Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.12008/47830
How to cite
Title: | A mixed combinatorial optimization model for the Río Negro Hydroelectric Complex. |
Authors: | Risso, Claudio Nesmachnow, Sergio Porteiro, Rodrigo Vignolo, Mario Sierra, Emiliano Ibarburu, Mario |
Type: | Ponencia |
Keywords: | Energy optimization, Hydrothermal dispatch, Mixed integer linear programming |
Issue Date: | 2024 |
Abstract: | The management of power generation systems requires the optimized coordination of resources and investments across timeframes ranging from days to decades. This paper introduces a mixed-integer optimization model (MIP) for the short-term operation of the Río Negro Hydroelectric Complex, a crucial asset in Uruguay’s efforts to achieve energy sovereignty by primarily relying on wind, solar, and hydroelectric power sources. The model addresses the challenge of balancing fluctuating renewable energy supply with hydroelectric resources while ensuring cost-effective dispatch and system reliability. The experimental results demonstrate the accuracy with which a MIP approximation can model an extremely nonlinear problem. |
Publisher: | ICSC-CITIES |
IN: | ICSC-CITIES 2024 - VII Congreso Ibero-Americano de Ciudades Inteligentes, San Carlos, Costa Rica, 12-14 nov. 2024, pp. 1-15. |
Sponsors: | Este trabajo fue apoyado por la UTE (Administración Nacional de Usinas y Trasmisiones Eléctricas, Uruguay) y PEDECIBA (Programa de Desarrollo de las Ciencias Básicas, Uruguay). |
Citation: | Risso, C., Nesmachnow, S., Porteiro, R. y otros. A mixed combinatorial optimization model for the Río Negro Hydroelectric Complex [en línea]. EN: ICSC-CITIES 2024 - VII Congreso Ibero-Americano de Ciudades Inteligentes, San Carlos, Costa Rica, 12-14 nov. 2024, pp. 1-15. |
Geographic coverage: | Uruguay |
Academic department: | Potencia |
Investigation group: | Energía Eléctrica (GENEL) |
Appears in Collections: | Publicaciones académicas y científicas - Instituto de Ingeniería Eléctrica |
Files in This Item:
File | Description | Size | Format | ||
---|---|---|---|---|---|
RNPVSI24.pdf | Versión presentada | 654,56 kB | Adobe PDF | View/Open |
This item is licensed under a Creative Commons License