Por favor, use este identificador para citar o enlazar este ítem:
https://hdl.handle.net/20.500.12008/48389
Cómo citar
Título: | Foliated Plateau problems and asymptotic counting of surface subgroups |
Autor: | Alvarez, Sébastien Lowe, Ben Smith, Graham |
Tipo: | Preprint |
Descriptores: | MATHEMATICS - DIFFERENTIAL GEOMETRY, MATHEMATICS - DYNAMICAL SYSTEMS |
Fecha de publicación: | 2024 |
Resumen: | In 2000, Labourie initiated the study of the dynamical properties of the space of k-surfaces, that
is, suitably complete immersed surfaces of constant extrinsic curvature in 3-dimensional manifolds, which
he presented as a higher-dimensional analogue of the geodesic flow when the ambient manifold is negatively
curved. In this paper, following the recent work of Calegari–Marques–Neves, we study the asymptotic
counting of surface subgroups in terms of areas of k-surfaces. We determine a lower bound, and we prove
rigidity when this bound is achieved. Our work differs from that of Calegari–Marques–Neves in two key
respects. Firstly, we work with all quasi-Fuchsian subgroups as opposed to merely asymptotically Fuchsian
ones. Secondly, as their proof of rigidity breaks down in the present case, we require a different approach.
Following ideas recently outlined by Labourie, we prove rigidity by solving a general foliated Plateau problem
in Cartan–Hadamard manifolds. To this end, we build on Labourie’s theory of k-surface dynamics, and
propose a number of new constructions, conjectures and questions. |
Descripción: | Existe una versión anterior publicada en 2022. |
Editorial: | arXiv |
EN: | Mathematics (Differential Geometry), arXiv:2212.13604v2, dic. 2024, pp. 1-46. |
Citación: | Alvarez, S. "Foliated Plateau problems and asymptotic counting of surface subgroups" [Preprint]. Publicado en: Mathematics (Differential Geometry). 2024, arXiv:2212.13604v2, dic. 2024, pp. 1-46. |
Aparece en las colecciones: | Publicaciones académicas y científicas - Facultad de Ciencias |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | ||
---|---|---|---|---|---|
2212.13604v2.pdf | 669,01 kB | Adobe PDF | Visualizar/Abrir |
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons