Por favor, use este identificador para citar o enlazar este ítem:
https://hdl.handle.net/20.500.12008/48389
Cómo citar
Registro completo de metadatos
Campo DC | Valor | Lengua/Idioma |
---|---|---|
dc.contributor.author | Alvarez, Sébastien | - |
dc.contributor.author | Lowe, Ben | - |
dc.contributor.author | Smith, Graham | - |
dc.date.accessioned | 2025-02-13T17:44:04Z | - |
dc.date.available | 2025-02-13T17:44:04Z | - |
dc.date.issued | 2024 | - |
dc.identifier.citation | Alvarez, S. "Foliated Plateau problems and asymptotic counting of surface subgroups" [Preprint]. Publicado en: Mathematics (Differential Geometry). 2024, arXiv:2212.13604v2, dic. 2024, pp. 1-46. | es |
dc.identifier.uri | https://hdl.handle.net/20.500.12008/48389 | - |
dc.description | Existe una versión anterior publicada en 2022. | es |
dc.description.abstract | In 2000, Labourie initiated the study of the dynamical properties of the space of k-surfaces, that is, suitably complete immersed surfaces of constant extrinsic curvature in 3-dimensional manifolds, which he presented as a higher-dimensional analogue of the geodesic flow when the ambient manifold is negatively curved. In this paper, following the recent work of Calegari–Marques–Neves, we study the asymptotic counting of surface subgroups in terms of areas of k-surfaces. We determine a lower bound, and we prove rigidity when this bound is achieved. Our work differs from that of Calegari–Marques–Neves in two key respects. Firstly, we work with all quasi-Fuchsian subgroups as opposed to merely asymptotically Fuchsian ones. Secondly, as their proof of rigidity breaks down in the present case, we require a different approach. Following ideas recently outlined by Labourie, we prove rigidity by solving a general foliated Plateau problem in Cartan–Hadamard manifolds. To this end, we build on Labourie’s theory of k-surface dynamics, and propose a number of new constructions, conjectures and questions. | es |
dc.format.extent | 46 h. | es |
dc.format.mimetype | application/pdf | es |
dc.language.iso | en | es |
dc.publisher | arXiv | es |
dc.relation.ispartof | Mathematics (Differential Geometry), arXiv:2212.13604v2, dic. 2024, pp. 1-46. | es |
dc.rights | Las obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad de la República.(Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014) | es |
dc.subject.other | MATHEMATICS - DIFFERENTIAL GEOMETRY | es |
dc.subject.other | MATHEMATICS - DYNAMICAL SYSTEMS | es |
dc.title | Foliated Plateau problems and asymptotic counting of surface subgroups | es |
dc.type | Preprint | es |
dc.contributor.filiacion | Alvarez Sébastien, Universidad de la República (Uruguay). Facultad de Ciencias. Centro de Matemática. | - |
dc.contributor.filiacion | Lowe Ben | - |
dc.contributor.filiacion | Smith Graham | - |
dc.rights.licence | Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0) | es |
dc.identifier.doi | 10.48550/arXiv.2212.13604 | - |
Aparece en las colecciones: | Publicaciones académicas y científicas - Facultad de Ciencias |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | ||
---|---|---|---|---|---|
2212.13604v2.pdf | 669,01 kB | Adobe PDF | Visualizar/Abrir |
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons