english Icono del idioma   español Icono del idioma  

Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/20.500.12008/48454 Cómo citar
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorBerrendero, José-
dc.contributor.authorCholaquidis, Alejandro-
dc.contributor.authorCuevas, Antonio-
dc.date.accessioned2025-02-17T18:23:36Z-
dc.date.available2025-02-17T18:23:36Z-
dc.date.issued2024-
dc.identifier.citationBerrendero, J, Cholaquidis, A y Cuevas, A. "On the functional regression model and its finite-dimensional approximations". Statistical Papers. [en línea] 2024, 65:5167–5201. DOI: 10.1007/s00362-024-01567-9. 35 h.es
dc.identifier.urihttps://hdl.handle.net/20.500.12008/48454-
dc.description.abstractThe problem of linearly predicting a scalar response Y from a functional (random) explanatory variable X = X(t), t ∈ I is considered. It is argued that the term “linearly” can be interpreted in several meaningful ways. Thus, one could interpret that (up to a random noise) Y could be expressed as a linear combination of a finite family of marginals X(ti ) of the process X, or a limit of a sequence of such linear combinations. This simple point of view (which has some precedents in the literature) leads to a formulation of the linear model in terms of the RKHS space generated by the covariance function of the process X(t). It turns out that such RKHS-based formulation includes the standard functional linear model, based on the inner product in the space L2[0, 1], as a particular case. It includes as well all models in which Y is assumed to be (up to an additive noise) a linear combination of a finite number of linear projections of X. Some consistency results are proved which, in particular, lead to an asymptotic approximation of the predictions derived from the general (functional) linear model in terms of finite-dimensional models based on a finite family of marginals X(ti ), for an increasing grid of points t j in I . We also include a discussion on the crucial notion of coefficient of determination (aimed at assessing the fit of the model) in this setting. A few experimental results are given.es
dc.description.sponsorshipANII: FCE_1_2019_1_156054es
dc.format.extent35 h.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenes
dc.publisherSpringeres
dc.relation.ispartofStatistical Papers, 2024, 65:5167–5201. DOI: 10.1007/s00362-024-01567-9es
dc.rightsLas obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad de la República.(Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014)es
dc.subject.otherFUNCTIONAL DATA ANALYSISes
dc.subject.otherFUNCTIONAL REGRESSIONes
dc.subject.otherRKHS METHODSes
dc.subject.otherCOMPARISON OF LINEAR MODELSes
dc.titleOn the functional regression model and its finite-dimensional approximationses
dc.typeArtículoes
dc.contributor.filiacionBerrendero José-
dc.contributor.filiacionCholaquidis Alejandro, Universidad de la República (Uruguay). Facultad de Ciencias. Centro de Matemática.-
dc.contributor.filiacionCuevas Antonio-
dc.rights.licenceLicencia Creative Commons Atribución (CC - By 4.0)es
dc.identifier.doi10.1007/s00362-024-01567-9-
Aparece en las colecciones: Publicaciones académicas y científicas - Facultad de Ciencias

Ficheros en este ítem:
Fichero Descripción Tamaño Formato   
s00362-024-01567-9-3.pdf1,37 MBAdobe PDFVisualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons