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Abstract
The problem of linearly predicting a scalar response Y from a functional (random)
explanatory variable X = X(t), t ∈ I is considered. It is argued that the term
“linearly” can be interpreted in several meaningful ways. Thus, one could interpret
that (up to a random noise) Y could be expressed as a linear combination of a finite
family of marginals X(ti ) of the process X , or a limit of a sequence of such linear
combinations. This simple point of view (which has some precedents in the literature)
leads to a formulation of the linear model in terms of the RKHS space generated by the
covariance function of the process X(t). It turns out that suchRKHS-based formulation
includes the standard functional linear model, based on the inner product in the space
L2[0, 1], as a particular case. It includes as well all models in which Y is assumed to be
(up to an additive noise) a linear combination of a finite number of linear projections
of X . Some consistency results are proved which, in particular, lead to an asymptotic
approximation of the predictions derived from the general (functional) linear model
in terms of finite-dimensional models based on a finite family of marginals X(ti ), for
an increasing grid of points t j in I . We also include a discussion on the crucial notion
of coefficient of determination (aimed at assessing the fit of the model) in this setting.
A few experimental results are given.
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1 Introduction

Linear regression is a topic of leading interest in statistics. The general paradigm is
well-known: one aims to predict a response variable Y in the best possible way as
a linear (or affine) function of some explanatory variable X . In the classical case of
multivariate regression, where Y is a real random variable and X takes values in R

d

there is little doubt about the meaning of “linear”. However, this is not that obvious
when X is a more complex object that can be modelled via different mathematical
structures. The most important example arises perhaps in the field of Functional Data
Analysis (FDA) where X = X(t) is a real function; see e.g., Cuevas (2014) for a
general survey on FDA andHorváth and Kokoszka (2012) for a more detailed account,
including a short overview of functional linear models.

1.1 Some notation

Moreprecisely,wewill deal herewith the scalar-on-function regression problemwhere
the response Y is a real random variable and X is a random function (i.e., a trajectory of
a stochastic process). In formal terms, let (�,F ,P) be a probability space and denote
by L2(�) = L2(�,F ,P) the space of square integrable random variables defined on
(�,F ,P). Denote by 〈X ,Y 〉L2(�) = E(XY ) the inner product in this space and by
‖ · ‖L2(�) the corresponding norm. For Y1,Y2 ∈ L2(�) the notation Y1⊥Y2 will stand
for E(Y1Y2) = 0.

Consider a response variable Y ∈ L2(�) and a family of regressors {X(t) : t ∈
I } ⊂ L2(�), where I is an arbitrary index set. For the sake of simplicitywewill assume
both the response and the explanatory variable are centred, so thatE(Y ) = E(X(t)) =
0, for all t ∈ I . The covariance function K : I × I → R of {X(t) : t ∈ I } is the
symmetric, positive semidefinite function given by K (s, t) = 〈X(s), X(t)〉L2(�) =
E(X(s)X(t)). Inwhat followswewill assume that I = [0, 1] and K (s, t) is continuous
on I× I .Wewill also assume that all involved processes are separable. This can always
be donewithout loss of generality, since Separability Theorem (Ash andGardner 1975,
p. 166) establishes that any process {X(t), t ∈ [0, 1]} has a separable version.

The trajectories X(·) = X(t) of the underlying process are assumed to live in
the space L2[0, 1] of square integrable real functions. Denote by 〈·, ·〉2 and ‖ · ‖2,
respectively, the usual inner product and norm in L2[0, 1]. The norm in the finite-
dimensional Euclidean space Rp will be simply denoted by ‖ · ‖.

1.2 The aim of this work. Somemotivation

Our purpose is to show that the term “linear” admits several interpretations in the
functional case; all of them could be useful, depending on the considered context.
We will provide a general formulation of the linear model and we will show that
several useful formulations of functional linear models appear as particular cases.
Some basic consistency results will be given regarding the estimation of the slope
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(possibly functional) parameter. The theory of Reproducing Kernel Hilbert Spaces
(RKHS) will be an important auxiliary tool in our approach; see Berlinet and Thomas-
Agnan (2004).

In order to give some perspective and motivation, let us consider, for I = [0, 1],
the classical L2-based functional regression model, as given by

Y =
∫ 1

0
β(t)X(t)dt + ε := 〈β, X〉2 + ε, (1)

where X = X(t) is a process, ε is an error variable, with E(ε|X) = 0 and Var(ε|X) =
σ 2, and β ∈ L2[0, 1] is the slope function. The usual aim in such a model is estimating
β and σ 2 from an iid sample (Xi ,Yi ), i = 1, . . . , n. As we are assuming E(X(t)) = 0
weomit aswell the additional intercept additive termβ0 in the theoretical developments
involving model (1). This term will be incorporated in the numerical examples of
Sect. 6.

The vast majority of literature on functional linear regression is concerned with
model (1); see, e.g., the pioneering book by Ramsay and Silverman (2005) (whose
first edition dates back to 1997), as well as the paper by Cardot et al. (1999), the book
by Horváth and Kokoszka (2012) and references therein. Though this model is, in
several aspects, natural and useful, we argue here that this is not the only sensible
approach to functional linear regression.

There are several reasons for this statement: first, unlike the finite dimensional
model Y = β1X1 + . . . + βd Xd + ε, there is no obvious, easy to calculate, estimator
for β under model (1). The simple, elegant least squares theory is no longer available
here. The optimality properties (Gauss–Markov Theorem) of the finite-dimensional
least squares estimator do not directly apply to (1) either. Second, note that in the finite-
dimensional situation, where X = (X1, . . . , Xd), there is a strong case in favour of a
model of typeY = β1X1+. . .+βd Xd+ε. The reason is that, as it is well-known,when
the joint distribution of all the involved variables is Gaussian, the best approximation
of Y in terms of X = (X1, . . . , Xd) is necessarily of type β1X1 + . . . + βd Xd . A
similar motivating property does not hold for model (1). Third, some natural, linear-
like functional approaches do not appear as particular instances of (1); this is the case,
for example, with an approach of type the response Y is (up to an additive noise) a
linear combination of a finite subset of variables {X(t), t ∈ I }.

Our goal here is to analyse a more general linear model which partially addresses
these downsides and includesmodel (1) as a particular case. Perhapsmore importantly,
the finite dimensional models of type Y = β1X(t1) + . . . + βp X(tp) + ε, with t j ∈ I ,
β j ∈ R and p ∈ N are also included. This is particularly relevant in practice since,
in some cases, the predictive power of such models may be larger than that of the
L2-based model (1); see the experiments in Sect. 6. The special points ti used to define
these finite-dimensional models are often called “impact points”. Some interesting
references on impact points-based functional regression (with no explicit use of an
RKHS approach) are McKeague and Sen (2010), Kneip et al. (2016), Poß et al. (2020)
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1.3 Some literature on RKHSmethods in functional regression

The book by Hsing and Eubank (2015) is a good reference for the mathematical basis
of functional data analysis, including the use of RKHS theory in this field.

If we focus on RKHS methods in functional regression models, we should refer to
the papers by Hsing and Ren (2009) and Kneip and Liebl (2020).

The RKHS-based linear model (2) we will consider below has been previously
analysed by other authors, from slightly different points of view. Thus (Shin and
Hsing 2012, Eq. (2.3)), use that model with a particular emphasis in prediction. In
fact, our Theorem 2 below provides a result similar to that Theorem 3.1 in Shin and
Hsing (2012) under quite different conditions. Also, the RKHS formulation of the
functional linear model explicitly appears in Hsing and Ren (2009) from a rather
general perspective. Some closely related ideas appear as well in Kneip and Liebl
(2020) focussing on the topic of reconstructing partially observed functional data.

The linear model is also considered from the RKHS perspective by Berrendero
et al. (2019). Still, this work is only focussed in variable selection problems (i.e., on
the estimation of the impact points) with no further theoretical development of the
RKHS-based model.

From a completely different point of view, the RKHS methodology in functional
regression has been previously addressed by Yuan and Cai (2010) and Shin and Lee
(2016). Let us note, however, that these authors in fact deal with the classical L2-model
(1); the RKHS techniques are used in these papers to define the penalization term in
a penalized approach to the estimation of the slope function β. See also Shang and
Cheng (2015) in the context of generalized linear models.

1.4 The organization of this paper

In Sect. 2 our general linear RKHS-based model is defined. Section3 is devoted to
prove that some relevant examples of practical interest appear just as particular cases
of such a model. Two results of consistent estimation of the slope function are given
in Sect. 4. A discussion of the coefficient of determination on this setting is given
in Sect. 5. Some experimental results are discussed in Sect. 6. Some conclusions are
summarized in Sect. 7. The proof of Theorem 2 is given in the final Appendix.

2 A general formulation of the functional linear model

In the functional framework introduced in the previous section, a linear model might
be defined as any suitable linear expression of the variables X(t) aiming to explain
(predict) the response variable Y . The L2-model (1) is just one possible formulation
of such idea.

In the present work, by “linear expression” we mean an element of the closed linear
subspace LX of L2(�) spanned by the variables in {X(t) : t ∈ I }. In other words,
LX is the closure of the linear subspace of all finite linear combinations of variables
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in the collection. Hence, LX includes both finite linear combinations of the form∑p
j=1 β j X(t j ) (where p ∈ N, β1, . . . , βp ∈ R, and t1, . . . , tp ∈ I ) and rv’s U such

that there exists a sequenceUn of these linear combinations with ‖Un−U‖L2(�) → 0,
as n → ∞.

In more precise terms, our general linear model will be defined by assuming that
Y and {X(t) : t ∈ I } are related by

Y = UX + ε, (2)

where UX ∈ LX , and ε is a random variable with E(ε|X) = 0 and Var(ε|X) = σ 2 (a
positive constant). Note that E(ε|X) = 0 entails that ε belongs to L⊥

X , the orthogonal
complement of LX , that isE(εU ) = 0 for allU ∈ LX . Let us also assume throughout,
by simplicity, that E(X(t)) = 0 for all t ∈ I ; see Remark 1 below.

Since LX is closed, we know that L2(�) = LX ⊕ L⊥
X , and then the elements in

the model are unambiguously given by the orthogonal projections UX = ProjLX
(Y )

and ε = ProjL⊥
X
(Y ). Given a linear continuous operator T , ‖T ‖op stands for the usual

operator norm ‖T x‖op = sup‖x‖=1 ‖T x‖.

2.1 An RKHS formulation of the proposed linear model

The aim of this subsection is to give a fairly natural parametrization of model (2),
based on the RKHS theory. As a consequence of this alternative formulation we will
show that several useful linear models appear as particular cases of (2).

Let us begin by briefly defining the notion of RKHS associated with a symmet-
ric, positive semidefinite function K : [0, 1]2 → R; in our case, K will be the
(continuous) covariance function of the process X whose trajectories provide the
functional data. We first define the space H0

K of functions g : [0, 1] → R of the
form g(·) = ∑n

j=1 β j K (·, t j ), for all possible choices of n ∈ N, t1, . . . , tn ∈ [0, 1]
and β1, . . . , βn ∈ R. If f ∈ H0

K with f (·) = ∑m
i=1 αi K (·, si ), the inner product

〈 f , g〉K = ∑
i, j αiβ j K (si , t j ) provides H0

K with a structure of pre-Hilbert space.

Then HK is defined as the completion of H0
K , obtained by incorporating the point-

wise limits of all Cauchy sequences of functions in H0
K . The “completed” RKHS

inner product fulfills the so-called reproducing property 〈 f , K (·.t)〉K = f (t), for all
t ∈ [0, 1], f ∈ HK . See Berlinet and Thomas-Agnan (2004), Cucker and Zhou (2007)
and Janson (1997) for more details.

In the following paragraphs we recall a deep interpretation of the RKHS theory in
statistical terms. Denote by R

I the set of all real functions defined on I = [0, 1]. We
are going to define a map �X : LX → R

I that will play a key role in the sequel: given
U ∈ LX , �X (U ) is just the function

�X (U )(t) = E(UX(t)). (3)

As we will next show, this transformation defines an isometry (often called Loève’s
isometry; see Lemma 1.1 in Lukić and Beder (2001)) between LX and �X (LX ). We
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will also see that �X (LX ) coincides in fact with the RKHS generated by K , that we
have denoted HK .

Let us recall here, for the sake of completeness, a simple lemma collecting two
elementary properties of �X :

Lemma 1 Let �X (U ) be as defined in (3). Then,

(a) �X is injective.
(b) �X (X(t))(·) = K (·, t), for all t ∈ I . Equivalently, �−1

X [K (·, t)] = X(t).

Proof To show (a), let U , V ∈ LX be such that �X (U )(t) = �X (V )(t), for all t ∈ I .
Then, E[(U − V )X(t)] = 0, for all t ∈ I , what implies U − V ∈ L⊥

X . Since we also
haveU −V ∈ LX , we getU = V ; recall that in L2 spaces we identify those functions
that coincide almost surely. Property (b) is obvious from the definition. ��

As a consequence of this result �X : LX → �X (LX ) is a bijection (Loève’s isom-
etry). Observe that by Lemma 1(b), all the finite linear combinations

∑p
j=1 β j K (·, t j )

belong to �X (LX ).
The inner product in LX induces an inner product in �X (LX ): given f , g ∈

�X (LX ), define

〈 f , g〉 := 〈�−1
X ( f ),�−1

X (g)〉L2(�).

It turns out that �X (LX ), endowed with 〈·, ·〉, is a Hilbert space. Once we endow
�X (LX ) with this structure, the mapping �X is a linear, bijective, and inner product
preserving operator between LX and �X (LX ); this accounts for the word “isometry”.

On the other hand, it is well-known (see, e.g., Appendix F in Janson (1997) for
details) that, given apositive semidefinite function K : I×I → R (called “reproducing
kernel”), there is a unique Hilbert space, generated by the linear combinations of the
form

∑
j β j K (·, t j ). This space is usually called the Reproducing Kernel Hilbert

Space associated with K .
Let us recall also the following simple result, that shows that �X (LX ) coincides

in fact with the RKHS HK generated by the covariance function K of the process
X = X(t).

Proposition 1 The Hilbert space �X (LX ) and the covariance function K satisfy the
following two properties:

(a) For all t ∈ I , K (·, t) ∈ �X (LX ).
(b) Reproducing property: for all f ∈ �X (LX ) and t ∈ I , 〈 f , K (·, t)〉 = f (t).

Proof (a) follows directly from Lemma 1(b). To prove (b),

〈 f , K (·, t)〉 = 〈�−1
X ( f ), X(t)〉L2(�) = E[�−1

X ( f )X(t)] = �X [�−1
X ( f )](t) = f (t).

The first equality is also due to Lemma 1(b). ��
Finally, from the uniqueness result mentioned above, we conclude that the space

(�X (LX ), 〈·, ·〉) coincides with the RKHS (HK , 〈·, ·〉K ) defined at the beginning of
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this subsection. We are now in a position to recast the general model (2) into a sort of
parametric formulation, where the “parameter” belongs to the RKHS generated by the
covariance function K of the process X = X(t). As we will see, this reformulation
will be particularly useful to encompass several particular cases of practical relevance.

Theorem 1 Model (2) can be equivalently established in the form

Y = �−1
X (α) + ε, (4)

where α ∈ HK and ε is a random variable with E(ε|X) = 0 and Var(ε|X) = σ 2.
In addition the “parameter” α is the cross-covariance function α(t) = E(Y X(t)).

Proof Formulation (4) follows directly from the definition of �X and the fact that this
transformation is a bijection between LX and HK ; henceUX ∈ LX if and only if there
exists a (unique) α ∈ HK such that UX = �−1

X (α).
To prove the second assertion note that, by the reproducing property, α(t) =

〈α, K (·, t)〉K for all t ∈ I , and hence

α(t) = 〈α, K (·, t)〉K = E[�−1
X (α)X(t)] = E[(Y − ε)X(t)] = E[Y X(t)], (5)

because ε ∈ L⊥
X . ��

As a consequence, the RKHS HK is a fairly natural parametric space for our general
linear regression model.

Remark 1 Let us note that model (4) was already considered, with a different notation,
in the paper by Berrendero et al. (2019). Indeed, the inverse Loève transformation
�−1

X (α) is sometimes denoted 〈α, X〉K (or 〈X , α〉K ). This is somewhat of a notational
abuse, as typically the trajectories of the process do not belong to the RKHS HK ; see
Berrendero et al. (2019) for details. Still, the notation is often convenient, so that we
can also use the following expression to formulate the RKHS-model

Y = 〈X , α〉K + ε. (6)

As mentioned above, we assume throughout, by simplicity, E(X(t)) = 0. The general
case can be treated by adding an intercept term β0 on the right-hand side of (6) and
using the estimator α ∈ HK derived from (6) to estimate the additional parameter β0
by a standard minimum squares procedure.

3 Some important particular cases

The above mentioned work by Berrendero et al. (2019) focusses in the model (4)–(6)
from the point of view of its application to variable selection topics. In the present
section, we go further in the study of such model by showing that other several com-
monly used models appear just as particular cases. In Sect. 4 we address the problem
of estimating the “regression parameter” α and in Sect. 6 we carry out some numerical
experiments.
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3.1 Finite dimensional models: a setup for variable selection problems

When there are infinitely many regressors (which is the case in functional regression
problems), several procedures of variable selection are available (see Berrendero et al.
(2019) for details) for replacing the whole set of explanatory variables with a finite,
carefully chosen, subset of these variables. The following proposition characterizes
when it is possible to apply these procedures without any loss of information at all.

Proposition 2 Under model (4)–(6), there exist X(t∗1 ), . . . , X(t∗p) ∈ {X(t) : t ∈ I }
and β1, . . . , βp ∈ R such that Y = β1X(t∗1 ) + · · · + βp X(t∗p) + ε if and only if for all
t ∈ I , α(t) = β1K (t, t∗1 ) + · · · + βpK (t, t∗p).

Proof By Lemma 1(b), Y = β1X(t∗1 ) + · · · + βp X(t∗p) + ε if and only if �−1
X (α) =

β1�
−1
X (K (·, t∗1 ))+· · ·+βp�

−1
X (K (·, t∗p)), what in turn happens if and only if α(t) =

β1K (t, t∗1 ) + · · · + βpK (t, t∗p). ��

3.2 The classical L2-model

For I = [0, 1] assume that X = {X(t) : t ∈ I } is an L2 random process and
Y a response variable such that the RKHS linear model (2) or, equivalently (4) or
(6), holds. To gain some insight, let us illustrate this with an example, beyond the
finite-dimensional models considered in the previous subsection.

Example (Brownian regressors): When X = {X(t) : t ∈ [0, 1]} is a standard
Brownian Motion (K (s, t) = min{s, t}) it can be shown

HK = {α ∈ L2[0, 1] : α(0) = 0, ∃α′ ∈ L2[0, 1] such that α(t) =
∫ t

0
α′(s)ds},

and 〈α1, α2〉K = 〈α′
1, α

′
2〉2. It can also be proved that �−1

X (α) is given by Itô’s

stochastic integral, �−1
X (α) = ∫ 1

0 α′(t)dX(t); for these results see Janson (1997),
Example 8.19, p. 122. Thus, in this case, the linear model (2) or (4) reduces to
Y = ∫ 1

0 α′(t)dX(t) + ε.

Our goal in this subsection is to analyse under which conditions the RKHS model
(2) or (4) entails the L2-model (1). To do this, we need to recall some basic facts about
the RKHS space associated with K . Let us denote by K : L2[0, 1] → L2[0, 1] the
integral operator defined by K , that is

K f (t) =
∫ 1

0
K (t, s) f (s)ds.

Recall that we are assuming throughout that K is continuous. Under this condition, it
is well-known thatK is a compact and self-adjoint operator. The following proposition
is a standard result in the RKHS theory. See, e.g., (Cucker and Zhou 2007, Corollary
4.13) for a proof and additional details.
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Proposition 3 Assume I = [0, 1] and K is continuous. Let λ1 ≥ λ2 ≥ · · · be the
non-null eigenvalues ofK and let e1, e2, . . . be the corresponding unit eigenfunctions.
Then, the RKHS corresponding to K is

HK =
{
f ∈ L2[0, 1] :

∞∑
i=1

〈 f , ei 〉22
λi

< ∞
}

= K1/2(L2[0, 1]), (7)

endowed with the inner product 〈 f , g〉K = ∑∞
i=1〈 f , ei 〉2〈g, ei 〉2/λi .

Thus, the membership to HK can be understood as a “regularity property” estab-
lished in terms of a very fast convergence to zero of the Fourier coefficients 〈 f , ei 〉2.
This is just an alternative, equivalent formulation for the definition of HK given at
the beginning of Sect. 2.1. When the kernel K is continuous, both K and K1/2 can
be considered as operators from L2[0, 1] to the space C[0, 1] of continuous functions.
Expression (7) must be understood in this sense; see (Cucker and Zhou 2007, Th. 2.9
and Corollary 4.13).

Now, let us go back to the classical functional linear regression model (1). We
will show that (1) appears as a particular case of our general model (4) if and only
if the “slope function” α in (4) is regular enough to belong to the image subspace
K(L2[0, 1])which, by Proposition 3, is a subset of HK . The formal statement is given
in the following proposition.

Proposition 4 If the L2-based model (1) holds for some slope function β ∈ L2[0, 1],
then it canbe formulatedas anRKHS-basedmodel (4)whose slope function isα = Kβ.
Conversely, if theRKHSmodel (4) holds for someα ∈ HK and there existsβ ∈ L2[0, 1]
such that α = Kβ, then the model can be reformulated as an L2-model such as (1)
with slope function β.

Proof The proof is essentially the same as that of Th. 1 in Berrendero et al. (2022), an
analogous result in the framework of the functional logistic regression model.

��
Observe that the difference between (4) and (1) is not just aminor technical question.

There are important values of the parameter α such that α ∈ HK but α �= Kβ

for all β. This is the case, for example, of finite linear combinations of the form
β1K (·, t1) + · · · + βpK (·, tp), which are important because they allow us to include
finite dimensional regression models (also called impact point models in the literature
on functional regression) as particular cases of the general model (see Proposition 2
above).

The procedures to fitmodel (1) very often involve to project X = {X(t) : t ∈ [0, 1]}
on a convenient subspace of L2[0, 1]. More precisely, given {u j : j = 1, 2, . . .}, an
arbitrary orthonormal basis of L2[0, 1], it is quite common to use as regressor variables
the projections of X = {X(t) : t ∈ [0, 1]} on the finite dimensional subspace spanned
by the first p elements of the basis. This amounts to replace the whole trajectory with
〈X , u1〉2u1+· · ·+〈X , u p〉2u p. Thismethodwillwork finewhenever

∫ 1
0 X(t)β(t)dt ≈∑p

j=1 β j 〈X , u j 〉2, where β j = 〈β, u j 〉2. More precisely, this projection-based model
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would be as follows,

Y = β1〈X , u1〉2 + · · · + βp〈X , u p〉2 + ε, (8)

where β1, . . . , βp ∈ R and ε ∈ L⊥
X . A natural question to ask is when there is no

loss in using the projection instead of the whole trajectory, and how is this situation
characterized in terms of the parameter α in (4). The answer is given by Proposition
5 below. Its proof is completely similar to that of the analogous result Theorem 2 (b)
in Berrendero et al. (2022).

Proposition 5 If model (8) holds, then model (4) also holds. Conversely, if (4) holds
and α belongs to the subspace spanned by {Ku1, . . . ,Ku p} then (8) holds.

An important particular case is functional principal component regression (FPCR).
In FPCR, the orthonormal basis is given by u j = e j , the eigenfunctions of K. Then,
Ke j = λ j e j , for j = 1, . . . , p, and the condition in Proposition 5 simply states that
α must belong to the subspace spanned by {e1, . . . , ep}.

4 Estimation and prediction in the RKHS-model

We now focus on the main target of this work, that is, the RKHS-based functional
model defined (with three alternative notations) in (2), (4) or (6). Our aim will be
to estimate the functional parameter α ∈ HK based on a sample of iid observations
(Xi ,Yi ), i = 1, . . . , n with Xi = {Xi (t) : t ∈ [0, 1]}. We will also address the
prediction of the response variable based on the estimation of α.

4.1 Different approaches to the estimation of˛

In short, our aim is to explore two “natural ways” of estimating α. We will first
consider, in Sect. 4.2, an estimator based on regularization, denoted α̌. Though this
method is conceptually meaningful and has some practical interest, it suffers from
the serious limitation of assuming the knowledge of the covariance structure of the
underlying process. Then, in Sect. 4.3 we will consider our main proposal, denoted
α̂p, which relies on the idea of approximating our model (4)–(6) by a sequence of
finite-dimensional linear models. Its consistency is analysed in Theorem 2, the main
result of this work.

4.2 An estimator based on regularization

The interpretation of α as a covariance given by Eq. (5) suggests a natural way to
estimate it. We could just use the sample covariance function,

α̃(t) = 1

n

n∑
i=1

Yi Xi (t).

123



On the functional regression model and its... 5177

Unfortunately, P(α̃ ∈ HK ) = 0 (see Lukić and Beder (2001)) whereas we are assum-
ing α ∈ HK . Also, the natural idea of projecting α̃ on HK (to obtain the element
in HK “closest” to α̃) does not work since HK is not in general closed and might
even be dense in L2[0, 1]; in fact, this is the case when all the eigenvalues of K are
strictly positive, see (Cucker and Zhou 2007, Remark 4.9, p. 59). A common way
of circumventing this problem is to get a sort of “quasi-projection”, by penalizing
the L2-distance with a term accounting for the “roughness” of the quasi-projection, as
measured by the norm in HK . This idea is often referred to as Tikhonov regularization.
It leads to the following estimator of α:

α̌ := arg min
f ∈HK

‖α̃ − f ‖22 + γn‖ f ‖2K ,

where γn > 0 is a sequence of regularization parameters depending on the sample
size. It turns out that α̌ has the following explicit expression:

α̌ = (K + γn I )
−1Kα̃, (9)

whereK is the integral operator defined by the kernel K ; see (Cucker and Zhou 2007,
p. 139).

Note that (9) relies on the previous knowledge of the true covariance operator K.
This could be the case in some particular models (e.g., Lindquist and McKeague
(2009)) but, in general, such assumption is somewhat restrictive. In any case, the
consistency in the RKHS norm of this estimator is established in the following result.

Proposition 6 Let γn → 0 such that nγ 2
n → ∞, then ‖α̌ − α‖2K → 0 in probability.

Proof To prove that ‖α̌ − α‖K → 0 in probability, observe that since α ∈ HK , for all
ε > 0 there exists N = N (ε) such that

∞∑
j=N+1

1

λ j
〈α, e j 〉22 < ε. (10)

For this value of N we have

‖α̌ − α‖K ≤
∥∥∥

N∑
j=1

( λ j

γn + λ j
− 1

)
〈α̃, e j 〉2e j

∥∥∥
K

+
∥∥∥

N∑
j=1

〈α̃ − α, e j 〉2e j
∥∥∥
K

+
∥∥∥

∞∑
j=N+1

λ j

γn + λ j
〈α̃ − α, e j 〉2e j

∥∥∥
K

+
∥∥∥

∞∑
j=N+1

( λ j

γn + λ j
− 1

)
〈α, e j 〉2e j

∥∥∥
K
.

(11)

We will look at each term in the expression above. For the first one, we have:

∥∥∥
N∑
j=1

( λ j

γn + λ j
− 1

)
〈α̃, e j 〉2e j

∥∥∥
K

≤
∥∥∥

N∑
j=1

( λ j

γn + λ j
− 1

)
〈α̃ − α, e j 〉2e j

∥∥∥
K

+
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∥∥∥
N∑
j=1

( λ j

γn + λ j
− 1

)
〈α, e j 〉2e j

∥∥∥
K
.

Now, observe that fromMourier’s SLLN (see e.g. Theorem 4.5.2 in Laha and Rohatgi
(1979) p. 452) ‖α̃ − α‖2 → 0 almost surely (a.s.), and let us define

CN ,n := max
j=1,...,N

( λ j

γn + λ j
− 1

)2‖e j‖2K ≤
( λ1

γn + λ1
− 1

)2 1

λN
→ 0, as n → ∞.

Then, for large enough n, with probability one,

∥∥∥
N∑
j=1

( λ j

γn + λ j
− 1

)
〈α̃ − α, e j 〉2e j

∥∥∥2
K

≤ NCN ,n‖α̃ − α‖22 < ε.

We have used Cauchy–Schwarz inequality in the first inequality above. Similarly, we
also have, for large enough n,

∥∥∥
N∑
j=1

( λ j

γn + λ j
− 1

)
〈α, e j 〉2e j

∥∥∥
K

≤ NCN ,n‖α‖22 < ε,

The second term in (11) satisfies ‖∑N
j=1〈α̃ − α, e j 〉2e j‖2K ≤ Nλ−1

N ‖α̃ − α‖22 < ε,

for large enough n, with probability one. For the third term in (11), let
∑∞

j=1 λ j :=
C < ∞. Then,

∥∥∥
∞∑

j=N+1

λ j

γn + λ j
〈α̃ − α, e j 〉2e j

∥∥∥2
K

=
∞∑

j=N+1

λ j

(γn + λ j )2
〈α̃ − α, e j 〉22

≤ ‖α̃ − α‖22
γ 2
n

∞∑
j=N+1

λ j ≤ C
n‖α̃ − α‖22

nγ 2
n

→ 0,

in probability, since we are assuming nγ 2
n → ∞ and n‖α̃ − α‖22 is bounded in

probability by the Central Limit Theorem. Finally, the fourth term in (11) is also
bounded by ε using (10):

∥∥∥
∞∑

j=N+1

( λ j

γn + λ j
− 1

)
〈α, e j 〉2e j

∥∥∥2
K

=
∞∑

j=N+1

1

λ j

( γn

γn + λ j

)2〈α, e j 〉22 ≤

∞∑
j=N+1

1

λ j
〈α, e j 〉22 < ε.

��
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4.3 RKHS-consistent estimation and prediction

In the previous subsection we have considered a penalized estimator α̌ for the slope
parameter α and we have established its RKHS-consistency. In this subsection we
address the RKHS-based estimation of α using a different strategy: we will use a dis-
crete approximation of the linearmodel itself, taking advantage of the RKHS structure.
As it turns out, predictions based on such estimator can be made in the natural way
with no need of knowing the covariance function, thanks to Loève’s isometry. The
idea is to approximate the RKHS model (4) by a sequence of finite dimensional mod-
els of type of those considered in Proposition 2, based on pn-dimensional marginals
(X(t1,p), . . . , X(tp,p)), obtained by evaluating the process X = {X(t) : t ∈ [0, 1]}
at the grid points Tp = {t j,p}, where p = pn . The corresponding sequence of
least squares estimators of the slope function α̂p will hopefully provide a consistent
sequence of estimators of the true slope function α in (4). This idea is next formalized.

We will use the following lemma (which follows from Theorem 6E in Parzen
(1959)), that states that the function α can be approximated (in the RKHS norm) by
a finite linear combination of the kernel function K , evaluated at points of a partition
of [0, 1].
Lemma 2 Let α ∈ HK . Let us consider Tp = {t j,p : j = 1, . . . , p} where 0 ≤
t1,p ≤ · · · ≤ tp,p ≤ 1, is an increasing sequence of partitions of [0, 1], i.e, Tp ⊂
Tp+1, such that ∪pTp = [0, 1]. Then, there exist β1,p, . . . , βp,p such that,

∥∥α(·) −∑p
j=1 β j,pK (t j,p, ·)

∥∥2
K → 0, as p → ∞.

Now our estimator is defined by the ordinary least squares estimator of the coeffi-
cients β1,p, . . . , βp,p . To be more precise, let us denote

αp(·) =
p∑

j=1

β j,pK (t j,p, ·) and α̂p(·) =
p∑

j=1

β̂ j,pK (t j,p, ·), (12)

where t1,p, . . . , tp,p are chosen as indicated in Lemma 2 and, for j = 1, . . . , p, β̂ j,p

are the ordinary least squares estimators (based on a sample of size n) of the regression
coefficients in the p-dimensional linear model

Yi =
p∑

j=1

β j,p X(t j,p) + ei,p = 〈αp, X〉K + ei,p, i = 1, . . . , n. (13)

To prove the almost sure consistency of the estimator we will need to impose a
condition of sub-Gaussianity. Let us recall that a random variable Y with E(Y ) = 0
is said to be sub-Gaussian with (positive) proxy constant σ 2 (we will denote Y ∈
SG(σ 2)) if themoment generating function ofY satisfiesE (exp(sY )) ≤ exp(σ 2s2/2),
for all s ∈ R. It can be seen that the tails of a random variable Y ∈ SG(σ 2) are lighter
than or equal to those of a Gaussian distribution with variance σ 2, i.e. P(|Y | > t) ≤
2 exp(−t2/(2σ 2)) for all t > 0. A p-dimensional random vector X is said to be sub-
Gaussian with proxy constant σ 2 if X′v ∈ SG(σ 2) for all v ∈ R

d with ‖v‖ = 1.
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Observe that if X is a p-dimensional random vector X = (X1, . . . , X p) and the Xi

are independent with Xi ∈ SG(σ 2) and sub-Gaussian then X is sub-Gaussian with
proxy constant σ 2 as well. See (Rigollet and Hütter 2017, Ch. 1) for details.

Theorem 2 Assume theRKHS-based linearmodel Yi = 〈X , α〉K +εi for i = 1, . . . , n,
as defined in (2), (4) or (6). Let us consider a sequence of approximating p-dimensional
models (with p = pn) as defined in (13). Assume that

(i) The error variables ei,p in the p-dimensional models are iid and sub-Gaussian,
SG(σ 2

p) with σ 2
p ≥ C0 for all p and some C0 > 0.

(ii) The random variable supt∈[0,1] X(t) has sub-exponential tails, that isP(supt∈[0,1]
X(t) > s) ≤ C1 exp(−C2s2) for some constants C1,C2 > 0 and for all s > 0.

(iii) We have p → ∞, as n → ∞, in such a way that there exists C3 > 0 such
that n(γp,p)

2/(p2 log3 n) → C3, where γp,p is the smallest eigenvalue of the
covariance matrix, KTp , of (X(t1,p), . . . , X(tp,p)).

Then, νn‖α̂p − αp‖2K → 0 a.s., for all νn → ∞ such that nγp,p/(p2νn log n) →
C4 > 0. In addition, as a consequence of Lemma 2, ‖α̂p −α‖2K = max{ν−1

n ,O(‖α −
αp‖2K )} a.s.
The proof of this theorem is deferred to the appendix as it is a bit more technical than
those of the previous results in the paper. Let us now discuss the real extent of this
result by analysing how restrictive are the required assumptions.

4.4 Some remarks on the assumptions of Theorem 2

Clearly assumption (i) holds if the errors ei are Gaussian, which is a common
assumption in regression theory. But it is also satisfied by many other usual centred
distributions such as those of compact support or finite mixtures of centred Gaussian
distributions.

Regarding assumption (ii), it is fulfilled, for example, when the process X = {X(t) :
t ∈ [0, 1]} is Gaussian. To see this, define Y = sups∈[0,1] |X(s)| and note that, for any
t > 0, P(sups∈[0,1] X(s) > t) ≤ P(Y > t). Now, according to Theorem 5 in Landau

and Shepp (1970), there is some ε > 0 such that E(eεY 2
) < ∞. But this entails

P

(
sup

s∈[0,1]
X(s) > t

)
≤ P(Y > t) = P(eεY 2

> eεt2) ≤ E(eεY 2
)

eεt2
.

Therefore, condition (ii) is fulfilled with C1 = E(eεY 2
) and C2 = ε.

Finally, hypothesis (iii) in Theorem 2 is satisfied for the case of processes with
stationary and independent increments and equispaced impact points t j,p, as stated in
the following proposition.

Proposition 7 Let {W (t) : t ∈ [0, 1]} be a stochastic process with stationary and
independent increments, such thatE(W 2(t)) < ∞ andE(W (t)) = 0 for all t ∈ [0, 1].
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Then for all δ > 0, p1+δγp,p → ∞, γp,p being the smallest eigenvalue of KTp , the
covariance matrix of the random vector (W (1/p), . . . ,W (1)).

Proof Let us denote, with some notational abuse, W = (W (1/p), . . . ,W (1)), ti =
i/p, and v = (v1, . . . , vp). Let us introduce the p × p matrix A, such that W A is the
1 × p row vector (W (1/p),W (2/p) − W (1/p), . . . ,W (1) − W (1 − 1/p)), that is
A = (ai j ) where aii = 1 for i = 1, . . . , p, ai−1,i = −1 for i = 2, . . . , p and ai j = 0
otherwise. The coordinates ofW A are independent random variables. Then, for all v,

E|W Av|2 = v′A′
E(W ′W )Av = v′A′KTp Av = ‖Av‖2 v′A′

‖v′A′‖KTp
Av

‖Av‖ .

Since A is invertible there exists v with ‖v‖ = 1 such that w := Av fulfils KTpw =
γp,pw. Then

min
v:‖v‖=1

‖Av‖2 v′A′

‖v′A′‖KTp
Av

‖Av‖ ≤ ‖A‖2op min
v:‖v‖=1

v′A′

‖v′A′‖KTp
Av

‖Av‖ ≤

‖A‖2op
w′

‖w‖KTp
w

‖w‖ = ‖A‖2opγp,p.

From where it follows that γp,p ≥ ‖A‖−2
op minv:‖v‖=1 E|W Av|2. Since Var(Wt+s −

Wt ) = σ 2 s for all 0 ≤ t, s ≤ 1, such that s + t ≤ 1, and for some σ > 0, then, if
‖v‖ = 1, it follows that

E|W Av|2 =
p−1∑
j=0

E
(
W (( j + 1)/p) − W ( j/p)

)2
v2j+1 = σ 2

p

Then γp,p ≥ σ 2/(p‖A‖2op). Lastly, ‖A‖2op = 1/p + (4/p)(p − 1), (because the
maximum of ‖Av‖ subject to ‖v‖ = 1 is attained at vi = (−1)i+1/

√
p). ��

Remark 2 The class of processes with stationary independent increments includes
many counting processes and the Brownian Motion. Putting together the condition
n(γp,p)

2/(p2 log3 n) → C3 for some C3 > 0, imposed in Theorem 2 and the conclu-
sion obtained in Proposition 7, it turns out that a choice of type p = (n/ log3 n)1/5 for
p would be sufficient to ensure the applicability of Theorem 2.

To conclude this section, we provide an interesting interpretation of Theorem 2 in
terms of prediction.

Theorem 3 Under the conditions of Theorem 2, we have that the general regression
function of Y with respect to X, m(X) = E(Y |X), can be approximated in L2(�)

from the prediction functions derived from the finite-dimensional models, that is as
p = pn → ∞.

‖m(X) − 〈α̂p, X〉K ‖L2(�) = ‖m(X) −
p∑

j=1

β̂ j,p X(t j,p)‖L2(�) → 0, a.s. (14)
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Proof As a consequence of the assumed RKHS model, we have m(X) = E(Y |X) =
�−1

X (α) := 〈α, X〉K . Now, the result follows from Loève’s isometry, since

‖α̂p − α‖K = ‖〈α̂p, X〉K − 〈α, X〉K ‖L2(�),

and ‖α̂p − α‖K → 0, a.s., as a consequence of Theorem 2. ��
In order to properly interpret this result, let us recall that the conditional expectation

g(X) = E(Y |X) is known to be the projection of Y on the Hilbert subspace of
L2(�) of random variables Z of the form Z = h(X) with E(Z2) < ∞; see e.g.
(Laha and Rohatgi 1979, p. 382). In other words, E(Y |X) is the minimizer in Z of
‖Y − Z‖2

L2(�)
= E(Y − Z)2 when Z is in the space of all rv’s of type Z = h(X) with

E(Z2) < ∞. In this sensem(X) = E(Y |X) could be considered in a very precise way
as the “best possible prediction (in the sense of quadratic mean error) of Y in terms
of X”. In Theorem 3 it is shown that we are able to asymptotically approach such
m(X). Note that these finite-dimensional predictions considered here do not require
the knowledge of the covariance function K .

5 The coefficient of determination in the functional case

The coefficient of determination, often denoted R2, is commonly used in regression
analysis as a measure of the goodness of fit for the regression model under consid-
eration. In this section we will define and motivate, in population terms, the notion
of coefficient of determination for our RKHS-based regression model (2)–(4)–(6).
We will show as well how this coefficient can be consistently approximated from a
natural statistic, analogous to that used in the standard multivariate cases. Let us start
by briefly recalling some essentials about the coefficient of determination in more
classical situations.

5.1 The linear finite-dimensional case

In multivariate linear regression, the Xi are random vectors in Rd . If Ŷi stands for the
prediction of Yi obtained from the usual linear model Yi = β0+β1Xi1+· · ·+βp Xip,
the coefficient of determination is given by

R2 =
∑n

i=1(Ŷi − Ȳ )2∑n
i=1(Yi − Ȳ )2

, (15)

which can be interpreted as the portion of total variability explained by the model.
A thorough study of R2 can be found in (Rencher and Schaalje 2008, Sect. 7.7,

10.4, 10.5). In summary, it can be seen that R2 is the square (sample) linear corre-
lation coefficient between the observations Yi and the predictions Ŷi (obtained with
the standard least squares estimations of the parameters). It is as well the maximum

123



On the functional regression model and its... 5183

(sample) square linear correlation coefficient that can be obtained between the Yi and
all linear functions of the coordinates of the Xi .

This suggests a population version of R2, not depending on the sample data, but
on the underlying random variable (X ,Y ) with values in Rd ×R. It could be defined
as the maximum linear correlation coefficient (denoted “Corr") between the response
variable Y and linear functionals of X , of type β ′X = β1X1 + · · · + βd Xd . Thus

ρ2
L,Y |X = max

β∈Rd
Corr2(Y , β ′X), (16)

where the subscript L emphasizes that we are considering linear functions of X to
predict Y .

5.2 The fully nonparametric case

By analogy with the linear multivariate case, one could consider the approximation
of the scalar random variable Y in terms of a general measurable function of X . It is
well-known that, if we assume E(Y 2) < ∞, the function m(x) which minimizes the
square prediction errorE[(Y −g(X))2]within the class G of real measurable functions
such that E(g2(X)) < ∞ is m(x) = E(Y |X = x). Thus, by analogy with (16), one
might define

ρ2
G,Y |X = max

g∈G
Corr2(Y , g(X)) (17)

In Doksum and Samarov (1995) the coefficient of determination is considered in this
nonparametric setting under the name of Pearson’s correlation ratio, and it is defined
as the following quotient of variances

η2 = Var(m(X))

Var(Y )
. (18)

In view of the ANOVA identity Var(Y ) = Var(m(X)) +E(Var(Y |X))), η2 is nothing
but the proportion of total variability explained by the regression model m(X). But,
actually, this interpretation is compatible with that behind definition (17), since it is
easy to see that η2 = ρ2

G,y|X . Indeed, we have, for any g ∈ G,

Corr2(Y , g(X)) =
〈Y − E(Y ), g(X) − E(g(X))〉L2(�)

Var(Y )Var(g(X))

(∗)=
〈m(X) − E(m(X)), g(X) − E(g(X))〉L2(�)

Var(Y )Var(g(X))

(∗∗)≤ Var(m(X))

Var(Y )
.

Note that (*) holds from the fact that E(Y ) = E(m(X)) and Y − m(X) is (by the
projection properties of the conditional expectation) orthogonal to all functions in G
and (**) holds from the Cauchy–Schwartz inequality. This shows η2 ≥ ρ2

G,y|X . The
converse inequality readily follows from the fact that m(·) ∈ G.
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Fig. 1 Left panel: prediction errors under Scenario 1 for the RKHS-method, plotted as a function of the
number of explanatory variables. The horizontal lines correspond to the prediction errors for the principal
components (PC) regression method for different choices of the number of components. Right panel: the
dual graph for the PC method as a function of the number of components versus the RKHS-based method
for a few choices of the number of components

Fig. 2 Left panel: prediction errors under Scenario 2a for the RKHS-method, plotted as a function of the
number of explanatory variables. The horizontal lines correspond to the prediction errors for the principal
components (PC) regression method for different choices of the number of components. Right panel: the
dual graph for the PC method as a function of the number of components versus the RKHS-based method
for a few choices of the number of components

5.3 The coefficient of determination in the context of our RKHS-based linear
functional model

Now, coming back to the linear functional model (2)–(4)–(6), as a consequence of the
above discussion, we define the coefficient of determination by

ρ2
Y |X = max

α∈HK

Corr2(Y , 〈X , α〉K ) = max
U∈LX

Corr2(Y ,U ). (19)
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The following proposition, gives a simple expression for ρ2
Y |X in terms of the model

(6),

Proposition 8 Let us assume the validity of the RKHS-based regressionmodel (2)–(4)–
(6), i.e. Y = �−1

X (α) + ε, with E(ε|X) = 0 and Var(ε|X) = σ 2. Then, the coefficient
of determination (19) can be expressed as

ρ2
Y |X = ‖α‖2K

σ 2 + ‖α‖2K
= Var[E(Y |X)]

Var(Y )
. (20)

Proof For any U ∈ LX ,

Corr2(Y ,U ) =
〈Y ,U 〉2

L2(�)

‖Y‖2
L2(�)

‖U‖2
L2(�)

=
〈�−1

X (α),U 〉2
L2(�)

‖Y‖2
L2(�)

‖U‖2
L2(�)

. (21)

Now, observe that the RKHS-model entails E(Y |X) = �−1
X (α) and

‖Y‖2L2(�)
= Var(Y ) = Var[E(Y |X)] + E[Var(Y |X)] = ‖α‖2K + σ 2. (22)

Indeed, Var[E(Y |X)] = Var[�−1
X (α)] = E(�−1

X (α)2) which, from Loève’s isometry,
equals ‖α‖2K and E[Var(Y |X)] = Var(ε|X) = σ 2.

Using again Loève’s isometry in (21), we have

Corr2(Y ,U ) = 〈α, αU 〉2K
(‖α‖2K + σ 2)‖αU‖2K

,

where αU denotes the image of U in HK by Loève’s isometry, that is, αU = �X (U ).
Finally, from Cauchy–Schwartz inequality

Corr2(Y ,U ) ≤ ‖α‖2K
σ 2 + ‖α‖2K

,

and the bound in the right-hand side is attained when U is such that αU = α. ��
Note that, in view of expression (20),ρ2

Y |X can be interpreted again as the proportion
of variance explained by the RKHS linear model (4).

We now address the problem of approximating the (population) functional coeffi-
cient of determination ρ2

Y |X with the corresponding quantities (that we will denote ρ2
T

for simplicity) in the approximating finite-dimensional models based on the observa-
tions X(t1), . . . , X(tp) on a grid Tp := T = {t1, . . . , tp} ⊂ [0, 1], with t1 < . . . < tp.
Denote αT = (α(t1), . . . , α(tp))′ and KT ≡ K (ti , t j ) the covariance matrix of
(X(t1), . . . , X(tp)). Let L2

T ≡ sp{X(t1), . . . , X(tp)}, the space of all possible lin-
ear combinations of X(t1), . . . , X(tp).
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Fig. 3 Left panel: prediction errors under Scenario 2b for the RKHS-method, plotted as a function of the
number of explanatory variables. The horizontal lines correspond to the prediction errors for the principal
components (PC) regression method for different choices of the number of components. Right panel: the
dual graph for the PC method as a function of the number of components versus the RKHS-based method
for a few choices of the number of components

Fig. 4 Left panel: prediction errors under Scenario 3 for the RKHS-method, plotted as a function of the
number of explanatory variables. The horizontal lines correspond to the prediction errors for the principal
components (PC) regression method for different choices of the number of components. Right panel: the
dual graph for the PC method as a function of the number of components versus the RKHS-based method
for a few choices of the number of components

In accordance to the previous discussion, the finite dimensional coefficient of deter-
mination, can be defined as

ρ2
T ≡ max

U∈L2
T

Corr2(Y ,U ). (23)

Then, the random variable U attaining this maximum is the best possible predictor
of Y using a linear combination of the variables X(t1), . . . , X(tp). The following
proposition establishes the convergence of ρ2

T to ρ2
Y |X , as p = pn → ∞.
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Proposition 9 Under the indicatedRKHS-linearmodel (2), assume that the covariance
function K is continuous in [0, 1]2 and thematrix KT defined above is invertible. Then,

(a)

ρ2
T = α′

T K
−1
T αT

σ 2 + ‖α‖2K
, (24)

where αT = (α(t1), . . . , α(tp))′ and α(t) = E(Y X(t)).
(b) Assume further that the sequence Tp is increasing (Tp ⊂ Tp+1) and the set⋃∞

p=1 Tp is dense in [0, 1]. Then

lim
p→∞ ρ2

T = ρ2
Y |X . (25)

Proof (a) Recall that ρ2
T ≡ maxU∈L2

T
Corr2(Y ,U ). Since U ∈ L2

T , there exists β =
(β1, . . . , βp) such that U = ∑p

j=1 β j X(t j ). Then, from α(t) = E(Y X(t)) and (22),

Corr2(Y ,U ) =
〈Y ,U 〉2

L2(�)

‖Y‖2
L2(�)

‖U‖2
L2(�)

= (β ′αT )2

(σ 2 + ‖α‖2K )β ′KTβ
.

We have to maximize on β the quotient (β ′αT )2/(β ′KTβ). Using (Mardia et al. 2021,
Cor. A.9.2.2, p. 480) we get maxβ(β ′αT )2/(β ′KTβ) = α′

T K
−1
T αT , and the result

follows.
(b) If α ∈ HK is the maximizer of the expression (19) defining ρ2

Y |X . Since KT :=
K (ti , t j )ti ,t j∈T is an invertible matrix, we have that, for each p = pn and t j in the grid
T , there exist constants β

p
k := βk such that

α(t j ) =
p∑

k=1

βk K (t j , tk),

so that αT = KTβT and βT = K−1
T αT .

Now, the result is a consequence of (Parzen 1959, Th. 6E). Indeed, using expression
(6.26) in that paper (for the particular case f = g = α), we have

lim
p→∞

p∑
k=1

βkα(tk) = 〈α, α〉K , (26)

(note, that in Parzen’s notation 〈α, α〉p := ∑p
k=1 βkα(tk)). Thus, from (26),

p∑
k=1

βkα(tk) = β ′
TαT = β ′

T KTβT = α′
T K

−1
T KT K

−1
T αT = α′

T K
−1
T αT → ‖α‖2K ,
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which proves (25).
��

We now consider the problem of estimating ρ2
Y |X from the sample data (Xi (·),Yi ),

i = 1, . . . , n.Wewill show that the sample versions of the coefficients of determination
(23) corresponding to the “approximating models” provide a consistent estimation of
ρ2
Y |X .
First, recall that under the assumed model (4), Yi = 〈Xi , α〉K + εi , we have

Var(Yi ) = ‖α‖2K + σ 2. Then, a natural estimator of ρ2
Y |X would be

R2
p =

∑n
i=1 Ŷ

2
i∑n

i=1 Y
2
i

, (27)

where Ŷi := Ŷip is the standard prediction of Yi obtained form the finite-dimensional
approximating linear model based on X(t1), . . . , X(tp). We next show the almost sure
consistency of this estimator.

Theorem 4 Under the hypotheses of Theorem 2,

R2
p → ‖α‖2K

σ 2 + ‖α‖2K
a.s.,

as p = pn → ∞.

Proof From (22), E(Y 2
i ) = σ 2 + ‖α‖2K . So, from the Strong Law of Large Numbers,

∑n
i=1 Y

2
i

n
→ σ 2 + ‖α‖2K , a.s. (28)

Let us now prove that (1/n)
∑n

i=1 Ŷ
2
i → ‖α‖2K a.s. Indeed, following the notation in

the proof of Theorem 2 (see the Appendix below),

(1/n)

n∑
i=1

Ŷ 2
i = β̂ ′

p

(1
n
X ′

pXp − KTp

)
β̂p + β̂ ′

pKTp β̂p

= β̂ ′
p

(1
n
X ′

pXp − KTp

)
β̂p + ‖α̂p‖2K

From Theorem 3, ‖α̂p‖2K → ‖α‖2K a.s. Let ε > 0, from Lemma 5 (see the proof of
Theorem 2 in the Appendix),

∥∥∥1
n
X ′

pXp − KTp

∥∥∥
op

≤ εγp,p, eventually, with probability one.

It follows that

∥∥∥β̂p

(1
n
X ′

pXp − KTp

)
β̂p

∥∥∥ ≤ ‖β̂p‖2εγp,p, eventually, with probability one.
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So it is enough to prove that ‖β̂p‖2γp,p is bounded from above independently of p. But
‖β̂p‖2γp,p ≤ 2‖β̂p −βp‖2γp,p +2‖βp‖2γp,p. Then, since ‖β̂p −βp‖2 → 0 a.s., it is
enough to bound ‖βp‖2γp,p from above. But ‖αp‖2K = β ′

pKTpβp ≥ ‖βp‖2γp,p. This,
together with the conclusion of Theorem 2, ‖α̂p‖2K → ‖α‖2K , and (28), concludes the
proof.

��

6 Some empirical results

We will consider here different examples of functional regression problems in which
the goal is to predict a real random variable Y from a functional explanatory variable
X = {X(t) : t ∈ I }. Hence, our sample information is given by n pairs (Xi ,Yi ),
i = 1, . . . , n, where Xi = {Xi (t) : t ∈ I } are sample trajectories of the process X ,
and Yi are the corresponding response variables.

The overall aim of this section is to check the performance of different finite-
dimensional models, based on a few one-dimensional marginals X(t1), . . . , X(tp),
such as those whose asymptotic behaviour has been analysed in the previous section,
versus that of a functional L2-based counterpart. More precisely, we will compare the
performance of a model of type

Y = β0 + β1X(t1) + . . . + βp X(tp) + ε, (29)

with that of

Y = β0 +
∫ 1

0
β(t)X(t)dt + ε, (30)

see the beginning of Sect. 6.1 for details. The word “performance” must be mostly
understood in terms of “prediction capacity”, as measured by appropriate estimations
of the prediction error E[(Ŷ − Y )2], Ŷ being the predicted value for the response
obtained from the fitted model; see Figs. 1, 2, 3, 4.

It is very important to note that the finite-dimensionalmodels of type (29) are viewed
here as functional models, in the sense that they are all considered as particular cases
of the RKHS-model (4). In practice, this means that we do not assume any prior
knowledge about the “impact points” ti or the number p of variables. So, in principle,
the whole trajectory is available in order to pick up the impact points ti we will use.
However, given the grid points ti , the model (29) is handled as a problem of finite-
dimensional multiple regression.

6.1 Simulation experiments

6.2 Themodels we use to generate the data

We analyse here three scenarios: the first scenario is more or less “neutral” in the
comparison of a model based on finite-dimensional marginals versus a L2-model. The
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Fig. 5 Prediction errors (mean over 100 replications) and adjusted R2
a , for different values of p for the

Tecator data set using the second derivatives

Fig. 6 Prediction errors and adjusted R2
a , with different values of p for the sugar data set

second one is somewhat favourable to the finite-dimensional models, in the sense that
one of these models is the “true one”, though we have no advanced knowledge about
the impact points ti and the number of them. Finally, the third scenario clearly favours
the L2-choice since the data are generated according to a model of type (30). In all
cases, the aim is to compare the prediction errors obtained with our RKHS-based
approach (based on p discretization points), with those corresponding to the classical
L2 method or, more precisely, the popular version of this method based on q principal
components; this is the so-called “principal components method” and will be denoted
L2
q in what follows. We now define these scenarios in precise terms.

Scenario 1. We use the function rproc2fdata of the R-package fda.usc
(Febrero-Bande and Oviedo de la Fuente 2012) to generate random
trajectories according to a fractional Brownian Motion (fBM) X =
{X(t) : t ∈ [0, 1]} and the aim is to predict Y ≡ X(1) from the
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Fig. 7 Prediction errors and adjusted R2
a for the population-under-14 data set

Fig. 8 Left panel: prediction errors under Scenario 1 for the RKHS-method, plotted as a function of the
number of explanatory variables. The horizontal lines correspond to the prediction errors for the principal
components (PC) regression method for different choices of the number of components. Right panel: the
dual graph for the PC method as a function of the number of components versus the RKHS-based method
for a few choices of the number of components

observation of the sample trajectories X(t) for t ∈ [0, 0.95]. Let us
recall that the fBM is a Gaussian process whose covariance function is
K (s, t) = 0.5(|t |2 H +|s|2 H −|t − s|2 H ), H being the so-called “Hurst
exponent”. We have taken H = 0.8.

Scenario 2. Wehave generated the responses Yi according to the following two finite-
dimensional models (previously considered in Berrendero et al. (2019)),
Model 2a: Y = 2X(0.2) − 5X(0.4) + X(0.9) + ε.

Model 2b: Y = 2.1X(0.16) − 0.2X(0.47) − 1.9X(0.67) + 5X(0.85) +
4.2X(0.91)+ε,where in both cases the error variable ε has a distribution
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Fig. 9 Left panel: prediction errors under Scenario 2a for the RKHS-method, plotted as a function of the
number of explanatory variables. The horizontal lines correspond to the prediction errors for the principal
components (PC) regression method for different choices of the number of components. Right panel: the
dual graph for the PC method as a function of the number of components versus the RKHS-based method
for a few choices of the number of components

Fig. 10 Left panel: prediction errors under Scenario 2b for the RKHS-method, plotted as a function of the
number of explanatory variables. The horizontal lines correspond to the prediction errors for the principal
components (PC) regression method for different choices of the number of components. Right panel: the
dual graph for the PC method as a function of the number of components versus the RKHS-based method
for a few choices of the number of components

N (0, σ ) with standard deviation σ = 0.2. The process {X(t) : t ∈
[0, 1]} follows a centred fBM with H = 0.8.

Scenario 3. The response variable Y is generated according to a L2-based linear
model with Y = ∫ 1

0 log(1+4s)X(s)ds+ε,where, again, the trajectories
{X(t) : t ∈ [0, 1]} are drawn from the same fBM indicated above and ε

has a N (0, σ = 0.2) distribution.

Note that thesemodels are only used to generate the data, so that none of the regression
modelswewill compare in our simulations belowwill incorporate any prior knowledge
on the true distribution of (X(·),Y ) whatsoever.
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Fig. 11 Left panel: prediction errors under Scenario 3 for the RKHS-method, plotted as a function of the
number of explanatory variables. The horizontal lines correspond to the prediction errors for the principal
components (PC) regression method for different choices of the number of components. Right panel: the
dual graph for the PC method as a function of the number of components versus the RKHS-based method
for a few choices of the number of components

6.3 The specific regressionmodels and estimationmethods we compare

Let us go back to our basic question: to what extent the finite-dimensional models
(based on marginals X(ti )) of type (29) are competitive against a standard, L2-based
regression model of type (30)? Since we do not assume any previous knowledge on
the underlying models generating the data, we will take the “impact points” t1, . . . , tp
equispaced in the observation interval [0, 1] (or, in the interval [0, 0.95] in Scenario 1
above). The coefficients βi in this model are estimated by the ordinary least squares
method for multiple regression, using the R-function lm. We will check several values
of p, from 10 to 60.

As for the L2-regression model (30), we will estimate the slope function β and the
intercept β0 by the so-called functional principal components (PC)method; this essen-
tially amounts to approximate the model (30) with another finite-dimensional model
obtained by projecting the functional data on a given number q of principal functions
(i.e., eigenfunctions of the covariance operator). We use the function fregre.pc of
the R-package fda.usc.The considered sample sizes are n = 100 (black solid lines
in the figures), and 200 (red dotted lines). We report, under the different scenarios, the

mean over 1000 replications of the “prediction errors”
√

(1/k)
∑

(Yi − Ŷi )2, where
k = 0.2 n is the size of the random “test sub-samples” we use to evaluate the predic-
tions Ŷi . The “training subsamples”, made of the remaining 80% of observations, are
used to estimate the regression coefficients for Ŷi .

6.4 The simulation outputs

Our results are summarized in Figures 1-4 whose interpretation is as follows: in the
left-hand panels, the wiggly curves show the prediction errors of our RKHS-based
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models as a function of the number p of explanatory variables (which are just one-
dimensional marginals of the underlying process). The horizontal lines correspond to
the errors obtained with the standard regression model based on different numbers
of principal components, including the “optimal one”, assessed by simulation. The
graphics in the right-hand panels, are, in some sense, dual: the curves show in this
case the estimated prediction errors obtained with the principal components-based
regression, as a function of the number of considered components. The horizontal
lines correspond to the prediction errors obtained in the RKHS-based model with
various “standard" choices of the number of explanatory one-dimensional marginals,
including the “optimal" one in the considered equispaced grids. The small square
legends in the lower right-hand side of the panels give the corresponding numbers of
components (or variables) for the horizontal lines.

These graphics are, hopefully, self-explanatory. The RKHS-based models provide
smaller prediction errors in those cases where the underlying model is of RKHS type.
In any case, the differences are not very large. As a final, important, remark, let us
point out that these comparisons are not completely fair for the RKHS-based models.
Indeed, there is a considerable room for optimality in the grids t1, . . . , tp, without any
restriction of equispaced points; see Berrendero et al. (2019). However, this “variable
selection approach" entails a heavier computation load and involves some theoretical
challenges outside the scope of this work.

Overall, the results are to be expected: in Figs. 2 and 3, corresponding to Scenarios
2a and 2b (favourable to the finite-dimensional approximations) the predictions based
on α̂p are better than those based on the L2-based functional linear model, except for
very large values of pwhere the collinearity effect hampers the estimation. In Scenario
3, see Fig. 4, the situation reverses but, still the finite-dimensional models appear to
be competitive for small values of p and large sample sizes.

In Scenario 1 (Fig. 1) the U-shape of the curves of estimated prediction errors is
more evident. Still, the finite-dimensional proposals are better than L2

3 and L2
6 for the

central range of considered values of p. A similar example, included in Appendix B,
considers the case of the standard Brownian Motion. Here the conclusions are not far
from those of the fractional Brownian Motion (with Hurst index H=0.8) but the more
irregular nature of the trajectories is reflected in a larger sensitivity with respect to the
specific location of the “design points” ti .

As a final remark, let us point out that our aim here is not to prove an overall
superiority of theRKHS-basedmodels in termsof prediction errors. Thiswould require
a much more exhaustive numerical study. Still, our experimental results suggest that
the interpretability advantages of the RKHS-based models do not necessarily entail
any serious loss in efficiency.

6.5 Real data examples

This is another natural playing field for a fair comparison on the prediction capacity
of different regression models.

In all considered cases the sample is randomly divided in two parts: 80% of the
observations is used for training (i.e. for parameter estimation) and the remaining
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20% is used in order to check the accuracy of the predictions. This random splitting
is repeated 100 times. Figures5, 6 and 7 report the average prediction errors and the
(average) adjusted coefficients of determination. In all cases we show in the left panel
the average prediction errors of the RKHS model for different values of p across 100
replications. The horizontal line represents the error of the L2 model, which was fitted
by projecting onto the three principal components (this value has been chosen just as
a reference). The right panel shows the adjusted R2 values for both the RKHS and L2

models, represented by horizontal lines.

6.6 The data sets under study

(a) The Tecator data set. This data set has been used and described many times in
papers and textbooks; see, e.g., Ferraty andVieu (2006). It is available in theR-package
fda.usc, see Febrero-Bande and Oviedo de la Fuente (2012). After removing some
duplicated data, we have 193 functions obtained from a spectrometric study performed
on meat samples in which the near infrared absorbance spectrum is recorded. The
response variable is the fat content of the meat pieces. The functions are observed at
a grid of 100 points.

An important aspect of this data set is the fact that the derivatives of the sample
functions seem to bemore informative than the original data themselves. Thus,we have
taken into account this feature, using the second derivatives to predict the response
variable (obtained by preliminary smoothing of the data. Figure5 displays the results.
All the considered values of p are checked in every run.

(b) The sugar data set. This data set has been previously considered in functional
data analysis by several authors; see e.g. Aneiros and Vieu (2014) for additional
details. The functions X(t) are fluorescence spectra obtained from sugar samples and
the response Y is the ash content, in percentage of the sugar samples. The comparison
results of finite-dimensional models versus the L2-functional counterpart are shown
in Fig. 6. Again the outputs correspond to the averages over 100 replications obtained
by randomly selecting 214 (80%) data for training and 54 (20%) for testing, from the
original data.

(c) Population data. For 237 countries and geographical areas, the percentage
of population under 14 years for the period 1968-2018 (one datum per year) is
recorded. In our experiment, we consider longitudinal data consisting of vectors
(X(1960), X(1961), . . . , X(2010)); the aim is to predict the value eight years ahead.
Thus, the response variable is Y = X(2018). Several theoretical assumptions (for
example, independence), commonly used in the linear model, are violated here but,
still, our comparisons make sense at an exploratory data level. The outputs can be
found in Fig. 7 below. As in the previous examples, they correspond to 100 runs based
on random partitions of the data set into 80% training data and 20% test data. Again p
denotes the number of years (equispaced in the interval 1960-2010) used as explana-
tory variables in the finite-dimensional models. Thus for p = 10 we consider the years
1960, 1965,...,2010; for p = 8 we take 1960, 1967, 1974,...,2009.
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7 Conclusions

We explore a mathematical framework, different from the classical L2-approach (30),
for the problem of linear regression with functional explanatory variable X and scalar
response Y . This mathematical formulation includes, as particular cases, the finite-
dimensional models (29) obtained by considering as explanatory variables a finite set
of marginals X(ti ), with i = 1, . . . , p. This would allow us, for example, to compare
such models for variable selection purposes (Berrendero et al. 2019) or considering,
within a unified framework, the study of asymptotic behaviour ofmodels as the number
p of covariates grows to infinity; see e.g. Sur and Candès (2019) for a recent analysis
in the logistic regression model. Note also that in the functional case the asymptotic
analysis as p → ∞ appears more naturally than in the case of general regression
studies, since all co-variables X(ti ) come from the unique, predefined reservoir of the
one-dimensional marginals of the process X = {X(t) : t ∈ [0, 1]}.

While this model, based on the theory of RKHS spaces, has been considered
(explicit or implicitly) in several other papers, as mentioned above, we contribute
some insights and some new theory that, hopefully, will consolidate this RKHS option
as a useful alternative.

From a practical point of view, the fact of encompassing all the finite-dimensional
models under a unique super-model (4)–(6) is also relevant in view of the empirical
results of Sect. 6: indeed, the outputs of the simulations and the real data examples
there show that, somewhat surprisingly, there is often little gain in considering the L2

functional model (30) instead of the simpler finite-dimensional alternatives (29).
Of course, we do not claim that the L2-based regression model (30) should be

abandoned in favour of the finite-dimensional alternatives of type (29), since the L2

model is now well-understood and has proven useful in many examples. We are just
suggesting that there are perhaps some reasons to consider the problem of linear
functional regression under a broader perspective. In addition, note that the L2 model
appears as a particular case of the general formulation (4)–(6).

In any case, even if we are willing to incorporate the finite-dimensional models
(29), according to our suggested approach, the functional character of the regression
problem is not lost at all as the proposed global general formulation is unequivocally
functional. In practice, this means that, according to our assumptions, the explanatory
variables are still functions and we cannot get rid of this fact in the formulation of our
problem.

A Proof of Theorem 2

In what follows, we denote Xp the n × p data matrix whose (i, j)-entry is
Xi (t j,p), i = 1, . . . , n, j = 1, . . . , p. Denote also by KTp , the covariance
matrix of (X(t1,p), . . . , X(tp,p)). Finally, we denote Y = (Y1, . . . ,Yn)′ and e =
(e1,p, . . . , en,p)

′, where ′ stands for the transpose.
The proof of Theorem 2 relies on the three lemmas stated below.
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Lemma 3 Let γ1,p ≥ γ2,p ≥ · · · ≥ γp,p be the eigenvalues of KTp and γ̂1,p ≥ γ̂2,p ≥
· · · ≥ γ̂p,p the eigenvalues of (1/n)(X ′

pXp). Then, for j = 1, . . . , p, |γ j,p − γ̂ j,p| ≤
‖(1/n)(X ′

pXp) − KTp‖op.
Proof This result follows as a direct application of Lemma 3.1 in Bosq (1991), (this
is also sometimes called Weyl’s inequality in the literature). ��
Lemma 4 Let K be a continuous covariance function and let Tp be a set of grid points
as in Lemma 2. Assume that all the eigenvalues of the covariance operator K are
strictly positive. Then lim p→∞ 1

p‖KTp‖op = 0.

Proof Assume by contradiction that limk→∞ ‖KTpk
‖op = limk→∞ γ1,pk = ∞ for

some sequence pk → ∞. Let us denote for simplicity pk = p. Let the p-dimensional
vector f p = ( f (t1,p), . . . , f (tp,p)) be an eigenvector of (1/p)KTp associated to γ1,p
the largest eigenvalue of KTp , such that‖ f p‖max = 1 for all p. Let us define a polygonal
function gp : [0, 1] → R such that gp(ti,p) = f (ti,p), observe that ‖gp‖∞ =
‖ f p‖max = 1. Let us prove that {gp}p is an equicontinuous sequence. Since K (s, t) is
continuous, it is also uniformly continuous on [0, 1]2. Then, for all ε > 0, there exists
δ = δ(ε) > 0 such that |K (x, y) − K (x ′, y′)| < ε if ‖(x, y) − (x ′, y′)‖max < δ. Let
us denote ‖Tp‖ = maxi=1,...,p−1 |ti+1,p − ti,p|. Let ε > 0 and p large enough such
that ‖Tp‖ < δ. Then, we have

γ1,p| f (ti,p) − f (ti+k,p)|

= 1

p

∣∣∣
p∑

j=1

[
K (ti,p, t j,p) − K (ti+k,p, t j,p)

]
f (t j,p)

∣∣∣

≤ 1

p

p∑
j=1

∣∣∣K (ti,p, t j,p)−K (ti+k,p, t j,p)
∣∣∣ max
j=1,...,p

| f (t j,p)| ≤ ε,

where the last inequality follows from |K (ti,p, t j,p) − K (ti+k,p, t j,p)| < ε and
‖ f p‖max = 1 for all i, k such that 1 ≤ i ≤ p, 1 ≤ i + k ≤ p and |ti,p − ti+k,p| < δ.

Then for p large enough, for all i, k such that 1 ≤ i ≤ p, 1 ≤ i + k ≤ p and
|ti,p − ti+k,p| < δ, | f (ti,p) − f (ti+k,p)| ≤ ε. Hence, {gp}p is equicontinuous.

Since {gp}p is bounded, by Arzela–Ascoli Theorem there exists pk → ∞ and a
continuous function g such that ‖gpk − g‖∞ → 0. For ease of writing we will denote
gpk = gp, Let us fix ti,p. Then, for all ε > 0 and for p (which depends on ti,p) large
enough,

∣∣∣γ1,pgp(ti,p) −
∫ 1

0
K (ti,p, t)gp(t)dt

∣∣∣

=
∣∣∣ 1
p

p∑
j=1

K (ti,p, t j,p)gp(t j,p) −
∫ 1

0
K (ti,p, t)gp(t)dt

∣∣∣ < ε. (31)

Since gp → g uniformly, there exists p0 > 0 such that Eq. (31) holds for all p > p0.
By continuity of K and gp it can be seen that there exists p1 > p0 such that for all
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p > p1,

max
s∈[0,1]

∣∣∣γ1,pgp(s) −
∫ 1

0
K (s, t)gp(t)dt

∣∣∣ < ε.

Again, using that gp → g uniformly, ‖ ∫ 1
0 K (·, t)gp(t)dt−

∫ 1
0 K (·, t)g(t)dt‖∞ →

0. Then γ1,pgp → λg for some λ > 0. Observe that ‖g‖∞ = 1. This proves that g is
an eigenfunction of K with eigenvalue λ > 0, and contradicts that γ1,p → ∞. ��
Lemma 5 Under the hypotheses of Theorem 2. We have, for all ε > 0,

∥∥∥1
n
X ′

pXp − KTp

∥∥∥
op

≤ εγp,p, eventually, with probability one. (32)

Proof Let us define Fn = {ω : ‖ 1
nX ′

pXp − KTp‖op > εγp,p}. To prove (32), by
Borel-Cantelli lemma, it is enough to prove that,

∑
n P(Fn) < ∞. Let us denote

Ai = Ai,n = {ω : max
j=1,...,p

|Xi (t j,p)| < log n},

then P(Fn) ≤ P(Fn ∩ ⋂n
i=1Ai ) + nP(Ac

1) := I1,n + I2,n .
To prove that

∑
n I1,n < ∞, we will use Corollary 5.2 in Mackey et al. (2014).

Let us define Mk the p × p random matrix whose entry i, j is (Xk(ti,p)Xk(t j,p) −
(KTp )i, j )IAk . Let us denote Zk = (Xk(t1,p), . . . , Xk(tp,p))′IAk , then Mk = ZkZ′

k −
KTp IAk , so

‖Mk‖op ≤ ‖ZkZ′
k‖op + ‖KTp IAk‖op ≤ ‖Zk‖2 + ‖KTp IAk‖op.

We have that ‖Zk‖2 ≤ p log2 n and

‖KTp IAk
‖op = max

z∈S p−1
E[(z′Zk )(Z

′
k z)] = max

z∈S p−1
E[(z′Zk )

2]

≤ max
z∈S p−1

‖z‖2E(‖Zk‖2) ≤ p log2 n.

To bound η2 := ‖∑
k E(M2

k )‖op ≤ n‖E(M2
1 )‖op, observe that, E[M2

1 ] ≤
E[(Z1Z′

1)
2] = E[‖Z1‖2Z1Z′

1] ≤ p(log2 n)E[Z1Z′
1] ≤ p(log2 n)KTp . Then, η2 ≤

np(log2 n)γ1,p. By Corollary 5.2 in Mackey et al. (2014),

P

(
Fn ∩

n⋂
i=1

Ai

)
≤ p exp

[
− (nεγp,p)

2

3npγ1,p log2 n + 4pnεγp,p log2 n

]
:= exp(−an).

From Lemma 4, γ1,p/p → 0, then
∑

n I1,n < ∞ follows from the assumption

n(γp,p)
2/(p2 log(n)3) → C3 > 0
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since this implies an/ log n → ∞. Finally,
∑

n nP(Ac
1) < ∞ follows from the

assumption P(supt∈[0,1] X(t) > s) ≤ exp(−Cs2) for some constant C > 0 and
for all s > 0. ��
Now, to prove Theorem 2, let us take p = pn and Tp as in Lemma 4. Recall that

αp(·) =
p∑

j=1

β j,pK (t j,p, ·) and α̂p(·) =
p∑

j=1

β̂ j,pK (t j,p, ·),

and denote βp = (β1,p, . . . , βp,p)
′, and β̂p = (β̂1,p, . . . , β̂p,p)

′. Observe that ‖α̂p −
αp‖2K = (β̂p − βp)

′KTp (β̂p − βp) = (β̂p − βp)
′K 1/2

Tp
K 1/2
Tp

(β̂p − βp). Since K
1/2
Tp

=
(K 1/2

Tp
)′, ‖α̂p − αp‖2K = ‖K 1/2

Tp
(β̂p − βp)‖2 ≤ ‖K 1/2

Tp
‖2op‖β̂p − βp‖2. By Lemma 4,

for all λ > 0 we can take p large enough such that, ‖α̂p − αp‖2K ≤ 2λp‖β̂p − βp‖2
for a finite value λ. So it is enough to prove that there exists C < ∞ such that

νn p‖β̂p − βp‖2 < C a.s. (33)

Since β̂p = argminν‖Y−Xpν‖, we have ‖Y−Xpβ̂p‖ ≤ ‖Y−Xpβp‖ = ‖e‖ and

‖Y − Xpβ̂p‖2 = ‖Xpβp + e − Xpβ̂p‖2
= ‖Xp(β̂p − βp)‖2 + ‖e‖2 − 2e′Xp(β̂p − βp),

so ‖Xp(β̂p −βp)‖2 ≤ 2e′Xp(β̂p −βp).Denote by� an n× p matrix whose columns
form an orthonormal basis for the linear space spanned by the columns of Xp. Then
Xp(β̂p − βp) = �v for some unique v ∈ R

p. Thus denoting by S p−1 the unit sphere
of Rp and ẽ = �′e,

‖Xp(β̂p − βp)‖ ≤ 2e′ Xp(β̂p − βp)

‖Xp(β̂p − βp)‖
= 2ẽ′ v

‖v‖ ≤ 2 sup
u∈S p−1

ẽ′u.

Let us denote N1/2 aminimal covering of S p−1 with balls of radii 1/2, centred at points
in S p−1. Its cardinality |N1/2| is bounded from above by 5p−1. For all u ∈ S p−1 there
exists a point z in the set C1/2 of centres of the balls in N1/2 and w ∈ R

p such that
u = z + w, with ‖w‖ ≤ 1/2. Denote W1/2 the set of such w′s so maxu∈S p−1 ẽ′u ≤
maxz∈C1/2 ẽ

′z + maxw∈W1/2 ẽ
′w, then

2 sup
u∈S p−1

ẽ′u ≤ 4 max
z∈C1/2

ẽ′z. (34)

Observe that ‖K 1/2
Tp

(β̂p − βp)‖2 = (β̂p − βp)
′KTp (β̂p − βp). Thus,

‖K 1/2
Tp

(β̂p − βp)‖2 = (β̂p − βp)
′(KTp − (1/n)(X ′

pXp))(β̂p − βp) +
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(β̂p − βp)
′(1/n)(X ′

pXp)(β̂p − βp).

Now, using Lemma 5 (for ε ∈ (0, 1)) together with the inequalities |x ′Ax | ≤
‖A‖op‖x‖2, for x = (β̂p − βp), A = (1/n)(X ′

pXp) − KTp and ‖KTp‖op ≥ γp,p

we get that, eventually a.s.,

1

n
‖Xp(β̂p − βp)‖2 ≥‖K 1/2

Tp
(β̂p − βp)‖2 − εγp,p‖β̂p − βp‖2

≥‖β̂p − βp‖2γp,p − εγp,p‖β̂p − βp‖2.

Let n large enough such that nγp,p/(p2νn log(n)) < 2C4, andC large enough such
that 2CC4(1 − ε)/16 > 1. Then, from (34),

P(νn p‖β̂p − βp‖2 > C) ≤ 5p−1 max
z∈S p−1

P
(
ẽ′z >

√
nCγp,p(1 − ε)/(16pνn)

)
.

Now, note that there is a sub-Gaussianity bound, not depending on z, for the tail
probabilities P(ẽ′z > t) (see the remarks immediately before Theorem 2). Finally,
(33) follows from Borel-Cantelli lemma.

B Simulations for the standard brownianmotion

In Figures 8, 9, 10, 11 we present the results of the simulations for the same scenarios
considered before and the same sample sizes, but when the process is the Brownian
Motion.

Acknowledgements This research has been partially supported by Grants PID2019-109387GB-I00 from
the Spanish Ministry of Science and Innovation, Grant CEX2019-000904-S funded by MCIN/AEI/
10.13039/501100011033 and FCE_1_2019_1_156054 from ANII, Uruguay. The comments and criti-
cisms from two reviewers and the Editors are gratefully acknowledged.

Funding Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Aneiros G, Vieu P (2014) Variable selection in infinite-dimensional problems. Stat Prob Lett 94:12–20
Ash R, Gardner M (1975) Topics in stochastic processes. Academic Press, Cambridge
Berlinet A, Thomas-AgnanC (2004) Reproducing kernel Hilbert spaces in probability and statistics. Kluwer

Academic Publishers, New York

123

http://creativecommons.org/licenses/by/4.0/


On the functional regression model and its... 5201

Berrendero J, Bueno-Larraz B, Cuevas A (2022) On functional logistic regression: some conceptual issues.
Test 32:321–349

Berrendero J, Bueno-Larraz B, Cuevas A (2019) An RKHSmodel for variable selection in functional linear
regression. J Multivar Anal 170:25–45

Bosq D (1991) Modelization, nonparametric estimation and prediction for continuous time processes. In:
Roussas G (ed) Nonparametric functional estimation and related topics, NATO ASI Series. Mathe-
matical and physical sciences series C. Springer, New York, pp 509–529

Cardot H, Ferraty F, Sarda P (1999) Functional linear model. Stat Prob Lett 45:11–22
Cucker F, Zhou DX (2007) Learning theory: an approximation theory viewpoint. Cambridge University

Press, Cambridge
Cuevas A (2014) A partial overview of the theory of statistics with functional data. J Stat Plan Inference

147:1–23
DoksumK, SamarovA (1995)Nonparametric estimation of global functionals and ameasure of the explana-

tory power of covariates in regression. Ann Stat 23:1443–1473
Febrero-Bande M, Oviedo de la Fuente M (2012) Statistical computing in functional data analysis: the R

package fda.usc. J Stat Softw 51:1–28
Ferraty F, Vieu P (2006) Nonparametric functional data analysis: theory and practice. Springer Science and

Business Media, New York
Horváth L, Kokoszka P (2012) Inference for functional data with applications. Springer Science and Busi-

ness Media, New York
Hsing T, Eubank R (2015) Theoretical foundations of functional data analysis. Wiley, New York
Hsing T, Ren H (2009) An RKHS formulation of the inverse regression dimension-reduction problem. Ann

Stat 37:726–755
Janson S (1997) Gaussian Hilbert spaces, vol 129. Cambridge University Press, Cambridge
Kneip A, Liebl D (2020) On the optimal reconstruction of partially observed functional data. Ann Stat

48:1692–1717
Kneip A, Poß D, Sarda P (2016) Functional linear regression with points of impact. Ann Stat 44:1–30
Landau HJ, Shepp LA (1970) On the supremum of a Gaussian process. Sankhyā 32:369–378
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