english Icono del idioma   español Icono del idioma  

Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.12008/47830 How to cite
Title: A mixed combinatorial optimization model for the Río Negro Hydroelectric Complex.
Authors: Risso, Claudio
Nesmachnow, Sergio
Porteiro, Rodrigo
Vignolo, Mario
Sierra, Emiliano
Ibarburu, Mario
Type: Ponencia
Keywords: Energy optimization, Hydrothermal dispatch, Mixed integer linear programming
Issue Date: 2024
Abstract: The management of power generation systems requires the optimized coordination of resources and investments across timeframes ranging from days to decades. This paper introduces a mixed-integer optimization model (MIP) for the short-term operation of the Río Negro Hydroelectric Complex, a crucial asset in Uruguay’s efforts to achieve energy sovereignty by primarily relying on wind, solar, and hydroelectric power sources. The model addresses the challenge of balancing fluctuating renewable energy supply with hydroelectric resources while ensuring cost-effective dispatch and system reliability. The experimental results demonstrate the accuracy with which a MIP approximation can model an extremely nonlinear problem.
Publisher: ICSC-CITIES
IN: ICSC-CITIES 2024 - VII Congreso Ibero-Americano de Ciudades Inteligentes, San Carlos, Costa Rica, 12-14 nov. 2024, pp. 1-15.
Sponsors: Este trabajo fue apoyado por la UTE (Administración Nacional de Usinas y Trasmisiones Eléctricas, Uruguay) y PEDECIBA (Programa de Desarrollo de las Ciencias Básicas, Uruguay).
Citation: Risso, C., Nesmachnow, S., Porteiro, R. y otros. A mixed combinatorial optimization model for the Río Negro Hydroelectric Complex [en línea]. EN: ICSC-CITIES 2024 - VII Congreso Ibero-Americano de Ciudades Inteligentes, San Carlos, Costa Rica, 12-14 nov. 2024, pp. 1-15.
Geographic coverage: Uruguay
Academic department: Potencia
Investigation group: Energía Eléctrica (GENEL)
Appears in Collections:Publicaciones académicas y científicas - Instituto de Ingeniería Eléctrica

Files in This Item:
File Description SizeFormat  
RNPVSI24.pdfVersión presentada654,56 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons