canonical restriction composed with the canonical specialization map ODs

U → ODs
ν .

The composite map ESν is surjective by the argument in [CHJ17, Proposition 5.8], and the
result follows by restriction to VI (and multiplicity one) after taking into consideration the
following observation. Recall that the action of ∆0(p

m) on ODU is the dual of the action on
locally analytic distributions As

U given in [CHJ17, §3.1] by the formula

(f ·U γ)(x) = χU (cx+ d)f

(
ax+ b

cx+ d

)

for γ =
(
a b
c d

)
. For each ν ∈ U , this action is equal to the action defined in (7.3) once χU is

defined to be the square of (any choice of) the critical character Θ : Z×
p →֒ I×. �

We now recall an argument in [LZ16, §6.1] to interpret these results in terms of p-adic
Hodge theory. Taking GQp-invariants, and looking at Hodge-Tate weights we obtain, Zariski
generically, an isomorphism

ES :
(
V(1)⊗̂QpCp

)GQp ≃MI⊗̂QpCp.

There is an isomorphism
(
VI(1)⊗̂QpCp

)GQ ≃ (DSen(VI(1)))
Γ

(recall that DSen(M) is defined by means of the functor M 7→ D
†
rig(M) from p-adic GQp-

representations to (ϕ,Γ)-modules). We may fix an isomorphism VI(1) ≃ T ⊗Zp Qp and let

V+
I (1) and V−

I (1) denote the inverse images of T+⊗Zp Qp and T−⊗Zp Qp, respectively, under

this isomorphism. Now,
(
DSen

(
V+

I (1)⊗̂QpCp

))Γ
= 0 and

(
DSen

(
V−

I (1)⊗̂QpCp

))Γ
is equal to(

V−
I (1)⊗̂QpCp

)Γ
because V−

I (1) is unramified, and therefore we obtain an isomorphism

(
VI(1)⊗̂QpCp

)GQp ≃
(
V−

I (1)⊗̂QpCp

)Γ
.

We thus obtain, Zariski generically, an isomorphisms:

(7.4) ES :
(
V−

I (1)⊗̂QpCp

)Γ ≃MI⊗̂QpCp.
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Define the I-module D(T−) = (T−⊗̂ZpẐ
unr
p )GQp . Since T−

κ is unramified, we have

Dcris

(
T−

κ ) = (T−
κ ⊗̂ZpZ

unr
p

)GQp

and therefore we have a canonical map spκ : D(T−)→ Dcris(T
−
κ ).

Theorem 7.2. There exists an isomorphism ηF∞ : D(T−) ∼= I of I-modules such that if ωF∞

is a generator of the I-modules D(T−), then spκ(ωF∞) = ωFκ where ωFκ is a differential form
attached to Fκ.

Proof. We know that the I-module D(T−) is free of rank 1 because the analogue result is
known for the isomorphic Galois representation obtained from elliptic modular forms: see
[LV11, Proposition 6.4] and [Cas20, Lemma 5.1]. Fix a I-basis ωF∞ of the free I-module
D(T−)-module of rank 1. For each ν, ωFν gives a (canonical, up to the choice of ωF∞) choice
of an element in DdR(T

−
ν ). If we extend the coefficients to Cp and identify T⊗Zp Qp with VI,

this is exactly the image of the ν-specialization of the map (7.4) by Theorem 7.2. �

Recall that T is equipped with a perfect I(1)⊗Θ2-valued alternating pairing which induces
a perfect and Galois equivariant pairing of free I-modules of rank 1:

(7.5) T+ ×T− −→ I(1)⊗Θ2.

Define as before the GK -representation T
†
ξ = T

†
|GK
⊗ ξ−1, which we restrict at the decom-

position group at p, obtaining a GQp-representation, still denoted T
†
ξ. Note that the GQp-

representation T
†,+
ξ
∼= I(η−1

v χcycΘξ−1) is unramified. We also define T
†
ξ−1 = T

†
|GK
⊗ ξ. From

the Galois equivariant pairing (7.5) we construct a map

D(T†,−
ξ−1) −→ HomI

(
D(T†,+

ξ ),D (I(χcyc))
)
,

where we put D (I(χcyc)) =
(
(I⊗ χcyc) ⊗̂ZpZ

unr
p

)GQp . In particular, the element ωF∞ of

D(T−) gives rise to a map

ω∞ : (−, ωF∞ ⊗Θ−1ξ) : D(T†,+
ξ ) −→ D (I(χcyc))

which is given, as indicated, by pairing with the class ωF∞ and twisting by the Galois character
Θ−1ξ.

We now compare with the de Rham pairing for the representations T
†,+
ξν

. Since T
†,+
ξν

and

T−
ν are unramified, D(T†,+

ξν
) ∼= DFν ,⋆(T

†,+
ξν

) and D(T−
ν )
∼= DFν ,⋆(T

−
ν ) for ⋆ = dR or ⋆ = cris.

We thus get a commutative diagram:

D(T†,+
ξ )

ω∞
//

spν
��

D (I(χcyc))

��

DdR(T
†,+
ξν

)
ων

// DdR (Fν(χcyc)) ,

where the map ων is given by pairing agains the class ωFν ⊗ (Θ−1
ν ξν). When ν has weight

2, define the twisted modular form F∗
ν = Fν ⊗ ϑ−1

ν (recall that ϑν is the Dirichlet character
of Fν in this case). Then the map ων is actually given by pairing with the differential form
ωF∗

ν
⊗ ξν associated with F∗

ν , further twisted by ξν . Fix a compatible sequence (ζpn)n≥1 of
p-power roots of unity; so for each integer n ≥ 1, ζpn is a primitive pn-th root of unity such
that ζp

pn+1 = ζpn . This choice defines a generator of Qp(j), denoted ej . Let t denote Fontaine’s

p-adic analogue of 2πi, defined, e.g. in [Kat91, Ch. II, §1.1.15]. Then δr = t−r ⊗ er is a
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generator of the 1-dimensional Fν,φ-vector space DdR

(
Fν,φ(χ

r
cyc))

)
. Having fixed this basis,

the above diagram becomes:

(7.6) D(T†,+
ξ )

ω∞
//

spν
��

D (I(χcyc))

��

DdR(T
†,+
ξν

)
ων

// Fν .

Consider now the Galois group G = Gal(K∞/F ). Let φ : G → Q
×
p be the p-adic avatar of a

Hecke character of Archimedean type (r,−r) for an integer r ∈ Z. Then φχ−r
cyc is unramified

at p. For any GQp-representation V , denote V (φ) the twist of V by φ. Fix a basis ωφχ−r
cyc

of

the 1-dimensional Fν,φ-vector space DdR

(
Fν,φ(φχ

−r
cyc))

)
. One defines (see for example [Cas20,

page 2144]) a map ψφ : Zp[[G]] → DdR

(
Fν,φ(φχ

−r
cyc))

)
setting ψφ(σ) = (φχ−r

cyc)(σ)ωφχ−r
cyc

on

group-like elements. From this we construct a map

spν,φ : D(T†,+
ξ )⊗̂ZpZp[[G]] −→ DdR(T

†,+
ξν

(φ))

setting spν,φ = spν ⊗ ψφ(x)⊗ δr, where we use the description if the right hand side in terms

of DdR(T
†,+
ξν
⊗Fν Fν,φ), DdR(Fν,φ(φχ

−r
cyc))) and DdR(Fν,φ(χ

r
cyc))). We thus get from (7.6) a

commutative diagram:

(7.7) D(T†,+
ξ )⊗̂ZpZp[[G]]

ω∞
//

spν,φ
��

D (I(χcyc)) ⊗̂ZpZp[[G]]

spν,φ

��

DdR(T
†,+
ξν

(φ))
ων⊗φ−1

// Fν,φ.

7.2. The big Perrin-Riou map. Recall that we still denote ξ : GK → I× the Galois char-

acter associated with ξ : K×\K̂× → I×. Define as before the Galois character Ψ: GKp
→ I×

by Ψ = η−1
v χcycΘξ−1. Let Frobp ∈ GK be an arithmetic Frobenius at p; for each arithmetic

character ν : I → Qp, let Ψν = ν ◦ Ψ. Since k ≡ 2 mod 2(p − 1) and, identifying Galois and

adelic character, accordingly with convenience, χcyc(ip(p)) = NK(ip(p)
−1)(ip(p)

−1), a simple
computation shows that Ψ(Frobp) = a−1

p ξ(ip(p)), and therefore Ψν(Frobp) = ν(ap)
−1ξν,p(p)p.

Set j = Ψ(Frobp) − 1 ∈ I. Define J = (j, γcyc − 1) to be the ideal of I generated by
j and γcyc − 1, where γcyc is a fixed topological generator of Γcyc. Say that an arithmetic

morphism ν : I → Qp is exceptional if its signature is (2,1), where 1 is the trivial character,
and Ψν(Frobp) = 1, so that j = 0.

Let φ : G → Q
×
p be a character of Hodge–Tate type of Hodge–Tate weight w and conductor

pn for some integer n ≥ 0. Write φ = χw
cycφ

′ for some unramified character φ′. For each ν we
may consider the 1-dimensional (over Fν) representation V (Ψν) = Fν(Ψν) and its crystalline
Dieudonné module Dcris(V (Ψν)). The crystalline Frobenius acts then on Dcris(V (Ψν)) by
Φν = Ψ−1

ν (Frobp) ([BC09, Lemma 8.3.3]). Define Ep(φ, ν) by

Ep(φ, ν) =
{

1−pwφ′(Frobp)Φν

1−(pw+1φ′(Frobp)Φν)−1 , if n = 0,

ǫ(φ−1) · Φn
ν , if n ≥ 1,

where, for any Hodge–Tate character ψ : Gal(Qab
p /Qp)→ Q

×
p , ǫ(ψ) is the ǫ-factor of the Weil–

Deligne representation Dpst(ψ); we adopt the convention in [LZ14, §2.8] for ǫ-factors, and we
refer to loc. cit. for a careful discussion.

If φ : G → Qp is a character of Hodge–Tate type with Hodge–Tate weight w ≤ −1, then the

finite subspace H1
f (F,T

†,+
ξν

(φ−1)) of H1(F,T†,+
ξν

(φ−1)) coincides with H1(F,T†,+
ξν

(φ−1)); the
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Bloch–Kato logarithm for V †
ν,φ gives rise to a map

log : H1(F,T†,+
ξν

(φ−1)) −→ DdR(T
†,+
ξν

(φ−1)).

By [Cas20, Theorem 3.7], there exists an injective I[[G]]-linear map

Log : H1
Iw(Γ∞,T

†,+
ξ ) −→ λ−1 · J · (D(T†,+

ξ )⊗̂ZpÔF∞ [[G]])

where ÔF∞ is the completion of the valuation ring OF∞ of F∞, such that for each non-
exceptional ν : I → Oν and each non-trivial Hodge–Tate character φ : G → L× of conductor
pn and Hodge–Tate weight w ≤ −1 as above, the following diagram commutes:

(7.8) H1
Iw(Γ∞,T

†,+
ξ )

Log
//

spν,φ−1

��

λ−1 · J · (D(T†,+
ξ )⊗̂ZpÔF∞ [[G]])

spν,φ−1

��

H1(F,T†,+
ξν

(φ−1)))

(−1)−w−1

(−w−1)!
log Ep(φ,ν)

// DdR(T
†,+
ξν

(φ−1))).

Combining Diagrams (7.8) and (7.7), the argument in [Cas20, Proposition 5.2] shows that

exists an injective ĨW -linear map

(7.9) LΓ∞
ωF∞

: H1
Iw(Γ∞,T

†,+
ξ ) −→ Ĩ[[Γ∞]]

with pseudo-null kernel and cokernel, such that for all characters φ : Γ∞ → Qp of Hodge–Tate

type, with Hodge–Tate weight w ≤ −1 and conductor pn, all Y ∈ H1
Iw(Γ∞,T

†,+
ξ ) and all

non-exceptional ν we have

spν,φ−1

(
LΓ∞
ωF∞

(Y)
)
=

(−1)−w−1

(−w − 1)!
· E(φ, ν) · (ων ⊗ φ)

(
log(spν,φ−1(Y))

)
.(7.10)

7.3. p-stabilizations. Let νk be an arithmetic morphism corresponding to a p-stabilized form

Fk = Fνk in Mk(N
+p,O), and let F ♯

k be the form in Mk(N
+,O) whose ordinary p-stabilization

is Fk. Let ξ̂k = ξνk and define the GK -representation V †
F♯

k,ξk
= V †

F♯
k

⊗ ξ̂−1
k ; let L be the field of

definition of V †
F♯

k,ξk
, OL its valuation ring and Ôunr

L the completion of its maximal unramified

extension. We consider the Perrin-Riou logarithm map

LogF♯
k,ξk

: H1
Iw(Γ∞, V

†,+
F♯

k ,ξk
) // Ôunr

L [[Γ∞]][1/p]⊗̂DdR(V
†,+
F♯

k ,ξk
)

constructed in this setting in [Mag22, §7.1.1] (see also [CH18a, §5.3, Theorem 5.1]). Let

pr∗ = pr∗1 −
pr∗2
α and let ωF♯

ν ,φ
be such that pr∗(ωF♯

ν ,φ
) = ωFν,φ. Pairing against the class

ωF♯
ν ,φ

:= ωF♯
ν
⊗ ωφ−1χr

cyc
⊗ δr gives then a map

(7.11) LΓ∞

F♯
k,ξk

: H1
Iw(Hcp∞,P, V

†,+
F♯

k ,ξk
) −→ Ôunr

L [[Γ∞]][1/p].

Composing the map LΓ∞
ωF∞

in (7.9) with the specialization map we obtain a second map

LΓ∞

Fk,ξk
: H1

Iw(Hcp∞,P,T
†,+
ξk

) −→ Ôunr
L [[Γ∞]][1/p].

Lemma 7.3. LΓ∞

Fk,ξk
= LΓ∞

F♯
k,ξk
◦ pr∗.
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Proof. Put Log = LogFk,ξk
, Log♯ = LogF♯

k ,ξk
, ω = ωFν ,φ, ω

♯ = ωF♯
ν ,φ

to simplify the notation.

We have 〈Log(x), ω〉dR = 〈Log(x),pr∗(ω♯)〉dR and since pr∗ is adjoint to pr∗ we also have
〈Log(x),pr∗(ω♯)〉dR = 〈pr∗Log(x), ω〉. By [Ota20, Corollary 5.8] we have

(
(pr1)∗
(pr2)∗

)
eord =

1

α− β

(
α(pr1)∗ − (pr2)∗
αβ(pr1)∗ − β(pr2)∗

)
.

So pr∗ ◦ eord = pr∗. It follows that pr∗Log(x) = Log♯(pr∗(x)) and the result follows. �

8. p-adic families of Heegner points

8.1. Families of Heegner points. Denote χcyc : Gal(Q/Q)→ Z×
p the cyclotomic character,

and let ϑ : Gal(Q/Q(
√
p∗)) → Z×

p /{±1} be the unique character which satisfies ϑ2 = χcyc,

where p∗ = (−1) p−1
2 p (see [LV11, §4.4] for details). For integers n ≥ 0 and m ≥ 1, define

Lcpn,m = Hcpn(µpm). Recalling the notation in §2.6, define P̃cpn,m = x̃cpn,m(1). These points
are known to satisfy the following properties:

(1) P̃cpn,m ∈ X̃m(Lcpn,m);

(2) P̃ σ
cpn,m = 〈ϑ(σ)〉 · P̃cpn,m for all σ ∈ Gal(Lcpn,m/Hcpn+m);

(3) Vertical compatibility : if m > 1, then
∑

σ α̃m(P̃ σ
cpn,m) = Up · P̃cpn,m−1, where the sum

is over all σ ∈ Gal(Lcpn,m/Lcpn−1,m) and α̃m : X̃m → X̃m−1 is the canonical projection
map;

(4) Horizontal compatibility : if n > 0, then
∑

σ P̃
σ
cpn,m = Up · P̃cpn−1,m, where the sum is

over all σ ∈ Gal(Lcpn,m/Lcpn−1,m).

Remark 8.1. See [CL16, Theorem 1.2] for a proof of the above properties; in loc.cit only the
case of definite quaternion algebras and c = 1 is treated, but it is easy to see that the proof,
which combines results in [LV11] and the description of optimal embeddings in [CH15], works
in this generality as well.

8.2. Big Heegner points. Fix an integer c ≥ 1 prime to DKNp. Recall from §2.6 the family

of points P̃cpn+m,m in X̃m

(
Lcpn+m,m

)
and from §6.2 the Jacobian variety J̃m of X̃m. Write

Z×
p = ∆× (1 + pZp) with ∆ ∼= (Z/pZ)× and let ek−2 denote the projector

ek−2 =
1

p− 1

∑

δ∈∆
ω−(k−2)(δ)[δ] ∈ Zp[Z

×
p ].

By [LV11, (42)], Θ(σ) = 〈ϑ(σ)〉 for all σ ∈ Gal(Lcpn+m,m/Hcpn+m), as endomorphisms of

(ek−2 · eord) · J̃m(Lcpn+m,m), and therefore, using that Up has degree p (cf. [LV11, §6.2]),
projecting to the ordinary submodule gives points

Pcpn+m,m = (ek−2 · eord) · P̃cpn+m,m ∈ H0
(
Hcpn+m, J̃ord

m (Lcpn+m,m)†
)
,

where J̃ord
m (L) = eord · J̃m(L) for any extension L/Q, and for any Gal(Q/Q)-module M , we

denote M † the Galois module M ⊗Θ−1. Corestricting from Hcpn+m to Hcpn , we obtain classes

Pcpn,m ∈ H0
(
Hcpn , J̃

ord
m (Lcpn+m,m)†

)
.

Composing the (twisted) Kummer map we obtain classes Xcpn,m in H1(Hcpn,Ta
ord
p (J̃m)†)

(where Taordp (J̃m) = eord Tap(J̃m)) and then, using the trace-compatibility properties enjoyed

by the collection of points P̃cpn+m,m recalled in §2.6, we may define a class

Xcpn = lim←−
m

U−m
p Xcpn,m ∈ H1(Hcpn,T

†).
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Under the assumption that p does not divide the class number of K, using the properties of

the points P̃cpn+m,m once again, we also may define Iwasawa classes

Xcp∞ = lim←−
n

U−n
p Xcpn ∈ H1

Iw(Hcp∞/Hc,T
†) := lim←−

n≥0

H1(Hcpn ,T
†),

where the inverse limit is taken with respect to the corestriction maps. Since P in totally
ramified in the extension Hcp∞/Hc, we have Gal(Hcp∞/Hc) ∼= Γ∞, so we can write

Xcp∞ ∈ H1
Iw(Γ∞,T

†).

Recall now the notation fixed in §6.3, and let ξ be the character of conductor c constructed in
loc. cit. We may thus consider the class

Xξ := Xcp∞ ⊗ ξ−1 ∈ H1
Iw(Γ∞,T

†
ξ).

Let Γ̃∞ = Gal(Hcp∞/K). Taking corestriction we get a class

(8.1) Zξ = corHc/K (Xξ) ∈ H1
Iw(Γ̃∞,T

†
ξ) := lim←−

n≥−1

H1(Hcpn,T
†
ξ)

where Hcp−1 := K. Under the condition that the residual Galois representation ρ̄ attached to

the Hida family f∞ is ramified at all primes dividing N−, one can prove that Xcpn belongs to
the Greenberg Selmer group (see [CW22, Proposition 4.5]).

8.3. Geometric p-adic L-function attached to big Heegner points. Recall the big

Perrin-Riou map LΓ∞
ωF∞

in (7.9) and define LΓ̃∞
ωF∞

= ̺ ◦ LΓ∞
ωF∞

, where ̺ : Ĩ[[Γ∞]] → Ĩ[[Γ̃∞]]

is the map arising from the canonical map Γ∞ →֒ Γ̃∞. Since p is split in K, resP(Xξ) belongs

to H1
Iw(Γ∞,T

†,+
ξ ) by [How07, Proposition 2.4.5], so the following definitions make sense.

Definition 8.2. L
geo
I,ξ = LΓ̃∞

ωF∞
(resP(Zξ)) is the geometric anticyclotomic p-adic L-function

attached to the family F∞.

9. Reciprocity law for big Heegner points

The goal of this section is to derive an explicit reciprocity law for higher weight specialization
of big Heegner points using a reciprocity law for weight 2 specializations; this strategy has
been successively used in a series of paper ([Cas20], [Cas13], [CL16]).

9.1. Coleman integration on Shimura curves.

9.1.1. Rigid analytic Shimura curves. Recall the Shimura curves X̃m for integers m ≥ 0, viewed

as Zp-schemes, and denote X̃rig
m the rigid analytic space over Qp associated with X̃m; if m = 0

we simply write Xrig
0 for X̃rig

0 . Also recall that we denote X ord
0 = X0[1/H̃a] the ordinary

locus of X0: the rigid analytic space Xord,rig
0 associated with X ord

0 is the complement in Xrig
0

of residue disks Dx corresponding to supersingular points x in the special fiber of X ord
0 (we

refer e.g. to [Buz97, §3] for the notion of supersingular abelian surface with quaternionic
multiplication).

For any real number 0 ≤ ε < 1, denote X−
0 (ε) the open rigid analytic subspace of Xrig

0

defined by the condition |H̃a| > |p|ε; we view X−
0 (ε) as defined over any field extension

L/Qp in which there exists an element x ∈ L with |x| = |p|ε. For any integer m ≥ 1, let
εm = 1

pm−2(p−1)
; then X−

0 (εm) is defined over Qp(ζpm), and later we will adopt the same

symbol for their base change to finite field extensions L of the cyclotomic field Qp(ζpm). By
[Bra13, Proposition 6.30], any point x = (A, ι, α) in X−

0 (εm) admits a canonical subgroup
Cpm ⊆ A[pm] of order p2m (see [Bra13, §3] for the notion of canonical subgroup in this setting;
see also [Kas04, §10] and [Sch15, §3.2] for related results).
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Let αm : X̃m → X0 denote the forgetful map. Define W1(p
m) (respectively, W2(p

m)) to

be the open rigid analytic subspace of X̃rig
m whose closed points corresponds to QM abelian

surfaces with level structure x = (A, ι, α, β) where:

• (A, ι) is a QM abelian surface equipped with a V0(N
+)-structure α;

• β : µpm → eCpm is an isomorphism, where as before, we indicate Cpm ⊆ A[pm] the

canonical subgroup of A of order p2m; thus, β(ζpm) is a generator of eCpm ;
• αm(x) belongs to X−

0 (εm) (respectively, X−
0 (εm+1)).

We thus have a chain of inclusions of rigid analytic spaces W1(p
m) ⊆ W2(p

m) ⊆ Xrig
m .

The Deligne-Tate map φ : X−
0 (εm+1) → X−

0 (εm) is defined by taking quotients by the
canonical subgroup, i.e. we put φ(A, ι, α) = (A0, ι0, α0) where A0 = A/Cp, and Cp ⊆ A[p]
denotes as before the canonical subgroup of A of order p2, and if φ : A→ A/Cp is the canonical
isogeny, ι0 is the polarization induced by ι and φ, and α0 is the V1(N

+)-level structure induced
by α and φ. The map φ̄ induced by φ on the special fibers of X−

0 (εm+1) and X−
0 (εm) coincides

with the Frobenius map Frobp, and so φ : X−
0 (εm+1)→ X−

0 (εm) is also called Frobenius map.
The map φ thus obtained can be lifted to a map (denoted with the same symbol and also
called Frobenius map)

(9.1) φ :W2(p
m) −→W1(p

m)

setting φ(A, ι, α, β) = (A0, ι0, α0, β0) where β0 : µpm → A/Cp sends ζpm to φ(Pm+1) where
Pm+1 ∈ Cpm+1 satisfies pPm+1 = Pm = β(ζpm).

9.1.2. Semistable models and rigid de Rham cohomology. We denote by Ym the proper, flat,

regular balanced model of X̃m over Z[ζpm ]. The special fiber of Ym is the union of a finite
number of reduced Igusa curves over Fp, meeting at their supersingular points, and two of
these components, denoted Ig∞ and Ig0, are isomorphic to the Igusa curve Igm,1 over Fp; we
let Ig∞ denote the connected component corresponding to the canonical inclusion of Igm,1 into
Ym⊗Z[µpm ]Fp. We have an involution wζpm attached to the chosen pn-root of unity ζpm which

interchanges the two components Ig∞ and Ig0 (see [Mor81] and its generalization to totally
real fields in [Car86]).

Remark 9.1. The results of Carayol [Car86] formally exclude the case under consideration
when the fixed totally real number field F is equal to Q, but refers to the paper of Morita
[Mor81] for this case. A proof of these facts can also be obtained by a direct generalization of
the arguments in [Buz97, Theorem 4.10] which considers the case m = 1.

Let L be a finite extension of Qp(ζpm) where Ym acquires semistable reduction. Let OL

be the valuation ring of M and kL its residue field. We denote ̟ : Ym → Ym ⊗Zp[ζpm ] OL a
semistable model of Ym over OL. Let Gm denote the dual graph of the special fiber Ym of Ym;
the set V(Gm) of vertices of Gm is in bijection with the irreducible components of the special
fiber Ym of Ym, and the set E(Gm) of oriented edges of G is in bijection with the singular
points of Ym, together with an ordering of the two components which intersect at that point.
Given v ∈ V(Gm), let Yv denote the associated component in Ym, and let Ysm

v denote the
smooth locus of Yv. Let red : Ym(Cp) → Ym(Fp) be the canonical reduction map. For any

v ∈ V(Gm), letWv = red−1(Ym(Fp) denote the wide open space associated with the connected

component Yv, and let Av = red−1(Ysm
m (Fp) denote the underlying affinoid Av ⊆ Wv. If

e = (s(e), t(e)) ∈ E(Gm) is a edge, then We = Ws(e) ∩ Wt(e) is equal to red−1({xe}), where
{xe} = Ys(e) ∩Yt(e). The set {Wv : v ∈ V(Gm)} form an admissible cover of the rigid analytic

space Ym(Cp) = X̃m(Cp) by wide open subsets. Let d : O(V) → Ω1
rig(V) be the differential

map for any wide open V, where O = Orig
Ym

is the sheaf of rigid analytic functions on Ym and

Ω1
rig the sheaf of rigid 1-forms; the de Rham cohomology group can be described as the set of
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hyper-cocycles

(ω = {ωv}v∈V(Gm), {fe}e∈E(Gm)) ∈
∏

v∈V(Gm)

Ω1(Wv)×
∏

e∈E(Gm)

OWe

such that dfe = ωt(e) − ωs(e) and fē = −fe for each e = (s(e), t(e) ∈ E(Gm) (where for
each e = (s(e), t(e)), we let ē = (t(e), s(e))) modulo hyper-coboundaries, which are elements
of the form (dfv, ft(e) − fs(e)) for a set {fv}v∈V(Gm) of functions fv ∈ OWv . For each edge

e = (s(e), t(e)), we have an annular residue map resWe : Ω
1
Ym

(We)→ Cp defined by expanding

a differential form ω ∈ Ω1
Ym

(V) as ω =
∑

n∈Z ant
ndt for a fixed uniformizing parameter t on

We and setting resWe(ω) = a−1. We say that a class ω ∈ H1
dR(Ym) is pure if it has vanishing

annular residues for all v ∈ V(Gm). For pure classes ω = (ωv, fg), η = (ηv, gv) the de Rham
pairing 〈ω, η〉dR is computed by the formula

(9.2) 〈ω, η〉dR =
∑

e=(s(e),t(e))∈E(Gm)

resWe(Feηs(e))

where Fe is an analytic primitive of the restriction to We of ωs(e), which exists because ωv

has vanishing annular residues for all v ∈ V(Gm), and is well defined up to a constant (and
since ηv has also vanishing annular residue at v, the value of the pairing is independent of this
choice). See [CI10, §3.5] (or [DR17, §3.1]) for more details.

The birational map ̟ : Ym → Ym⊗Zp[ζpm ]OL induces an isomorphism between the generic
fibers; it also induces an isomorphism between two of the components of the special fiber Ym

of Ym with Ig∞ ⊗Fp kL and Ig0 ⊗Fp kL: we denote Ig∞ and Ig0 these two components of

Ym. Let W∞(pm) = red−1(Ig∞) and W0(p
m) = red−1(Ig0) be the corresponding wide open

subsets with associated underlying affinoids A∞(pm) and A0(p
m), respectively. The L-valued

points of the rigid anaytic space A∞(pm) are in bijection with quadruplets (A, ι, α, β) where
(A, ι) is a QM abelian surface, α is a V0(N

+)-structure and β : µpm → eCpm is an isomorphism

(as before, we indicate Cm ⊆ A[pm] the canonical subgroup of A of order p2m). The L-vector
spaces

H1
rig(W∞(pm)) =

Ω1
rig(W∞(pm))

dOW∞(pm)
,

H1
rig(W0(p

m)) =
Ω1
rig(W0(p

m))

dOW0(pm)

are equipped with a canonical action of Hecke operators Tℓ for primes ℓ ∤ Np, and with canoni-
cal L-linear Frobenius endomorphisms defined by choosing characteristic zero lifts Φ∞ and Φ0

of the Frobenius endomorphism in characteristic p to a system of wide open neighborhoods of
the affinoids A∞(pm) inW∞(pm) and A0(p

m) inW0(p
m), respectively. In the case of Shimura

curves, we take Φ∞ = φ and Φ0 = wζmp ◦ Φ∞ ◦ wζpm , where wζpm is the Atkin-Lehner invo-

lution associated with the choice of ζpm which interchanges the two wide opens W∞(pm) and
W0(p

m).
Let

resW : H1
dR(Ym) −→ H1

rig(W) =
Ω1
rig(W)

dOW
be the restriction map, where W is an admissible wide open space obtained as inverse image
via the reduction map of an irreducible component of the special fiber of Ym; in particular we
have the two maps res∞ = resW∞(pm) and res0 = resW0(pm). Let H1

dR(Ym)prim be the subspace
of the de Rham cohomology of Ym associated with the primitive subspace of the L-vector space
of modular forms of weight 2 and level N+pm, and H1

rig(W)pure is the subspace generated by

pure classes of rigid differentials (i.e. those classes with vanishing annular residues, as before),
for W =W∞(pm) and W =W0(p

m).
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Proposition 9.2. The restriction maps res∞ and res0 induce an isomorphism of L-vector
spaces

res = res∞ ⊕ res0 : H
1
dR(Ym)prim ≃ H1

rig(W∞(pm))pure ⊕H1
rig(W0(p

m))pure

which is equivariant with respect to the action of Hecke operators Tℓ for ℓ ∤ Np on both sides,
the Frobenius endomorphism Φ acting on the LHS and the Frobenius endomorphism (Φ∞,Φ0)
acting on the RHS.

Proof. The proof of these results can be obtained as in [BE10, §4.4] using a generalization
of [Col97, Theorem 2.1] to the case of Shimura curves. This generalization does not present
technical difficulties and is left to the interested reader. �

Fix a finite set of points S of Ym(Cp) which reduce to smooth points in Ym(Fp). The residue
disk DQ of each Q ∈ S (defined as the set of points of Ym(Cp) whose reduction is equal to the
reduction of Q) is conformal to the open unit disk D ⊆ Cp because red(Q) is smooth, and we

may fix an isomorphism ϕQ : DQ
∼→ D of rigid analytic space which takes Q to 0. For each

Q ∈ S, fix a real number rQ < 1 which belongs to the set {|p|m : m ∈ Q}. Let VQ ⊆ DQ be
the annulus consisting of points x ∈ DQ such that rQ < |ϕQ(x)|p < 1; define the orientation
of VQ by choosing the subset {x ∈ DQ : |ϕ(x)|p ≤ rQ} of the set DQ − VQ, which consists in
two connected components. We may then consider the affinoid

AS = Ym(Cp)−
⋃

Q∈S
DQ

and the wide open neighborhood

WS = AS ∪
⋃

Q∈S
VQ

of AS, so that AS is the underlying affinoid of WS . We also put

W̃∞ =W∞(pm)−
⋃

Q∈S
(DQ − VQ),

W̃0 =W0(p
m)−

⋃

Q∈S
(DQ − VQ).

For a Hecke module M , denote M [F ] the eigencompnent corresponding to an eigenform F . Let

YS = Ym−S and let F be a weight 2 newform on X̃m. An excision argument from Proposition
9.2 shows that the canonical restriction map res = (res0, res∞) induces an isomorphism

(9.3) res : H1
dR(YS/L)[F ]

≃−→ H1
rig(W̃∞)[F ] ⊕H1

rig(W̃0)[F ].

Moreover, again from Proposition 9.2, a class in H1
dR(YS/L)[F ] is the restriction of a class of

H1
dR(Ym) if and only if it can be represented by a pair of differentials ω̃∞ ∈ Ω1

rig(W̃∞) and

ω̃0 ∈ Ω1
rig(W̃0) with vanishing annular residues. If ω and η are classes in H1

dR(Ym)prim, denote

ω∞ = res∞(ω), ω0 = res0(ω), η∞ = res∞(η), η0 = res0(η). Let F∞|VQ
be any solution of the

differential equation dF = ω∞ on VQ, and let F0|VQ
be any solution of the differential equation

dF = ω0 on VQ. It follows from (9.2) that for each ω, η ∈ H1
dR(Ym)[F ] we have

(9.4) 〈η, ω〉dR =
∑

V⊆W̃∞

resV(F∞|V · η∞|V) +
∑

V⊆W̃0

resV(F0|V · η0|V)

where the sum is over all annuli V.
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9.1.3. Coleman primitives. Fix a Zp-algebra R and an ordinary modular form F of weight

2 in M2(N
+, pm, R), and recall that we denote ωF ∈ H0(X̃m(R), ω⊗2

m,R) the global section

corresponding to F . Let x = (A, ι, α, P ) be a point of X̃m which reduces to a smooth point
x̄ = (A, ῑ, ᾱ) in the special fiber of X0, where A = A ⊗R k and the polarization ῑ and the
level structure ᾱ and induced by ι and α, respectively (here A is defined over R and k is the
residue filed; we write simply P for (H,P )). Fix a Zp-basis {xA, x′A} of Tap(A) such that xA
is a Zp-basis of eTap(A) and ex′A = 0. As in §3.3, we consider the formal differential form

ω̂x := ωxA
obtained by pull-back of dT/T along the map Âx̄ → Gm, where Âx̄ is the formal

group associated with the universal object Ax̄ (see §4.2). Let Dx be the residue disk of x̄ in

X̃m, defined to be the set of points of the associated rigid analytic space whose reduction is
equal to x̄. Using the Serre-Tate coordinates around A associated with the choice of the basis
{xA, x′A}, we may write on Dx

(9.5) ωF = F(Tx)ω̂x.

We further simplify the notation and write (B, t) with t = (ι, α) for a test object where B
is an ordinary QM abelian surface over a Zp-algebra R which reduces to A, equipped with a
principal polarization ι and la U0(N

+)-level structure α; we also let (B, t, P ) be a test object
in which (B, t) is as before and defined over a p-adic ring R, and P is a pm-torsion point in

Cpm ⊆ B[pm]. Let finally Dφ
x = φ(Dx) be the residue disk in X̃m of φ̄(x) = (AFrob, t′) with

t′ = (ι′, α′), where the polarization ι′ and the level structure α′ are induced by ι and α and
the Frobenius map Frob = φ̄.

Lemma 9.3. φ∗(ωF ) = pωVF .

Proof. The operator V is described by the formula (using the previous notation)

V F(B, t, P ) = F(B0, t0, P0)

where:

• B0 = B/Cp is the quotient by the canonical subgroup;
• t0 = (ι0, α0, P0) where ι0 and α0 are induced by the quotient map φ : B → B0 from ι

ad α respectively, and P0 is the p-th root of P in Cpm+1 .

From this and (9.5) we thus have

φ∗(ωF ) = (VF)(Tx)φ
∗(ω̂φ̄(x)).

On the other hand, φ∗(ω̂φ̄(x)) = pωx by [Kat81, Lemma 3.5.1] (see also [HB15, Lemmas 4.4,

4.11]), concluding the proof. �

Let ap denote its Up-eigenvalue of F and define the polynomial L(X) = 1− ap
p X.

Proposition 9.4. (1) There exists a locally analytic function F∞ on W∞(pm), unique
up to a constant, such that dF∞ = ωF on W∞(pm) and L(φ∗)F∞ is a rigid analytic
function on a wide open neighborhood W∞ of A∞(pm) contained in W∞(pm).

(2) Let φ̃ = wζpm ◦φ◦wζpm . There exists a locally analytic function F0 on W0(p
m), unique

up to a constant, such that dF0 = ωF on W0(p
m) and L(φ̃∗)F0 is a rigid analytic

function on a wide-open neighborhood W0 of wζpm X̃m(0) in W0.

Proof. (1) InW∞ = φ−1(W∞(pm)∩W1(p
m)) we have L(φ∗)ωF = 0 by Lemma 9.3; moreover,

L(φ∗) induces an isomorphism of the sheaf of locally analytic functions on W∞(pm) because
the (complex) absolute value of ap is p1/2. Then (1) follows from [Col94, Theorem 8.1], using
[Kat73, Proposition 3.1.2] (see also [CI10, Lemma 5.1]) to check the condition on regular
singular annuli. For (2), apply (1) to wζmp ωF . �
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Definition 9.5. The functions F∞ and F0 in Proposition 9.4 are the Coleman primitives of
F on W∞(pm) and W0(p

m), respectively.

Note that (1) of Proposition 9.4 says that L(φ∗)F∞ is overconvergent. More precisely, for
any integer m ≥ 1 and any real number 0 ≤ ε < εm, let Xm(ε) denote the affinoid subdomain

ofW1(p
m) consisting of those points x such that |H̃a(αm(x))| ≥ |p|ε; to complete the notation,

when m = 0 and 0 ≤ ε < 1, we also denote X0(ε) the affinoid subdomain of Xrig
0 defined by

the condition |H̃a| ≥ |p|ε, so that X−
0 (ε) ⊆ X0(ε). For any integer k and any integer m ≥ 0,

define the Cp-vector space of overconvergent modular forms of weight k pm X̃m to be

Moc
k (X̃m) = lim←−

ε

H0
(
Xm(ε), ω⊗k

m,Cp

)

where 0 ≤ ε < εm with ε approaching εm. Then we have L(φ∗)F∞ ∈Moc
k (X̃m).

The proof of [Col94, Theorem 10.1] shows that d(L(φ∗)(F∞) = L(φ∗)ωF ; on the other hand,

L(φ∗)ωF = ωF [p], where recall that F [p] = F − apV F . Define the overconvergent modular
form

d−1ωF [p] = L(φ∗)(F∞).

Then L(φ∗)−1d−1ωF [p] = F∞. Note that the definition of d−1ωF [p] depends on the choice of a
constant defining F∞, which we fix as follows.

Pick a point x∞ in the wide open neighborhood W∞ of A∞(pm) appearing Proposition 9.4;
accordingly with our definitions, red(x∞) = (x̄∞, β) belongs to Ig∞(Fp), so we may consider
the Tx∞-expansion F(Tx∞) of F at x∞ associated with the choice of a basis {xA, x′A} of Tap(A)

coming from β as described in §4.2. The Tx∞-expansion of F [p] is then

F
[p](Tx∞) =

∑

p∤n

αnT
n
x∞

for suitable elements αn ∈ Zunr
p and n ≥ 0 ([HB15, Proposition 4.17] and [Bur17, Lemma

5.2]). Define

(9.6) d−1
F

[p](Tx∞) =
∑

p∤n

αn

n+ 1
T n+1
x∞

.

We may then normalize the choice of F∞ by imposing that the Tx∞-expansion of d−1ωF [p] is
that in (9.6); more precisely, we introduce the following:

Definition 9.6. Let d−1F [p]
x∞ denote the unique overconvergent modular form such that:

• d(d−1F [p]
x∞) = F [p];

• The Tx∞-expansion of d−1F [p]
∞ is equal to d−1

F
[p](Tx∞).

The previous definition fixes the choice of d−1ωF [p] and, consequently, of F∞, to be d−1F [p]
x∞ .

Note that in the residue disk of x∞ we have d−1F [p]
x∞ = d−1

F
[p](Tx∞)ω̂x∞.

Definition 9.7. We say that the Coleman primitive F∞ in W∞(pm) appearing in Definition
9.5 vanishes at x∞ if the choice of the constant is normalized as in (9.6).

With these definitions, if F∞ vanishes at x∞, we have

(9.7) d−1F [p]
x∞

= L(φ∗)F∞.
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9.1.4. Logarithmic de Rham cohomology. Let L0 be the maximal unramified extension of L.

The work of Hyodo-Kato [HK94] equips the L-vector space H1
dR(X̃m/L) with a canonical

L0-subvector-space

H1
log-cris(Ym) −֒→ H1

dR(X̃m/L)

equipped with a semi-linear Frobenius operator ϕ; by the results of Tsuji [Tsu99], there is a
canonical comparison isomorphism DdR(Vm)⊗QpL ≃ H1

dR(Xm/L) of filtered ϕ-modules, where

Vm = H1
ét(X̃m ⊗Q Q,Qp). For a Hecke module M , let us denote M [F ] the eigencomponent

corresponding to the eigenform F ; we also denote FF ⊆ Qp the Hecke field of F inside
the algebraic closure of Qp. We then have a canonical isomorphism of L0 ⊗Qp FF -modules

Dcris(VF ) ≃ H1
log-cris(Ym)[F ] compatible with the ϕ-action which induces after extending

scalars an isomorphism of L⊗Qp FF -modules

DdR(VF ) ≃ H1
dR(X̃m/L)[F ].

9.1.5. Abel-Jacobi map. Let J̃m = Jac(X̃m ⊗Qp L) and consider the map

δm : J̃m(L)
Kum

// H1
f (L,Tap(J̃m))

proj
// H1

f (L, VF(1))
log

//
DdR(VF (1))

Fil0(DdR(VF (1))

∼
// (Fil0(DdR(V

∗
F
)))∨

where:

• Kum is the Kummer map;

• proj is induced by the projection map Tap(J̃m)→ V ∗
F and the isomorphism V ∗

F ≃ VF (1)
induced by Kummer duality;
• log is the inverse of the Bloch-Kato exponential map

exp :
DdR(VF (1))

Fil0(DdR(VF (1))
∼−→ H1

f (L, VF (1))

which is an isomorphism in our setting;
• The isomorphism

DdR(VF (1))

Fil0(DdR(VF (1))
≃ (Fil0(DdR(V

∗
F )))

∨

is induced by the de Rham pairing.

Following [BDP13, §3.4] and [Cas13, §2.2], the map δm can be described as follows. First,
recall that the Bloch-Kato Selmer group can be identified with the group of cristalline exten-
sions

0 −→ VF (1) −→W
ρ−→ Qp −→ 0

and since Dcris(VF (1))ϕ=1 is trivial, the resulting extension of ϕ-modules

(9.8) 0 −→ Dcris(VF (1)) −→ Dcris(W ) −→ L0 −→ 0

(where L0 is the maximal unramified subextension of L) admits a unique section

sFrobW : L0 −→ Dcris(W )

with ηFrobW = sFrobW (1) ∈ Dcris(W )ϕ=1. We also fix a section

sFilW : L −→ Fil0(DdR(W ))

of the exact sequence of L-vector spaces

(9.9) 0 −→ Fil0(DdR(VF (1))) −→ Fil0(DdR(W )) −→ L −→ 0

obtained by extending scalars from L0 to L in (9.8), using the canonical isomorphism with de
Rham cohomology, and taking the Fil0-parts of the resulting sequence. Define ηFilW = sFilW (1)
and consider the difference

ηW = ηFrobW − ηFilW
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viewed as an element in DdR(W ); this difference comes from an element in DdR(VF (1)),
denoted with the same symbol ηW , and its image modulo Fil0(DdR(VF (1))) is well defined.
Then we have (see [Cas13, Lemma 2.4] and the references therein)

log(W ) = ηW mod Fil0(DdR(VF (1))).

Let ∆ ∈ Js(L) be the class of a degree zero divisor in X̃m, with support contained in the

finite set of points S ⊆ X̃m(L). Define the map

(9.10) κm : J̃m(L)
Kum

// H1
f (L,Tap(J̃m))

proj
// H1

f (L, VF (1))

and consider the class κm(∆) ∈ H1
f (L, VF (1)). Denote W∆ the extension class associated

with κm(∆). Attached to W∆ we then have the class ηW∆
in DdR(VF (1)) constructed before,

and we may consider the (weight 2) newform F∗ associated with the twisted form F ⊗ χ−1
F ,

where χF denotes the character of F . Let as before ωF∗ denote the differential form attached
to F∗; denote with the same symbol ωF∗ the corresponding element in DdR(VF∗) via the

isomorphism DdR(VF∗) ≃ H1
dR(X̃m/L)[F∗] (here for a Hecke module M , we denote M [F∗]

the eigencomponent corresponding to the eigenform F∗, and we also denote FF∗ ⊆ Qp the

Hecke field of F∗ inside the algebraic closure of Qp). Note that ωF∗ belongs to Fil1(DdR(VF∗)),

which is equal to Fil0(DdR(V
∗
F )); we therefore obtain a class ωF∗ ∈ Fil0(DdR(V

∗
F )).

Lemma 9.8. δm(∆)(ωF∗) = 〈ηW∆
, ωF∗〉dR.

Proof. Follow the argument in the case of modular curves in [BDP13, §4.1] (the good reduction
case) and [Cas13, §2.2] (the bad reduction case). �

Pick as before a point x∞ in the wide open space W∞. Let F ∗
∞ be the Coleman primitive

of ωF∗ on W∞(pm) which vanishes at x∞ (cf. Definition 9.7). We may then consider the map

j
(x∞)
m : X̃m(Cp)→ J̃m(Cp) which associates to P the divisor (P )− (x∞). We simply write jm

for this map when x∞ is understood.

Lemma 9.9. Let ∆ = jm(P ) and F ∗
∞ the Coleman primitive of ωF∗ on W∞(pm) which

vanishes at ∞. Assume that m > 1. Then 〈ηW∆
, ωF∗〉dR = FωF∗ (P ).

Proof. The proof follows [DR17, §4.2] and [Cas13, Proposition 2.9], which adapts the proof of
[BDP13, Proposition 3.21] to the semistable setting. We proceed with the computations using
(9.4).

Step 1. We first describe the classes ηFilW∆
and ηFrobW∆

. Let S = {P, x∞} and YS = Ym(Cp)−S
as before.

The class ηFilW∆
is an element in Fil0(DdR(W∆)) with ρdR(η

Fil
W∆

) = 1, where ρdR is the top
right arrow map in the following commutative diagram

0 // Fil0(DdR(VF (1)) //

≃
��

Fil0(DdR(W∆))
ρdR

//

��

L⊗Qp FF //

∆

��

0

0 // Fil1
(
H1

dR(X̃m/L)
)
[F ] // Fil1

(
H1

dR(YS/L)
)
[F ]

⊕resQ
// (L⊗Qp FF )S0 // 0

which realizes the exact sequence in the top horizontal line (which is (9.9)) as the pull-back
of the bottom horizontal line with respect to the rightmost L ⊗Qp FF -linear vertical map ∆
taking 1 to (P,−x∞); in the bottom horizontal arrow, resQ(ω) is the residue at Q ∈ S of the
differential form ω, and the subscript 0 denotes the degree zero elements, i.e. those (xQ)Q∈S
in L⊗Qp FF with

∑
Q∈S nQ = 0. Therefore, we have resP (η

Fil
W∆

) = 1 and resx∞(ηFilW∆
) = −1.
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Similarly, the class ηFrobW∆
is an element in Dcris(W∆)

ϕ=1 with ρcris(η
Frob
W∆

) = 1, where ρdR is
the top right arrow map in the following commutative diagram

0 // Dcris(VF (1)) //

≃
��

Dcris(W∆)
ρcris

//

��

L0 ⊗Qp FF //

∆
��

0

0 // H1
log-cris(X̃m/L0)[F ](1) // H1

log-cris(YS/L0)[F ](1)
⊕resQ

// (L0 ⊗Qp FF )S0 // 0

which realizes the exact sequence in the top horizontal line (which is (9.8)) as the pull-back
of the bottom horizontal line with respect to the rightmost L0 ⊗Qp FF -linear vertical map
∆ taking 1 to (P,−x∞); as before in the bottom horizontal arrow, resQ(ω) is the residue at
Q ∈ S of the differential form ω, and the subscript 0 denotes the degree zero elements. By
the discussion closing §9.1.2 (see especially (9.3)), ηFrobW∆

is represented by a pair of sections

(ηFrob∞ , ηFrob0 ) of Ω1
rig(W̃∞)×Ω1

rig(W̃0). Since ηFrobW∆
is fixed by ϕ, we have ηFrob∞ = φηFrob∞ +dG∞

for a rigid analytic function G∞ on W̃∞, and (ηFrob0 ) = (φ′)ηFrob0 + dG0 for a rigid analytic

function G0 on W̃0. Moreover, we also have resQ(η
Frob
W∆

) = resQ(η
Fil
W∆

) for all Q ∈ S, and

since resQ(η
Frob
W∆

) = resVQ
(ηFrobW∆

) for all Q ∈ S, we may rewrite the last condition in the form

resVQ
(ηFrobW∆

) = resQ(η
Fil
W∆

) for all Q ∈ S.

Step 2. (Cf. [BDP13, Lemma 3.20].) We now show that

(9.11)
∑

V⊆W̃∞

resV(〈F ∗
∞, η

Frob
∞ 〉dR) +

∑

V⊆W̃0

resV(〈F ∗
0 , η

Frob
0 〉dR) = 0.

We begin by showing that the first summand in (9.11) is zero. Recall that ηFrob∞ = φηFrob∞ +
dG∞. By the Leibeniz rule we then have

d(〈φF ∗
∞, G∞〉dR) = 〈φF ∗

∞, dG∞〉dR + 〈φωF∗ , G∞〉dR
where we use that d(φF ∗

∞) = φdF ∗
∞ because φ is horizontal for d. Therefore, the RHS is exact

on each V, so we have resV(〈φF ∗
∞, dG∞〉dR) = −resV(〈φωF∗ , G∞〉dR); on the other hand,

〈φωF∗ , G∞〉dR is a rigid analytic differential form on W̃∞, so the sum of its residues is zero for
all V. We conclude that

(9.12)
∑

V⊆W̃∞

resV(〈φF ∗
∞, dG∞〉dR) = 0.

We then observe that resV(〈F ∗
∞, η

Frob
∞ 〉dR) = resV(〈φF ∗

∞, φη
Frob
∞ 〉dR); combing this with the

equation ηFrob∞ = φηFrob∞ + dG∞ and the equation (9.12) we conclude that
∑

V⊆W̃∞

resV(〈F ∗
∞, η

Frob
∞ 〉dR) =

∑

V⊆W̃∞

resV(〈φF ∗
∞, η

Frob
∞ 〉dR).

It follows that

L(1)
∑

V⊆W̃∞

resV(〈F ∗
∞, η

Frob
W∆
〉dR) =

∑

V⊆W̃∞

resV(〈L(φ)F ∗
∞, η

Frob
∞ 〉dR).

Now L(φ)F ∗
∞ is rigid analytic, and therefore the RHS is zero; since L(1) 6= 0, we conclude that

∑

V⊆W̃∞

resV(〈F ∗
∞, η

Frob
W∆
〉dR) = 0.

A similar argument, replacing W̃∞ with W̃0, η∞ with η0, G∞ with G0, F
∗
∞ with F ∗

0 and φ by
φ′ shows that ∑

V⊆W̃0

resV(〈F ∗
0 , η

Frob
0 〉dR) = 0
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and (9.11) follows.
Step 3. (Cf. [BDP13, Lemma 3.19].) We now show that

(9.13)
∑

V⊆W̃∞

resV(F
∗
∞η

Fil
∞ ) +

∑

V⊆W̃0

resV(F
∗
0 η

Fil
0 ) = F ∗

∞(P ).

Since F ∗
∞ vanishes at x∞, F ∗

∞η
Fil
∞ is locally analytic in a neighborhood of x∞, and it follows that

resx∞(F ∗
∞η

Fil
∞ ) = 0. On the other hand, since resP (η

Fil
W∆

) = 1, we have resP (F
∗
∞η

Fil
W∆

) = F ∗
∞(P ),

so we conclude that ∑

V⊆W̃∞

resV(F
∗
∞η

Fil
∞ ) = F ∗

∞(P ).

On the other hand, F ∗
0 η

Fil
W∆

is analytic on W0, so the second summand in the LHS of (9.13) is

zero, and (9.13) follows.
Step 4. The result now follows combining (9.11) and (9.13) with (9.4) and using that, since

m > 1, the wide opens W̃∞ and W̃0 are disjoint. �

Corollary 9.10. Let ∆ = (P ) − (x∞) and F ∗
∞ the Coleman primitive of ωF∗ on W∞(pm)

which vanishes at ∞. Assume that m > 1. Then δm(∆)(ωF∗) = FωF∗ (P ).

Proof. This follows immediately from Lemma 9.8 and Lemma 9.9. �

9.2. Weight 2 specializations. Let ν an arithmetic homomorphisms of signature (2, ψ) and

let the conductor of ψ be pm for some integer m ≥ 1. Let φ̂ : K×\K̂× → F× be the p-adic

avatar of a Hecke character φ : K×\A×
K → Q

×
of infinity type (1,−1) and conductor pn for

some integer n ≥ m such that the Galois character φ̃ : Gal(Kab/K) → F× factors through

Γ̃∞. The next task consists in computing the (ν, φ̂−1)-specialization of L
geo
I,ξ . We put

L
geo
I,ξ (ν, φ̂−1) = spν,φ

(
L

geo
I,ξ

)
.

For a number field L and the ring of algebraic integers O of a finite extension of Q there is a
canonical exact sequence

0 −→ J̃m(L)⊗Z O −→ Pic(X̃m/L)⊗Z O
deg−→ O −→ 0

and taking ordinary parts, since the degree of Up is p, we obtain a canonical isomorphism

(9.14) J̃m(L)ord ⊗Z O −→ Pic(X̃m/L)
ord ⊗Z O.

We denote ̺m the inverse of this canonical isomorphism. Consider the divisor

Qcpn,m =
∑

σ∈Gal(Hcpn+m/Hcpn )

P̃ σ̃
cpn+m,m ⊗ χν(σ̃)

where σ̃ ∈ Gal(Lcpn+m,m/Hcpn) is any lift of σ (the independence of the lift follows the results

recalled in 2.6). We define a canonical class ̺m(Qcpn,m) in J̃m(Q) ⊗Z Oν(χν), which is fixed

by the action of Gal(Q/Lcpn+m,m). Tracing through the definition of big Heegner points, we
see (cf. [LV14b, §3.4], see especially [LV14b, (3.6)]) that when n ≥ m ≥ 2

(9.15) ̺m(Qcpn,m) =

(
ν(ap)

p

)m

· spν(Xcpn).

For the next theorem, let ν an arithmetic homomorphisms of signature (2, ψ) such that

ψ : Γ → Q
×
p has conductor cond(ψ) = pm for some integer m ≥ 2. Let φ̂ : K×\K̂× → F× be

the p-adic avatar of a Hecke character φ : K×\A×
K → Q

×
of infinity type (1,−1) and conductor

cond(ψ) = pn for some integer n ≥ m such that the Galois character φ̃ : Gal(Kab/K) → F×
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factors through Γ̃∞. Finally, recall that x̃cpn,m = x̃cpn,m(1) = P̃cpn,m. We finally write

d−1F [p]
ν,x∞ to denote the overconvergent modular form in Definition 9.6 for F = Fν .

Theorem 9.11. Let ν and ψ be as before, so ν has signature (2, ψ) with cond(ψ) = pm with

m ≥ 2 and φ : K×\A×
K → Q

×
of infinity type (1,−1) and cond(φ) = pn with n ≥ m. Then

L
geo
I,ξ (ν, φ̂−1) =

ǫ(φ)

ξν,p(pn) · pn
·

∑

a∈Pic(Ocpn )

(ξ̂−1
ν χ̂ν φ̂)(a)d

−1F [p]
ν,x∞

(
xcpn,m(a−1)

)
.

Proof. We first relate L
geo
I,ξ (ν, φ̂−1) to the Coleman primitive. Since φ̂ : Γ∞ → Qp has Hodge–

Tate weight w = 1 and conductor n > 1, from (7.10) we have

L
geo
I,ξ (ν, φ̂−1) = spν,φ̂

(
LΓ̃∞
ωF

(resP(Zξ))
)

= E(φ̂−1, ν) · (ων ⊗ φ−1)
(
log(spν,φ̂(resP(Zξ))

)
.

(9.16)

Using that the characters ξν and φ has conductors pm and pn respectively, and n ≥ m, by
(9.15) we have

L
geo
I,ξ (ν, φ̂−1) = E(φ̂−1

, ν)
∑

σ∈Gal(Hcpn/Hc)

(ξ̂−1
ν φ̂

−1)(σ) log(spν(resp(corHc/K(Xσ
cp∞))))(ωF∗

ν
)

= E(φ̂−1
, ν)

∑

σ∈Gal(Hcpn/K)

(ξ̂−1
ν φ̂

−1)(σ) log(spν(resp(X
σ
cp∞)))(ωF∗

ν
)

= E(φ̂−1
, ν)

∑

σ∈Gal(Hcpn/K)

ν(ap)
−n(ξ̂−1

ν φ̂
−1)(σ) log(spν(resp(X

σ
cpn)))(ωF∗

ν
)

= E(φ̂−1
, ν)

(
p

ν(ap)

)m ∑

σ∈Gal(Hcpn/K)

ν(ap)
−n(ξ̂−1

ν φ̂
−1)(σ) log(̺m(Qσ

cpn,m))(ωF∗
ν
)

= E(φ̂−1
, ν)

(
p

ν(ap)

)m ∑

σ∈Gal(Hcpn/K)

ν(ap)
−n(ξ̂−1

ν χ̂ν φ̂
−1)(σ) log(̺m(P̃ σ

cpn+m,m))(ωF∗
ν
).

(9.17)

Let F ∗
∞ be the Coleman primitive of ωF∗

ν
on W∞(pm) which vanishes at x∞. It follows from

(9.14) that

log(̺m(P̃ σ
cpn+m,m)) = log(jm(P̃ σ

cpn+m,m)).

Applying Corollary 9.10 (and using linearity) we thus obtain

L
geo
I,ξ (ν, φ̂−1) = E(φ̂−1, ν)

(
p

ν(ap)

)m ∑

σ∈Gal(Hcpn/K)

ν(ap)
−n(ξ̂−1

ν χ̂ν φ̂
−1)(σ)F ∗

∞(P̃ σ
cpn+m,m).

On the other hand, since P̃cpn+m,m is defined over the subfield Hcpn−1(ζpn) of Lcpn, and χν is

a primitive character modulo pn, we see that, after setting ψ = ν(ap)
−nξ̂−1

ν χ̂ν φ̂
−1 to simplify

the notation,
∑

σ

ψ(σ)F ∗
∞(P̃ σ

cpn+m,m) =
∑

σ

ψ(σ)F ∗
∞(P̃ σ

cpn+m,m)− ν(ap)

p

∑

σ

ψ(σ)F ∗
∞(φ(P̃ σ

cpn+m,m))

=
∑

σ

ψ(σ)L(φ∗)F ∗
∞(P̃ σ

cpn+m,m)

=
∑

σ

ψ(σ)d−1F [p]
ν,x∞

(P̃ σ
cpn+m,m)

(9.18)

where the sum is over all σ ∈ Gal(Hcpn/K), and the last equation follows from (9.7) and the
fact that d−1ωF [p] = d−1ωF∗[p]. Therefore,

(9.19) L
geo
I,ξ (ν, φ̂−1) = E(φ̂−1

, ν)

(
p

ν(ap)

)m

·
∑

σ∈Gal(Hcpn/K)

ν(ap)
−n(ξ̂−1

ν χ̂ν φ̂
−1)(σ)d−1

F
[p]
ν,x∞

(P̃ σ
cpn+m,m).
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We now observe that

(9.20) UpF
∗
∞ =

(
ν(ap)

p

)
F ∗
∞.

Since P̃cpn+m,m = Um
p P̃cpn,m = Um

p x̃cpn,m; it follows from (9.20) and (9.19) that (use Shimura’s
reciprocity law to keep trace of the Galois action)

(9.21) L
geo
I,ξ (ν, φ̂−1) = E(φ̂−1, ν)

∑

σ∈Gal(Hcpn/K)

ν(ap)
−n(ξ̂−1

ν χ̂ν φ̂
−1)(σ)d−1F [p]

ν,x∞
(x̃σcpn,m).

Since Φν = ν(ap)(ξν,p(p)p)
−1, we have

E(φ̂−1, ν) =
ǫ(φ)ν(ap)

n

ξν,p(pn) · pn

and the result follows. �

9.3. Reciprocity Laws. Fix an algebraic Hecke character λ : K×\A×
K → Q

×
as in §5.2

and set ξ = ξ(λ). We fix ν and φ as in the proof of Theorem 9.11; so ν is an arithmetic
homomorphisms of signature (2, ψ) with cond(ψ) = pm for some integer m ≥ 2, and φ̂ is the

p-adic avatar of a Hecke character φ : K×\A×
K → Q

×
of infinity type (1,−1) and conductor

pn for some integer n ≥ m, so the associated Galois character φ̃ factors through Γ̃∞.

Proposition 9.12. Let ν and φ be as before. Then

L
geo
I,ξ (ν, φ̂−1) =

(
φp(−1)√
−DK

)
L

an
I,ξ(ν, φ̂

−1).

Proof. The character ξ̂ν has infinity type (1,−1), so the character ϕ = ξ̂ν φ̂
−1 has infinity type

(0, 0), thus finite order. Recall that, by definition,

ν(L alg
I,ξ (φ̃

−1)) =
∑

a∈PicOc

ξ̂νχ̂
−1
ν (a)N(a)−1

∫

Z
×
p

φ̃−1|[a](z)dµFν ,a(z).

Since φ−1 has infinity type (−1, 1) and we chose the representatives a such that ((p), a) = 1,
then

φ̃−1|[a](z) = φ̃−1(recK(a)recK,p(z)) = φ̂−1(aip(z)) = φ−1(a)φ−1
p (z)z−1,

where recall that a = aÔc∩K and ip : Z
×
p → K̂× denotes the map which takes z ∈ Z×

p
∼= O×

K,p

to the element ip(z) with p-component equal to z and trivial components at all the other
places. Hence,

ν(L alg
I,ξ (φ̂

−1)) =
∑

a∈Pic(Oc)

ξ̂νχ̂
−1
ν (a)N(a)−1φ−1(a)

∫

Z
×
p

φ−1
p (z)z−1dµFν,a(z).

By [Hid93, §3.5, (5)] ([Mag22, (6.7)] for negative exponents), we have

ν(L alg
I,ξ (φ̂

−1)) =
∑

a∈Pic(Oc)

ξ̂νχ̂
−1
ν (a)N(a)−1φ−1(a) · ([φ−1

p ]d−1
F

[p]
ν,a(Tx(a)))|Tx(a)=0,

where d = tx(a)
d

dtx(a)
is as before the Katz operator. Set C0(ξν , χν , φ) =

√
−DKp

−ng(φ−1
p ).

Applying (5.2), and using the equality N(a)
√
−DK(d−1

F
[p]
ν )a = d−1

F
[p]
ν,a, we see that

ν(L alg
I,ξ (φ̂

−1)) = C0(ξν , χν , φ)
∑

a∈Pic(Oc)

∑

u∈(Z/pnZ)×

(ξ̂ν χ̂
−1
ν φ−1)(a)φp(u)d

−1F [p]
ν,x(a)(x(a) ⋆ n(u/p

n)).
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Here d−1F [p]
ν,x(a) denotes the overconvergent modular form in Definition 9.6 for F = Fν where

the basis point is taken to be x(a) instead of the point x∞ fixed before. Since d−1F [p]
ν,x(a) has

weight 0 and character ψ, using (4.1) we obtain (recall that a = aO×
c ∩K)

d−1F [p]
ν,x(a)(x(a) ⋆ n(u/p

n)) = ψ−1(〈u〉)d−1F [p]
ν,x(a)

([(
ιK , a

−1ip(u/p
n)ξ(n)

)])
.

To simplify the notation, we temporarily write zn(a) =
([(

ιK , a
−1ip(u/p

n)ξ(n)
)])

. We have

ξ̂−1
ν χ̂ν(a

−1ip(u/p
n)) = ξ̂νχ̂

−1
ν (a)ξ̂−1

ν χ̂ν(ip(u/p
n)),

φ̂(a−1ip(u/p
n)) = φ−1(a)φp(u)φp(p

−n)up−n.

By (5.3), χ−1
ν,p(z) = ψ1/2(〈z〉) for z ∈ Z×

p
∼= O×

K,p. Also, χ−1
ν,p(p

−n) = ψ1/2(〈pnp−n〉) = 1 and by

(5.4), ξν,p(z) = ψ1/2(〈z〉) for z ∈ Z×
p
∼= O×

K,p. Therefore, after setting

C(ξν , χν , φ) = C0(ξν , χν , φ)ξν,p(p
−n)φp(p

n) =

√
−DK · g(φ−1

p )p−nφp(p
n)

ξν,p(pn)

we have

ν(L alg
I,ξ (φ̂

−1)) = C(ξν , χν , φ)
∑

a∈Pic(Oc)

∑

u∈(Z/pnZ)×

(ξ̂−1
ν χ̂ν φ̂)(a

−1ip(u/p
n))d−1F [p]

ν,x(a)(zn(a))

= C(ξν , χν , φ)
∑

a∈Pic(Ocpn )

(ξ̂−1
ν χ̂ν φ̂)(a)d

−1F [p]
ν,x(a)

(
[(ιK , a

−1ξ(n))]
)

= C(ξν , χν , φ)
∑

a∈Pic(Ocpn )

(ξ̂−1
ν χ̂ν φ̂)(a) · d−1F [p]

ν,x(a)

(
ycpn,m(a−1)

)

where for each a ∈ Pic(Ocpn) we let a = aÔcpn ∩ K. We now observe that d−1F [p]
ν,x∞ and

d−1F [p]
ν,x(a) differ by a constant; however, since the character χ̂ν is primitive, we can replace

the first with the second in the previous formula. Comparing with Theorem 9.11, the result
follows from the equality ǫ(φp) = g(φ−1

p )φp(−pn). �

Theorem 9.13. Let σ−1,p := recp(−1). Then in Ĩ[[Γ̃∞]] we have:

L
geo
I,ξ =

(
σ−1,p√
−DK

)
·L alg

I,ξ .

Proof. The equality holds when specialized at arithmetic primes of weight 2 by Proposition
9.12, and the result follows because these primes are dense. �

Corollary 9.14. Zc is not I-torsion.

Proof. Since L
alg
I,ξ is not zero, the same is true for L

geo
I,ξ ; any specializations at ν : I→ Qp has

therefore only a finitely many zeroes. If Zc is torsion, then there are specializations having
infinitely many zeroes, which is a contradiction. �

10. Big Generalized Heegner classes

We recall some general results on representations of algebraic groups obtained in [Anc15].
Let G be an algebraic group, (G,D) be a PEL Shimura datum, U a compact open subset of
G(Af ), S the canonical model of the Shimura variety ShU (G,D) of level U over the reflex
field F and π : A → S be the universal PEL abelian variety. Then there is a functor

HodS : CHMF (S) −→ VHSF (S(C)),

called the Hodge realization functor, from the category CHMF (S) of relative Chow motives

(X, p, n) (where X → S is a smooth projective scheme, p ∈ CHdim(X)(X ×S X)F satisfies
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p2 = p and n ∈ Z), to the category VHSF (S(C)) of variations of F -Hodge structures over S(C)
(see ibid. Example 3.3(i) and Proposition 3.5). Under the functor HodS , R1π∗F corresponds
to h1(A) ∈ CHMF (X), the degree 1 part of the relative Chow motive of A over S/F , and
decompositions into direct summands in VHSF (S(C)) lift to decompositions in CHMF (S) (cf.
ibid. Thérorème 6.1). By ibid. Théorème 8.6, the canonical construction functor ([Pin90,
§1.18]) lifts through HodS to a functor

AncG : RepF (G) −→ CHMF (S),

where RepF (G) is the category of F -representations of G, with the following properties:

• AncG is F -linear, preserves duals and tensor products;
• If VG is the standard algebraic representation of G, AncG(VG(F )) = h1(A) (following

the normalization in [LSZ22, Remark 6.2.3], see also [Tor20, §8]).

See [Anc15, §2] for properties of the decomposition of Chow motives.

10.1. Generalized Heegner cycles. Let m ∈ Z≥0. We present the definition of generalized
Heegner cycles over the curves Xm adopting, as discussed before, a motivic approach as in
[JLZ21]; in this paper we are primarily interested in the cases m ∈ {0, 1}.

Let k ≥ 2 be an even integer and fix, as in [Mag22, §2.4.2], the QM abelian surface with

CM by OK given by A = E × E, where E = C/OK . Let Wk,m := Ak/2−1
m ×Xm Ak/2−1 be the

generalized Kuga–Sato variety introduced in [HB15, §2.6], where Ak/2−1
m is the (k/2 − 1)-fold

fiber product over the Shimura curve Xm of the universal QM abelian surface Am → Xm.
Since Am can be defined over Q, as well as Xm, and A can be defined over the Hilbert class
field H of K, the variety Wk,m has a model, which we fix, defined over H.

Fix an integer n ≥ m and, as before, an integer c ≥ 1 prime to NDKp. Let FN+ be the
ray class field of K modulo N+ and FN+,cpn the smallest abelian extension of K containing
both FN+ and Hcpn; note that FN+,cpn corresponds by class field theory to the group UN+,cpn

of elements x ∈ Ô×
cpn such that x ≡ 1 mod N+. To simplify the notation, we forget the

dependence on N+ and set Fcpn := FN+,cpn.

Let ǫA ∈ CorrXm(A
k/2−1
m ) be the projector defined in [Bes95, Theorem 5.8], and define the

projector ǫA ∈ Corrk−2(A,A) to be the image of ǫA when specializing all the factors of Ak/2−1
m

to A. Finally, define ǫW = ǫAǫA ∈ Corr
k/2−1
Xm

(Wk,m,Wk,m). Let

∆
[k]
cpn,m = ǫW (graph(φcpn))

k/2−1 ∈ ǫWCHk−1(Wk,m ⊗H Fcpn)Q

denote the generalized Heegner cycle, constructed in [HB15, §6.2], associated with the canon-
ical cyclic cpn-isogeny

φcpn : A = C/OK × C/OK −→ Acpn = C/Ocpn × C/Ocpn ,

which is defined over Fcpn .
The Chow group of codimension k − 1 cycles in Wk,m can be interpreted as a motivic

cohomology group [MVW06, Corollary 19.2] and the generalized Heegner cycle is in its ǫW -
component:

(10.1) ∆
[k]
cpn,m ∈ ǫW CHk−1(Wk,m ⊗H Fcpn)Q ∼= ǫWH

2k−2
mot (Wk,m ⊗H Fcpn ,Q(k − 1)).

Denote

(10.2) rét : ǫWH
2k−2
mot (Wk,m ⊗H Fcpn ,Q(k − 1)) −→ ǫWH

2k−2
ét (Wk,m ⊗H Fcpn ,Qp(k − 1))

the étale realization. We can use Lieberman’s trick on the étale cohomology groups to replace
the base scheme Wk,m with the simpler Shimura variety Xm, to the cost of having a slightly
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more complicated coefficient system. We now describe the trick in our context. From Künneth
theorem ([Mil80, Theorem 8.21]),

H2k−2
ét (Wk,m,Qp) =

⊕

i+j=2k−2

H i
ét(Ak/2−1

m ,Qp)⊗Hj
ét(A

k/2−1,Qp).

Let πAm : Am → Xm and πA : A→ Xm be the canonical projections. Since the Leray spectral
sequence degenerates at page 2 (cf. [Del68, §2.4]), each of the groups in the right-hand side
decomposes as

H i
ét(Ak/2−1

m ,Qp) =
⊕

a+b=i

Ha
ét(Xm, R

bπAm,∗(Qp)),

Hj
ét(A

k/2−1,Qp) =
⊕

a+b=j

Ha
ét(Xm, R

bπA,∗(Qp))

and the image of the projectors ǫA and ǫA are motives whose Betti realizations are of type
((k− 1, 0), (0, k − 1)), as in [Bes95] (see the proof of Theorem 5.8 and the paragraph after the
proof of Proposition 5.9 in op. cit.). Therefore, the only summand remaining after applying
the projectors corresponds to the indexes i = j = k − 1, so

ǫWH
2k−2
ét (Wk,m,Qp) H1

ét

(
Xm,TSym

k−2(eR1πA,∗Qp)
)
⊗H1

ét

(
Xm,TSym

k−2(eR1πA,∗Qp)
)

H2
ét

(
Xm,TSym

k−2(eR1πA,∗Qp)⊗ TSymk−2(eR1πA,∗Qp)
)
,

PD

where we write R1π∗Qp = eR1π∗Qp ⊕ ēR1π∗Qp for the decomposition in isomorphic factors
induced by the idempotents e and ē from §2.2; note that the action of e is built in the definition
of the projector ǫW (ibid., Theorem 5.8); the map PD is Poincaré duality (see for example
[Mil80, Corollary 11.2]). Finally, one can twist by k − 1 to achieve
(10.3)

ǫWH2k−2
ét (Wk,m,Qp(k − 1)) −→ H2

ét

(
Xm,TSym

k−2(eR1πA,∗Qp)⊗ TSymk−2(eR1πA,∗Qp)(k − 1)
)
.

It will be convenient to have the twists distributed in the following way: denoting

Mét := TSymk−2(eR1πA,∗Qp(1)) ⊗ TSymk−2(eR1πA,∗Qp),

we have that

(10.4) TSymk−2(eR1πA,∗Qp)⊗ TSymk−2(eR1πA,∗Qp)(k − 1) ∼= Mét(1).

The composition of the étale realization rét with the Lieberman’s trick map (10.3) and the
map induced by the isomorphism above gives a map

(10.5) ǫWH
2k−2
mot (Wk,m ⊗H Fcpn ,Q(k − 1)) −→ H2

ét (Xm ⊗H Fcpn ,Mét(1)) .

Definition 10.1. The image of ∆
[k]
cpn,m by (10.5) is the generalized Heegner class z

[k]
cpn,m.

10.2. Representations associated to motives. Consider the motive

M := TSymk−2(eh1(Am)(1)) ⊗TSymk−2(eh1(A)),

whose étale realization is Mét. Under Ancona’s functor, each factor comes respectively fromK-
representations of the algebraic groups G := ResK/Q(B

×) and H := ResK/Q(G
×
m) as follows.

We first study the representations of G. The algebraic group G is associated to the PEL
Shimura curve Xm. Since G(K) = GL(B ⊗Q K) and dimK(B ⊗Q K) = 4, the standard
representation of G over K is K4. By [Anc15, Corollaire 2.6], h1(Am)∨ ∼= h1(Am)(1) and,
since e(h1(Am))∨ ∼= (e†h1(Am))∨, we have

eh1(Am)(1) ∼= (e†h1(Am))∨.
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The idempotents e† and ē† split K4 into K2 ⊕K2 = e†K4 ⊕ ē†K4. Therefore,

V
k−2 ∼= TSymk−2

(
(e†h1(Am))∨

)
∼= AncG

(
TSymk−2((K2)∨)

)
∼= AncG

(
(Symk−2(K2))∨

)
.

We next study the representations of H. We fix a field F of characteristic 0 equipped with
an embedding σF : K →֒ F ; assume that the image of σ̄F (x) := σF (x̄) (a priori defined in a
Galois closure of F , where x 7→ x̄ is the action of the non-trivial element of Gal(K/Q)) is still

contained in F . For all pairs of integers (ℓ1, ℓ2), we define the F -representation σℓ1F ⊗ σ̄
ℓ2
F of H

by (σℓ1F ⊗ σ̄
ℓ2
F )(x ⊗ a) = aσℓ1F (x)σ̄ℓ2F (x) for all x ∈ K and all elements a ∈ A× for a Q-algebra

A. For F = K and σK the identity map, we simplify the notation and write σℓ1 ⊗ σ̄ℓ2 for
σℓ1K ⊗ σ̄

ℓ2
K . Recall the group UN+,cpn corresponding to Fcpn = FN+,cpn by class field theory. The

PEL Shimura variety of level UN+,cpn associated to the torus H is zero-dimensional, admits a
canonical model Scpn defined over K, and is identified with the Gal(Fcpn/K)-orbit of elliptic
curves defined over Fcpn with CM by OK ; see [Mil05, Proposition 12.11] and [AGHMP17, §1.3].
Recall that A ∼= E × E, where E is an elliptic curve with CM by OK (thus defining a point
in Scpn), and that this isomorphism is equivariant respect to the action of M2(OK). Since
j(e) =

(
1 0
0 0

)
, we have eh1(A) = h1(E), and h1(E) corresponds to a relative Chow motive in

CHMK(Scpn). Let V ∈ RepK(H) be such that AncH(V ) = h1(E). For an integer 0 ≤ j ≤ k−2,
one can consider the (k−2− j, j)-component V k−2−j,j of V , where the complex multiplication
by x ∈ OK acts as the multiplication by xk−2−jx̄j. Then V k−2−j,j = σk−2−j ⊗ σ̄j . We define

h(k−2−j,j)(A) = AncH(σk−2−j ⊗ σ̄j).

We finally study the representations of G×H. Piecing all of the above together, we get a
K-representation

V (k−2−j,j) = (TSymk−2(K2)∨)⊠ (σk−2−j ⊗ σ̄j) ∈ RepK(G×H)

(here, as usual, ⊠ denotes the external tensor product). Therefore, defining

(10.6) M
(k−2−j,j) := V

k−2 ⊗ h(k−2−j,j)(A),

we find that AncG×H(V (k−2−j,j)) = M (k−2−j,j) in CHMK(Xm × Scpn).

10.3. Vectors from CM points. We now use CM points to construct basis elements of
the representation V (k−2−j,j) base-changed to suitable p-adic fields. We begin by observing
that the fixed embedding Q →֒ Qp and the canonical inclusion K ⊆ Q induce an embedding

σQp
: K →֒ Qp whose image is contained in Qp because p is split in K. Fix a subfield L ⊆ Qp;

therefore, we obtain two embeddings σL : K →֒ L and σ̄L : K →֒ L satisfying σ̄L(x) = σL(x̄).
The map ιK : K →֒ B induces an embedding of algebraic groups i : H →֒ G and, as before,
for each pair of integers (ℓ1, ℓ2), we have a one-dimensional L-representation σℓ1L ⊗ σ̄

ℓ2
L of H.

Recall that the choice of ϑ is normalized with respect to ιK so that ιK(x)
(
ϑ
1

)
= σL(x)

(
ϑ
1

)
.

More generally, we can similarly define vectors ecpn ∈ L2 attached to CM points [(ιK , ξ
(n))] as

follows. First, write ξ(n) = b(n)u(u) for some b(n) ∈ B× and u(n) ∈ Um; then ϑcpn := (b(n))−1(ϑ)

is an eigenvector for icpn = (b(n))−1ιKb
(n), and icpn(H) acts on vcpn :=

(
σL(ϑcpn )

1

)
∈ L2

as the representation σL; note that, under the isomorphism (of compact Riemann surfaces)

Xm(C) ∼= Γm\H in §2.6 the point [(ιK , ξ
(n))] is sent to the class of the point ϑcpn. Dually,

setting ϑ∗cpn = −1/ϑ̄cpn , a simple computation shows that ecpn :=
( σL(ϑ̄

∗
cpn

)

1

)
an eigenvector

for the dual (L2)∨ of the standard representation L2 of H, i.e for each x ∈ K we have
(icpn(x)

−1)T(ecpn) = σ−1
L (x)ecpn (where AT denotes the transposed matrix of a matrix A).

Define e
[k,j]
cpn := (ecpn)

⊗(k−2−j) · (ēcpn)⊗j in TSymk−2((L2)∨) where ēcpn :=
( σ̄L(ϑ

∗
cpn

)

1

)
. Then
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e
[k,j]
cpn defines an element in the L-representation

V
(k−2−j,j)
L := TSym((L2)∨)⊠ σ

(k−2−j)
L ⊗ σ̄jL

of H, which is invariant under the diagonal action of K by icpn ⊗ id.

10.4. The j-component of generalized Heegner classes. Each of the embeddings icpn
induces an embedding of δcpn : H →֒ G × H, defined by δcpn = (icpn , id), where id is the
identity map. By [Tor20, Theorem 9.7], we have a commutative diagram

RepK(G×H) RepK(H)

CHMK(Xm × Scpn) CHMK(Scpn)

AncG×H

δ∗cpn

AncH
δ∗cpn

where the top map δ∗cpn : ρ 7→ δcpn ◦ ρ is the restriction via δcpn of representations, and the
bottom map δ∗cpn is the pullback of motives via the map δ∗cpn : Xm × Scpn → Scpn induced
by δcpn . Via the functoriality of the étale realization, the maps described above descend to
maps of lisse étale shaves over L. To simplify the notation, denote Xm × Scpn the K-scheme
(Xm⊗QK)×Scpn (i.e. we simply viewXm as a K-scheme and take the product as K-schemes).

Let M
(k−2−j,j)
ét be the étale realization of the motive M (k−2−j,j) = AncG×H(V (k−2−j,j)) in

CHMK(Xm×Scpn) introduced in (10.6); consider the motive δ∗cpn(M
(k−2−j,j)
ét )) in CHMK(Scpn).

Composing the Gysin map (see [KLZ20, Definition 3.1.2, §5.2])

H0
ét

(
Scpn , δ

∗
cpn(M

(k−2−j,j)
ét )

)
−→ H2

ét

(
Xm × Scpn ,M (k−2−j,j)

ét (1)
)

with the isomorphism

H2
ét

(
Xm × Scpn ,M (k−2−j,j)

ét (1)
)

∼−→ H2
ét

(
Xm ⊗K Fcpn ,M

(k−2−j,j)
ét (1)

)

that comes from the identification of Scpn as a K-variety with the Gal(Fcpn/K)-orbit of ϑcpn ,
we obtain a map

(10.7) δcpn,∗ : H
0
ét

(
Scpn, δ

∗
cpn(M

(k−2−j,j)
ét )

)
−→ H2

ét

(
Xm ⊗K Fcpn ,M

(k−2−j,j)
ét (1)

)
.

Definition 10.2. The image of e
[k,j]
cpn under the map δcpn,∗ in (10.7) is the j-component z

[k,j]
cpn,m

of the generalized Heegner class z
[k]
cpn,m.

The above construction is useful for the p-adic interpolation of the vectors e
[k,j]
cpn as way

to interpolate generalized Heegner classes. However, there is an equivalent and simpler con-

struction of the classes z
[k,j]
cpn,m. The projection of TSymk−2(h1(A)) onto the direct summand

h(k−2−j,j)(A) is a correspondence M → M (k−2−j,j) in Corr0Xm
(Wk,m), which induces, under

the étale realization of motives, a projection Mét →M
(k−2−j,j)
ét and therefore a pushforward

map in the étale cohomology

(10.8) H2
ét (Xm ⊗Q Fcpn ,Mét(1)) −→ H2

ét

(
Xm ⊗Q Fcpn ,M

(k−2−j,j)
ét (1)

)
,

under which z
[k]
cpn,m maps to the class z

[k,j]
cpn,m.
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10.5. The Abel–Jacobi map. The degeneration at page 2 of the Hochschild–Lyndon–Serre
spectral sequence [Nek00, §1.2] yields an isomorphism

(10.9) H2
ét

(
Xm ⊗Q Fcpn ,M

(k−2−j,j)
ét (1)

)
∼−→ H1

(
Fcpn ,H

1
ét(Xm ⊗Q Q,M

(k−2−j,j)
ét (1))

)
.

Recall the motive TSymk−2(eh1(Am)(1)) = V k−2 introduced in §6.1 and its étale realization

V
k−2

ét , an étale lisse sheaf over L. The right-hand side of (10.9) can be further rewritten as
(10.10)

H1
(
Fcpn ,H

1
ét(Xm ⊗Q Q,M

(k−2−j,j)
ét (1))

)
∼= H1

(
Fcpn ,H

1
ét(Xm ⊗Q Q,V k−2

ét (1)⊗ σk−2−j
ét σ̄jét)

)
.

Here σk−2−j
ét σ̄jét denotes the étale realization of the H-representation σk−2−j ⊗ σ̄j ; concretelly,

the reciprocity map induces an isomorphism (1 +N+ÔK)× ∼= Gal(Kab/FN+), and the char-
acters σét, σ̄ét : Gal(Kab/FN+) → Q×

p are given by x 7→ σ−1(xp) and x 7→ σ̄−1(xp) on

(1+N+ÔK)×, respectively (recall that the reciprocity map is geometrically normalized). The
composition of the maps (10.1), (10.5), (10.8), (10.9) and (10.10) gives the p-adic Abel–Jacobi
map
(10.11)

Φ[k,j]
m : ǫW CHk−1(Wk,m ⊗H Fcpn)Q −→ H1

(
Fcpn ,H

1
ét(Xm ⊗Q Q,V k−2

ét (1)⊗ σk−2−j
ét σ̄jét)

)
.

Note that the image of ∆
[k]
cpm,n under (10.11) is the j-component z

[k,j]
cpn,m introduced above, i.e

z
[k,j]
cpn,m = Φ

[k,j]
m (∆

[k]
cpm,n).

10.6. Classes associated to quaternionic modular forms. Let F ∈ Mk(N
+pm, L) be a

quaternionic newform of weight k over Xm. Since V †
F
∼= V ∗

F (1 − k/2) ∼= VF (k/2), as GFcpn
-

representations we have V ∗
F ⊗ σ

k−2−j
ét σ̄jét

∼= V †
F ⊗ (σk−2−j

ét σ̄jétχ
k/2−1
cyc ), so there is a projection

map (cf. [KLZ17, §2.8])
(10.12)

prF : H1
(
Fcpn ,H

1
ét(Xm ⊗Q Q,V k−2

ét (1)⊗ σk−2−j
ét σ̄jét

)
−→ H1

(
Fcpn , V

†
F ⊗ (σk−2−j

ét σ̄jétχ
k/2−1
cyc )

)
.

Definition 10.3. The class z
[F ,j]
cpn,m := prF

(
z
[k,j]
cpn,m

)
is the generalized Heegner class associated

to F and j with 0 ≤ j ≤ k − 2.

Lemma 10.4. Let ξ be a Hecke character of infinity type (k − 2− j, j) of conductor c prime

to Np. Then the generalized Heegner class z
[F ,j]
cpn,m belongs to the Gal(Fcpn/Hcpn)-invariant

subspace of H1(Fcpn , V
†
F ⊗ ξχ

k/2−1
cyc ).

Proof. The argument is taken from [JLZ21, Proposition 3.5.2]. The 0-dimensional variety

Scpn has an action of Ô×
cpn/UN+,cpn

∼= (Z/N+Z)×, and the embedding δcpn intertwines this

action with the action of (Z/N+Z)× on Xm given by diamond operators. Now F has trivial

character, and ξ has conductor prime to N+, so ξ restricts to the character σk−2−j
ét σ̄jét on

Gal(Fcpn/Hcpn), thus extending σk/2−1−jσ̄j−(k/2−1) to Gal(Kab/Hcpn). This proves the result,

in light of Shimura reciprocity law and the fact that z
[F ,j]
cpn,m lies in the finite dimensional

subspace of classes which are unramified outside Np. �

The map ξ 7→ ξχ
k/2−1
cyc is a bijection between Hecke characters of infinity type (ℓ1, ℓ2) and

those of infinity type (ℓ1 − (k/2− 1), ℓ2 − (k/2− 1)). The inflation-restriction exact sequence
and the irreducibility of VF induce for all such ξ an isomorphism

(10.13)
(
H1(Fcpn , V

†
F ⊗ ξ)

)Gal(Fcpn/Hcpn) ∼= H1(Hcpn, V
†
F ⊗ ξ).
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Definition 10.5. Suppose that ξ is an algebraic Hecke character of infinity type (ℓ,−ℓ) with
−(k/2− 1) ≤ ℓ ≤ (k/2− 1), and let and j = k/2− 1− ℓ. The ξ-component of the generalized

Heegner class z
[F ,j]
cpn,m is its image of via the isomorphism (10.13) “untwisted” by ξ, that is, the

class z
[F ,j]
cpn,m ⊗ ξ−1 ∈ H1(Hcpn, V

†
F ).

The ξ-component of a generalized Heegner class can naturally be restricted to Fcpn , giving

a class z
[F ,j]
cpn,m ⊗ ξ−1 ∈ H1(Fcpn , V

†
F ).

10.7. p-adic families of basis vectors. As in §3.5, let U ⊆ X = Homcont
Zp

(Z×
p ,Z

×
p ) be a

connected open neighborhood of an integer k0 ∈ Z and κ : Γ →֒ Λ× be its universal character.
Let ΛU be the Iwasawa algebra of U . For a character σ : R× → Γ, where R is a p-adic ring,
we write σκU := κU ◦σ, which naturally extends the exponentiation by an integer power. For
any pair of integers (ℓ1, ℓ2) we also write σ±κU +ℓ1σ̄ℓ2 := (σκU )±1σℓ1σ̄ℓ2 . Let C (Zp,Λ[1/p])
be the Λ[1/p]-module of continuous Λ[1/p]-valued functions on Zp equipped with the left
action of the monoid Σ = GL2(Qp) ∩M2(Zp) given by γ · f(Z) = κU (bZ + d)f(Z · γ), where

Z · γ = aZ+c
bZ+d for γ =

(
a b
c d

)
. The canonical embedding Symk−2(L2) →֒ C (Zp,Λ[1/p]) defined

by P (X,Y ) 7→ P (Z, 1) with Z = X/Y is equivariant with respect to this action, which reduces
to the weight k action from the beginning of Section 6. The dual of this embedding gives the
moment map

momk−2 : DU := HomΛU [1/p](C (Zp,Λ[1/p]),ΛU [1/p]) −→ TSymk−2((L2)∨)

defined by the integration formula

(10.14)
(
momk−2(µ)

)
(ϕ) =

∫

Zp

ϕ(x, 1)dµ(x),

for each ϕ ∈ Symk−2(L2).

Lemma 10.6. σ(ϑ∗cpn) = αcpnp
n for some αcpn ∈ Z×

p .

Proof. The question is local. Write b(n) = ip(b
(n)) to simplify the notation. Recall that

ξ
(n)
p = b(n)u(n) and ξ

(n)
p = δ−1

(
ϑ ϑ̄
1 1

)(
pn 1
0 1

)
; since ϑ ∈ Zp and δ ∈ Z×

p , then, locally at p,

we have b(n) =
(
ϑ ϑ̄
1 1

)(
pn 1
0 1

)
u0 for some element u0 in GL2(Zp). Therefore, using again that

δ ∈ Z×
p , we see that (b(n))−1 = u1

(
p−n −p−n

0 1

)(
1 −ϑ̄
−1 ϑ

)
for some u1 = u−1

0 ∈ GL2(Zp). It

follows that ϑcpn = p−nu1
(
ϑ−ϑ̄
0

)
. Now recall that the pair [(ιK , ξ

(n))] is an Heegner point on

Xm for all m ≥ 0, therefore u(n) satisfies the congruence u(n) ≡
( ∗ ∗
0 ∗
)

mod pm for all m ≥ 0,

from which we conclude that u1 =
(
a b
0 d

)
with a ∈ Z×

p , d ∈ Z×
p and b ∈ Zp. Therefore we have

ϑcpn = p−na(ϑ− ϑ̄) for a suitable a ∈ Z×
p , and the result follows. �

Thanks to Lemma 10.6, we can define eU ,cpn ∈ DU by the integration formula

eU ,cpn(ϕ) =

∫

Zp

ϕ(x)eU ,cpn(x) := ϕ(σ(ϑ∗cpn))

for any continuous function ϕ ∈ C (Zp,Λ[1/p]).

Lemma 10.7. The distribution eU ,cpn has the following properties:

• The action of icpn ((Ocpn ⊗Zp)
×) on eU ,cpn is via σ−κU .

• For all integers k ≥ 0 we have momk−2(eU ,cpn) = e
[k,0]
cpn .

Proof. For the first statement, recall that icpn is an optimal embedding of Ocpn into the Eichler

order Rm = B× ∩Um. For u in (Ocpn ⊗Zp)
×, we have (icpn(u)

−1)T
(ϑ∗

cpn

1

)
= σ−1(u)

(ϑ∗
cpn

1

)
(see
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§10.3). Let u act by
(

a b
cpn d

)
. For each ϕ ∈ C (Zp,Λ[1/p]) we then have

icpn(u)
−1eU ,cpn(ϕ) =

∫

Zp

ϕ(x)d(icpn(u)
−1eU ,cpn)(x)

=

∫

Zp

κU (bx+ d)ϕ

(
ax+ cpn

bx+ d

)
eU ,cpn(x)

= σκU (u)ϕ

(
aσ(ϑ∗cpn) + cpn

bσ(ϑ∗cpn) + d

)

= σκU (u)ϕ(σ(ϑ∗cpn))

= σκU (u)eU ,cpn(ϕ).

Therefore, we conclude that the action of icpn(u) on the measure eU ,cpn is just the product

σ−κU (u)eU ,cpn, which is the first statement. For the second, take P ∈ Symk−2(L2); then we
have (

momk−2(eU ,cpn)
)
(P ) =

∫

Zp

P (x, 1)deU ,cpn(x) = P
(
σ(ϑ∗cpn), 1

)
= e

[k,0]
cpn (P ),

concluding the proof of the second equality. �

We now define e
[j]
U ,cpn = eU ,cpn · (σ−j ⊗ σ̄j), where · is the symmetrized tensor product.

Lemma 10.8. The distribution e
[j]
U ,cpn has the following properties:

• The group icpn((Ocpn ⊗Zp)
×) acts on e

[j]
U ,cpn via the representation σ−(κU −j)σ̄j

• For all integers k ≥ 0 we have momk−2(e
[j]
U ,cpn) = e

[k,j]
cpn .

Proof. This follows immediately from Lemma 10.7. �

10.8. p-adic interpolation of generalized Heegner classes. Let σκU −j
ét σjét the étale real-

ization of σκU −jσj. We then have a map

(10.15) H0
ét

(
Scpn , δ

∗
cpn(DU ⊗ σκU −j

ét σ̄jét)
) δcpn,∗

// H2
ét

(
Xm ⊗K Fcpn ,DU (1) ⊗ σκU −j

ét σ̄jét

)

Definition 10.9. Let j ≥ 0 and n ≥ m ≥ 1 be integers. Define the j-component of the big

generalized Heegner class to be z
[j]
U ,cpn,m := δcpn,∗(e

[j]
U ,cpn).

The Gysin map for the interpolated coefficient systems is compatible with the one in (10.7)
via the moment maps; more precisely, for each k ∈ Z ∩ U with k ≥ j we have, writing

Xm = Xm ⊗Q Q and DU ⊗ σκU −j
ét σ̄jét = D

(k−2−j,j)
ét to simplify the notation,

(10.16)

H0
ét

(
Scpn , δ

∗
cpn(D

(k−2−j,j)
ét

)
)

H2
ét

(
Xm ⊗ Fcpn ,D

(k−2−j,j)
ét

)
H1(Fcpn ,H

1
ét(Xm,D

(k−2−j,j)
ét

)

H0
ét

(
Scpn , δ

∗
cpn(M

(k−2−j,j)
ét

)
)

H2
ét

(
Xm ⊗ Fcpn ,M

(k−2−j,j)
ét

(1)
)

H1(Fcpn ,H
1
ét(Xm,M

(k−2−j,j)
ét

(1))).

δcpn,∗

momk−2 momk−2

∼

momk−2 momk−2

δcpn,∗ ∼

The class z
[j]
U ,cpn,m gives an element of H1(Fcpn ,H

1
ét(Xm ⊗Q Q,D

(k−2−j,j)
ét )) via Diagram

(10.16), and it follows from the definitions and Lemma 10.8 that for each k ∈ Z ∩ U with

k ≥ j we have momk−2(z
[j]
U ,cpn,m) = z

[k,j]
cpn,m.

Lemma 10.10. coresFcpn+1/Fcpn
(z

[j]
U ,cpn+1,m

) = U ′
p ·z

[j]
U ,cpn,m, for all n ≥ m ≥ 0 and all j ≥ 0.

Proof. The generalization of the proof of [JLZ21, Proposition 5.1.2] presents no difficulty and
is left to the reader. �
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10.9. Big Heegner classes associated to quaternionic Hida families. We now consider
the special case m = 1 in the previous constructions. Let F∞ be the quaternionic Hida family
fixed before, passing through the p-stabilized modular form F0 of weight k0 ≡ 2 (mod 2(p−1))
and trivial character. The universal character κU is the restriction of ϑ2 : Z×

p → I× to U

(recall that the extension I/Λ is locally étale at the point z 7→ xk−2 in X ). We still denote
F∞ the restriction of of F∞ to U ; we also denote in this section by k an integer in Z∩U and
by Fk the specialization of F∞ at k (note that for all such k, the modular form Fk has trivial
character, and k ≡ 2 mod p− 1). Let ap(Fk) = ap(fνk) be the Up-eigenvalue (as before, νk is
the arithmetic morphism corresponding to k). We consider the Galois representation

VU = H1
ét(X1 ⊗Q Q,Λ[1/p])⊗̂Λ[1/p]ΛU [1/p].

Then the restriction of T[1/p] to U is isomorphic to Vord
U

(1) = eordVU (1). For each k ∈ Z∩U

the canonical specialization map ΛU [1/p]→ Fk induces a map Vord
U

(1)→ V ∗
Fk

(here Fk is the

image of the Hecke field of Fk in Qp). By projection, we therefore obtain a map

(10.17) H1
(
Fcpn ,Λ[1/p](1) ⊗ σκU −j

ét σ̄jét

)
// H1

(
Fcpn ,V

ord
U

(1) ⊗ σκU −j
ét σ̄jét

)
.

Definition 10.11. The (F∞, j)-th component of the generalized big Heegner class is the

image, denoted z
[F∞,j]
U ,cpn,1 of the generalized big Heegner class z

[j]
U ,cpn,1 in Definition 10.9 under

the map (10.17).

As in [JLZ21, §3.5], observe that the groups appearing above may be infinite dimensional
over ΛU [1/p]. For a GK -module M , we shall denote H1

Σ(K,M) = H1(Gal(KΣ/K),M), where
KΣ is the maximal extension of K unramified outside the set Σ of all places dividing Np. Then,

accordingly with this notation, z
[F∞,j]
U ,cpn,1 belongs to H1

Σ(Fcpn ,V
ord
U

(1)⊗ σκU −j
ét σ̄jét).

We now interpolate the characters σ−j σ̄j for j ≥ 0. Let Fcp∞ =
⋃∞

n=1 Fcpn ; the Galois
group Gal(Fcp∞/Fc) is isomorphic to the group Gal(Hcp∞/Hc) (because, since (cp,N) = 1,
FN+ and Hcpn are linearly disjoint over K), and this Galois group is isomorphic to the group
Γ∞ in §6.3 (because P is totally ramified in Hcp∞). For any integer n ≥ 1, let Γn denote the
subgroup Γn = Gal(Fcp∞/Fcpn) of Γ∞. By class field theory, the reciprocity map induces an
isomorphism Γ1

∼= (OK ⊗ Zp)
×/Z×

p , so the character σ/σ̄ : (OK ⊗ Zp)
×/Z×

p → Z×
p induces

a Galois character σét/σ̄ét : Γ1 → Z×
p . We view Λ1 = Zp[[Γ1]] as Gal(Q/Fcp)-module via

the canonical projection and the canonical embedding of group-like elements Γ1 →֒ Λ1; also,
denote by Λ1(σ̄ét/σét) the Galois module Λ1 equipped with the twisted action by the inverse
of σét/σ̄ét. For each integer j and each integer n ≥ 1, there is a canonical specialization

map Λ1(σ̄ét/σét) → σ−j
ét σ̄

j
ét from the category of Gal(Q/Fcp)-representations to the category

of Gal(Q/Fcpn)-representations which takes µ ∈ Λ1(σ̄ét/σét) to (
∫
Γcpn

dµ)(σ̄ét/σét)
j . Finally,

define σκU −jσ̄j := σκU ⊗̂ZpΛ1(σ̄ét/σét). We therefore obtain a map

(10.18) momj : H
1
(
Fcp,V

ord
U (1)⊗̂Zpσ

κU −j
ét σ̄jét

)
−→ H1(Fcpn ,V

ord
U (1)⊗ σκU −j

ét σ̄jét).

Proposition 10.12. There exists an element z
[F∞,j]
U ,cp ∈ H1

(
Fcp,V

ord
U

(1)⊗̂Zpσ
κU −j
ét

σ̄j
ét

)
such

that momj(z
[F∞,j]
U ,cp ) = a−n

p z
[F∞,j]
U ,cpn,1, for all n ≥ 1 and all j ≥ 0.

Proof. This follows from [LZ16, Proposition 2.3.3] with h = λ = 0 and Lemma 10.10. �

For each k ∈ Z ∩U , composing with the weight k specialization, we also have a map

momk−2,j : H
1
(
Fcp,V

ord
U (1)⊗̂Zpσ

κU −j
ét σ̄jét

)
−→ H1(Fcpn , V

∗
Fk
⊗ σk−2−j

ét σ̄jét).

Theorem 10.13. For each k ∈ Z∩U with k ≥ j, we have momk−2,j(z
[F∞,j]
U ,cp ) = a−n

p (Fk)z
[Fk,j]
cpn,1 .
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Proof. By construction, for each k ∈ Z ∩U with k ≥ j, the image (which we denoted z
[Fk,j]
cpn,1 )

of z
[k,j]
cpn,1 under the map (10.12) is the image of z

[F∞,j]
U ,cpn,1 under the weight k specialization map.

Therefore, the result follows from Proposition 10.12. �

10.10. Specialization of big Heegner classes. Let (σ̄ét/σét)
κU /2 : Γ1 → Λ× be the com-

position of σ̄ét/σét : Γ1 → Z×
p with the character ϑ : Z×

p → Λ×. Using the isomorphism

σ(OK ⊗ Zp)
× ∼= Z×

p we see that σκU σ̄κU = ϑ2
K , where ϑK is the composition of ϑ with

the norm map. Therefore, σκU

ét (σ̄ét/σét)
κU /2 = ϑK . Define V

†
U

:= Vord
U

(1) ⊗ Θ−1. As
GK -representations, we then have

(10.19) Vord
U (1)⊗̂Zpσ

κU

ét (σ̄ét/σét)
κU /2 ∼= V

†
U
.

The element in Proposition 10.12 corresponds to an element zU ,cp in H1
Σ(Fcp,V

†
U
). As before,

using that F∞ has trivial character and that H1
Σ(Fcp,V

†
U
) is finite dimensional, we see that

zU ,cp is invariant under the action of Gal(Fcp/Hcp), and therefore may be regarded as an

element in H1
Σ(Hcp,V

†
U
). For each finite order character χ and each k ∈ Z∩U , we thus have

specialization maps

spνk,χ : H
1
Σ(Hcp,V

†
U
)→ H1(Hcp,T

†
νk
(χ)),

where T
†
νk(χ) is the twist of T†

νk by χ, where νk is the arithmetic morphism associated with
k. The following result is then an immediate consequence of our constructions:

Theorem 10.14. For each algebraic finite order character χ of conductor cpn for some n ≥ 1,

we have spk,χ(zU ,cp) = z
[Fk,k/2−1]
cpn,1 ⊗ χ.

11. Results

11.1. Specializations of big Heegner points. We consider the construction of generalized

Heegner classes in §10 for the case m = 0 and j = k/2 − 1. Let F ♯
k be a p-ordinary newform

on X0 of weight k ≡ 2 mod 2(p − 1) and trivial character, and consider the self-dual twist

V †
F♯ = VF♯

k
(k/2) of the Deligne Galois representation associated with F ♯

k. Let Wk =Wk,0 and

Φ
[k,j]

F♯
k

= prF♯
k
◦ Φ[k,j]

m : ǫW CHk−1(Wk ⊗H Fcpn)Q −→ H1

(
Fcpn , V

†
F♯

k

⊗ (σétσ̄
−1
ét )k/2−1χk/2−1

cyc

)

the p-adic Abel–Jacobi map. Taking ξ = χ
k/2−1
cyc in Lemma 10.4 we obtain a map

Φét

F♯
k

: ǫW CHk−1(Wk ⊗H Fcpn)Q −→ H1(Fcpn , V
†
F♯

k

).

Set ∆cpn = ∆cpn,0; then we have generalized Heegner classes Φét

F♯
k

(∆cpn) for n ≥ 0 as in

Definition 10.5. Let uc = ♯(O×
c )/2 and α the unit root of the Hecke polynomial at p acting on

F ♯
k. We normalize these points to obtain a non-compatible family of quaternionic generalized

Heegner classes by setting (here recall that Frobp is the Frobenius element at p and similarly
denote Frobp̄ the Frobenius element at p̄)

• zF♯
k,c

= 1
uc

(
1− pk/2−1

α Frobp

)(
1− pk/2−1

α Frobp̄

)
· Φét

F♯
k

(∆c);

• zF♯
k,cp

n =
(
1− pk−2

α

)
· Φét

F♯
k

(∆cpn) for n ≥ 1.

Then coresHcpn/Hcpn−1
(zF♯

k ,cp
n) = α ·zF♯

k ,cp
n−1 for all n ≥ 1 ([Mag22, §7.1.2]) and we can define

(using Shapiro’s lemma for the isomorphisms)

• x
♯
c = lim←−

n

α−nzF♯
k ,cp

n ∈ H1
Iw(Γ∞, V

†
F♯

k

) ∼= H1(Hc, V
†
F♯

k

⊗O[[Γ∞]]);

• z
♯
c = coresHc/K(x♯

c) ∈ H1
Iw(Γ̃∞, V

†
F♯

k

) ∼= H1(K,V †
F♯

k

⊗O[[Γ̃∞]]).
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For any character χ : Γ̃∞ → Q
×
p , we can then consider the specialization map, and obtain an

element z
♯
χ ∈ H1(Hc, V

†
F♯

k ,χ
); here V †

F♯
k ,χ

= V †
F♯

k

⊗ χ.

Let F∞ be the quaternionic Hida family passing through the modular form Fk. We also
assume that the residual p-adic representation ρ̄f is irreducible, p-ordinary and p-distinguished.

Define zc = ϑ−1
(
−
√
−DK

c2

)
Zc and write as before zc(ν) for ν(zc).

Theorem 11.1. For all ν of weight k ≡ 2 mod 2(p− 1), we have (pr∗)(zc(ν)) = z
♯
c.

Proof. Let ν be as in the statement, let Fk = Fν and F ♯
k the form whose ordinary p-stabilization

is Fk. Let φ̂ : Γ̃∞ → Q
×
p be the p-adic avatar of a Hecke character φ of infinity type (k/2,−k/2);

then χ = φ̂ξ̂−1
k is a finite order character. Consider the map LΓ̃∞

F♯
k,ξk

obtained by composing the

map LΓ∞

F♯
k,ξk

in (7.11) for ξ̂k = ξν with the canonical map arising from the inclusion Γ∞ →֒ Γ̃∞.

Combining Theorem 9.13, Theorem 5.4 and [Mag22, Theorem 7.2], we have:

ν(L geo
I,ξ )(φ̂−1) = ν

(
σ−1,p√
−DK

)
· ν(L alg

I,ξ )(φ̂
−1) (by Theorem 9.13)

=

(
σ−1,p√
−DK

)(
c−kν/2+1

LFν ,ξν (φ̂
−1)
)

(by Theorem 5.4)

=

(
σ−1,p√
−DK

)(
c−kν/2+1

LF♯
ν ,ξν

(φ̂−1)
)

(by Lemma 5.1)

= (−1)kν/2−1 ·
√
−DK

kν/2−1

ckν−2
LΓ̃∞

F♯
k ,ξk

(resp(z
♯
ξk
))(φ̂−1) (by [Mag22, Theorem 7.2]).

Because of the injectivity of LΓ̃∞

F♯
k,ξk
◦ resp (cf. [Cas20, Lemma 6.4] and the proof of [Cas20,

Theorem 6.5]), it follows from Lemma 7.3 that pr∗ (ν(Zξ)) =
(
−
√
−DK

c2

)k/2−1
· z♯

ξk
. Now we

have ϑν(u) = uk/2−1 for u ∈ Z×
p , and the result follows. �

Remark 11.2. We shall compare Theorem 11.1 with analogues results by Castella [Cas20] and
Ota [Ota20]. We first observe the difference in the Euler factors are implicit in the use of pr∗,
while [Ota20] uses the map (pr1)∗ (this formulation is similar to the one in [JLZ21]). Compar-
ing Theorem 11.1 with the analogue result in the GL2 case obtained in [Cas20, Theorem 6.5]

(especially [Cas20, Equation (6.9)]), the reader should notice the correction factor ν
(
−
√
−DK

c2

)

which is present in our paper and does not appear in [Cas20]. This difference is due to two
minor corrections: the first one is in [CH18a, Theorem 4.9] (noticed by Kobayashi [Kob23]
and fixed in [Mag22, Theorem 7.2]) and explains the contribution of

√
−DK ; the second one,

explaining the contribution of c, arises from the comparison result in Theorem 5.4, which is not
considered in [Cas20, Equation (2.5)]. Accordingly with [Ota20, Theorem 1.2], the correction

factor ν
(
−
√
−DK

c2

)
(in the GL2-case) should not appear in [Cas20]. The reason for the discrep-

ancy between [Cas20, Theorem 6.5] (in the corrected form of Theorem 11.1) and Ota’s result
[Ota20, Theorem 1.2] is the following. In the proof of [Cas20, Proposition 4.4], the author
claims that the Heegner points considered in loc. cit. and [CH18a] coincide with those con-
sidered in [How07]; comparing the two set of points explains this discrepancy. For simplicity,
we only treat the case of the elliptic curve Ec,n whose complex points are Ec,n(C) = C/Ocpn .
Recall that the p-power level structure in [How07] is (in the current notation) cϑ ∈ OK , which
gives rise to a pn-torsion point in C/Ocpn . On the other hand, the pn-level structure in [Cas20]

is defined in [CH18a] and amounts to consider the level structure µpn
∼→ Ec,n[p

n] →֒ Ec,n[p
n]
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which takes ζps to the idempotent ep (in [CH18a] the idempotents ep and ep̄ coincide with those
chosen in §2.2); however, note that cϑ = cϑ(ep + ep̄) = cϑep + cϑep̄ as elements in OK ⊗ Zp.
This implies that the Heegner points considered in [How07] and [CH18a, Cas20] are Galois
conjugate to each other, explaining the correction factors appearing in Theorem 11.1.

11.2. Big Heegner points and big generalized Heegner classes. Let U be a sufficiently
small fixed neighborhood of k ∈ Z with k ≡ 2 mod 2(p − 1). Since k − 2 is even for all
k ∈ Z ∩U , we can define j = k/2 = κU /2 and define

zc := coresHcp/K

(
zU ,cp

)
∈ H1

Σ(K,V
†
U
).

Theorem 11.3. There exists a sufficiently small neighborhood U of k where zc = zc.

Proof. By Theorem 10.14, for each finite order character χ of Gal(Kab/K) of conductor pn for
some integer n ≥ 1 and each νk corresponding to k ∈ Z∩U , we see that the image spνk,χ(zc)

of zc in H1(K,T†
νk (χ)) is z

[Fk ,k/2−1]
cpn,1 ⊗ χ. Therefore, pr∗

(
spνk,χ(zc)

)
= pr∗(spνk,χ(zc)) by

Theorem 11.1. Since pr∗ is an isomorphism, we have spνk,χ(zc) = spνk,χ(zc) for all such νk and

χ. Since H1
Σ(K,V

†
U
) is a finitely generated ΛU -module, the result follows. �

Remark 11.4. Theorem 11.3 only works over neighborhoods of integers points in X . Even
if the construction of big generalized Heegner classes can probably (at least in the ordinary
case) be extended to the whole Hida family I, the strategy to prove Theorem 11.3 involves a
comparison result at integer points in X , which does not immediately extends to bigger sets
in I. We hope to come to this problem (at least in the ordinary case) in a future work.
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