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Abstract. The management of power generation systems requires the
optimized coordination of resources and investments across timeframes
ranging from days to decades. This paper introduces a mixed-integer op-
timization model (MIP) for the short-term operation of the Río Negro
Hydroelectric Complex, a crucial asset in Uruguay’s efforts to achieve
energy sovereignty by primarily relying on wind, solar, and hydroelectric
power sources. The model addresses the challenge of balancing fluctuat-
ing renewable energy supply with hydroelectric resources while ensuring
cost-effective dispatch and system reliability. The experimental results
demonstrate the accuracy with which a MIP approximation can model
an extremely nonlinear problem.

Keywords: energy optimization, hydrothermal dispatch, mixed integer
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1 INTRODUCTION

Managing the generation power system involves optimizing over different time
horizons spanning from days to several decades. The complexity of this manage-
ment arises from the large number of components and decisions involved, and
from the uncertainty in key parameters. Technological advancements and envi-
ronmental protection initiatives can influence the management of an electrical
system. The issue is explored through an analysis of the Uruguayan electricity
system, which has become a global reference after achieving energy sovereignty,
relying heavily on renewable energy sources to meet its electricity demand [1,
3]. Uruguay has demonstrated remarkable capacity in integrating these energy
sources into its electrical matrix, achieving a balance between efficiency and sus-
tainability. This paper presents a mixed-integer optimization model (MIP) for
energy production in the Río Negro Hydroelectric complex, which has been a
cornerstone in the successful renewal of Uruguay’s electrical system. This com-
plex is bound to play a key role in adapting the system to future challenges,
serving as a central element in the country’s strategy to maintain its leadership
in the use of clean energy and efficient planning of the electrical system.
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1.1 Integration of non-conventional renewable energy and its

impact on the energy system

Between 2017 and 2020, Uruguay successfully supplied over 95% of its energy
demand through renewable generation, with minimal dependence on fossil fuels
[12]. This achievement results from the country’s strategic approach in balancing
its existing controllable hydroelectric capacity with new investments in non-
conventional renewable energy sources.

In 2021 and 2022, Uruguay continued to meet its domestic energy needs
predominantly with renewables [15]; however, approximately 20% of its electric-
ity production during this period came from thermal fossil sources. This shift
was largely due to an unusual drought in Southeastern South America, which
severely affected major hydroelectric plants in the region. Despite these condi-
tions, Uruguay exported electricity to Argentina and Brazil (see Figure 1) to
help meeting their energy demands, substantially increasing its production be-
yond internal consumption.
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Fig. 1. Daily dispatch with an abundance of re-
newables and export (October 8, 2021).
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Fig. 2. Daily dispatch with renewable shortages
and high imports (March 8, 2023).

In 2023, the drought severely impacted the Uruguayan hydroelectric genera-
tion, which on average accounts for over 40% of the country’s energy supply. To
address this shortfall, Uruguay increased its reliance on thermal generation to
meet domestic demand, while also importing energy, primarily from Brazil. This
notable shift in energy exchange conditions is reflected in the contrast between
Figure 1 and Figure 2. The inter-annual variability in water inflows is one of
the main features of the Uruguayan power system [11]. Moreover, hourly power
supply from existing wind and solar power plants is highly volatile as in most
power systems. In this context both the managing of water resources stored in
hydro power plants reservoirs and power exchanges with neighboring systems
(Argentine and Brazil) are of paramount importance for the system.

Thermal plants and power imports must fill the gap as hydro decreases,
introducing two sources of inter temporal restrictions: i) the startup time of the
largest and most efficient thermal units which requires up to 24 hours to achieve
full power; ii) the conditions of power trade with Brazil, based upon a portfolio
of short-term offers. Each offer has a term during which energy can be bought, a
limited activation window before unaccepted offers expire, and once accepted a
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minimum amount of energy to be purchased. Offers’ terms often extend longer
than a week. Hence, Uruguay’s short-term planning horizon has been extended
to incorporate periods of up to fifteen days, to account for those restrictions. The
perspective of rapid demand growth in emerging sectors such as electric vehicles
[10] and hydrogen production [2] could introduce greater flexibility into energy
management but also add complexity to planning models. We outline the types
of problems, the case study, and the hypotheses on which this work is based.

1.2 Frameworks for Electric System Operation and Planning

Electric system management is divided into different time horizons, with prob-
lems being solved sequentially in reverse order from how they are presented here.

Continuous-Time Grid Control: It is the continuous-time grid control, where
real-time production is coordinated among a predefined set of generating units to
meet demand at every moment, ensuring that network frequency, active/reactive
power flow, and other physical parameters remain within limits [8]. This is pri-
marily an electrical engineering challenge and lies outside the scope of this paper.

Unit Commitment and Dispatch Optimization: It is the short-term op-
eration planning problem. The objective here is to determine which generating
units will be started up or stopped over the next few days, and how much power
each plant should produce hourly to meet the demand with the least cost. This
process defines the set of units that will be controlled in the continuous grid
control model mentioned earlier. Dispatch planning relies on cost data, short-
term forecasts or scenarios for demand, water inflows to reservoirs, hourly power
from uncontrollable sources like wind and solar, cross-border energy trading with
neighboring countries and scheduled maintenance of generating units [5]. Typi-
cally, the dispatch horizon spans between 48 hours and 480 hours, divided into
hourly intervals, and is updated multiple times per day to adjust for the latest
forecast data. This paper primarily focuses on addressing this type of short-term
problem. To optimize the short-term operation problem, it is necessary an ap-
proximation of the Bellman value function at the end of the short-term horizon
[7], which gives the least expected cost of longer-term operation thereafter.

Medium- and Long-Term Planning Models: This level involves medium-
and long-term operation planning models. In many power systems, hydro power
plants have large reservoirs which when full can store water to maintain the plant
production for weeks, months or years without using the water inflows. Medium-
and long-term operation planning models, which cover horizons ranging from a
few weeks to several years, aim to assign value to strategic assets, such as the
water stored in reservoirs [6, 14]. These values are transmitted to short-term
models by means of Bellman value function approximations.

Investment Decision Models: Finally, very long-term models simulate the
electric system over several decades, adding to the random variables aforemen-
tioned, others like fossil fuel prices, and technology costs. These models evaluate
the economic outcomes of system operations over extended periods and are out
of the scope of this work.



4 C. Risso et al.

UTE has developed a set of systems to manage the previous problems, in-
cluding MOP [9], a model for the short and medium term operation and Mingo,
to optimize generation investment. This work is part of a joint venture between
UTE and UdelaR, exploring the use of MIP models as an alternative approach
for addressing short-term operations. The remainder of the document focuses ex-
clusively on the unit commitment and dispatch problem, treating the grid as a
single node and excluding complexities such as international energy transactions.

1.3 Case study: Simplification of Uruguay’s Electric System

While the specifics of the thermal units are not addressed in detail, the hydro-
electric facilities are thoroughly examined, as the primary subject of this study.
Figure 3 illustrates the layout of the four dams that comprise Uruguay’s hy-
droelectric complex. Complementarily, Table 1 shows its main parameters. For

Fig. 3. Map of Uruguay with the 4 hy-
droelectric plants of the system

Name of Maximum Days to Source of

the Unity Power empty the inflows

Bonete 149MW 182 Río Negro
Baygorria 111MW 3 Bonete [+8h] and others
Palmar 343MW 13 Baygorria [+16h] and others

Salto Grande 1890MW 15 Río Uruguay

Tab. 1. Technical parameters of hydroelectric plants in
Uruguay

dispatch planning purposes, the future cost function (Bellman values) is an input
derived from medium and long-term planning models.

Before 2005, electricity demand was met using a combination of hydroelec-
tric plants and controllable thermal units. As shown in Table 1, starting from
its maximum water level and operating at full capacity, the Rincón del Bonete
power plant has an estimated depletion period of six months, assuming no nat-
ural inflows to replenish the reservoir (i.e., no hydrological inputs). The Bonete
reservoir, notable for its size, was once the largest artificial lake in the world for
several years following its inauguration in 1945. Together with the two down-
stream hydroelectric plants on the same river: Baygorria and Palmar, it consti-
tutes Uruguay’s primary energy storage system. The ability to function as a large
energy accumulator has enabled the effective integration of non-conventional re-
newable energy sources in Uruguay, potentially reducing the reliance on batteries
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to manage the intermittency of solar and wind energy. If they generate more en-
ergy than expected, hydroelectric production is scaled back, allowing reservoirs
to store the surplus energy indirectly through water reserves. Conversely, when
renewable generation falls short of forecasts, hydroelectricity compensates.

In 2005, Uruguay embarked on a substantial investment in non-conventional
renewable energy sources, among which, biomass (mainly pulp mills) stands out
due to their controllability and operation, which closely resemble traditional
thermal plants but without the reliance on fossil fuels. Simultaneously and be-
cause of country’s favorable conditions, Uruguay saw a considerable expansion
of wind farms, reaching a combined installed capacity of 1500 MW, and more
recently solar energy, whose installed capacity has reached 250 MW. The fossil
fuel-based thermal generation capacity currently stands at 1154 MW. Around
36% of Uruguay’s installed capacity comes from non-dispatchable sources, whose
intermittence presents significant challenges for system dispatch planning.

Prior to 2005, Uruguay’s electricity generation was predominantly control-
lable. Within a 72-hour planning horizon, both hydrological inflows and national
electricity demand could be forecasted with high accuracy, and short-term plan-
ning systems were inherently deterministic. With the integration of wind, solar,
and biomass, these sources are prioritized, supplying electricity as long as it does
not exceed demand. Controllable components then meet the residual demand:
the gap between total demand and non-conventional renewable generation.

The volatility of renewables shifts to this residual demand, becoming the
key variable in dispatch models. This rapid growth of non-conventional energy
sources has driven a significant redesign of short- and medium-term planning
systems. Short-term planning currently uses Stochastic Dynamic Programming
[4], crucial to Uruguay’s energy transition. However, new challenges arise, in-
cluding managing flexible demands, complex thermal unit commitments, and
the increasing role of international energy exchanges. Large amounts of wind
and solar capacity increase the level of uncertainty of the problem and the need
of methods to take it into account [16]. One of the ways to address this problem is
through the use of a Mixed-Integer Stochastic Programming (MISP) approach.
A notable example of this is the case of [13], which serves as a direct reference
for such implementations. MISPs are well suited to deal with a small power
system like the Uruguayan one. Conversely, the non-linearities of hydroelectric
plants, especially in the Río Negro basin, complicate linear optimization models,
as lake states affect production. This paper presents a MIP model to optimize
dispatch costs for the Río Negro hydroelectric complex, accounting for system
failures: a fine for not being able to fulfill demand. For sake of simplicity, the
model assumes known residual demand and hydrological contributions over the
next fifteen days.

2 PRODUCTION MODEL FOR THE RÍO NEGRO

The Río Negro Hydroelectric Complex houses three of the four hydro-generation
units of Uruguay. It is of utter importance the fact that these three electric dams
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are in tandem in the following sequence: Bonete, Baygorria and Palmar. The
outflows from Bonete are integrated into the stock of Baygorria’s lake after an 8-
hour delay, while the outflows from Baygorria reach Palmar’s lake after 16 hours.
The actual production function of a hydroelectric unit is complex and depends
on countless variables. A reference production function of a hydroelectric unit is

P = ρgη ·Qtrb
· (hlk

− hrv). (1)

The formulation in Eq. (1) relies on the efficiency of turbines and the potential
energy at the height of the reservoir’s lake, where P corresponds to the gener-
ated power [MW], Qtrb to the water flowing downstream through the turbines
[m3/s], hlk is the height of the top of the lake and hrv is the level of the river
after the dam, both expressed in [m]. (hlk−hrv) is the head of the dam. Remain-
ing parameters are constants, namely: the Earth’s gravitational acceleration g
[m/s2]; the density of water ρ [kg/m3]; the energy conversion efficiency of tur-
bines η [dimensionless]. In this model, the state variable hlk solely depends on
the volume of water at the reservoir. The height of Bonete and Palmar lakes
can be adjusted with degree two polynomials at a relative error lower than 1%.
Baygorria is operated as a run-of-the-river hydroelectric generator, so that water
coming from upstream is either turbinated or spilled at that moment.

Regarding control variables, besides turbinated water Qtrb, another source of
water discharges to account for is the spilling Qspl. At times, either for security
reasons or simply for profitability, water must be released from the dam without
generating power. To fully account water discharges Qwds, both components are
included, since Qwds = Qtrb+Qspl. Water discharges raise the level downstream
(i.e., hrv), which, according to (1), decreases the productivity of water passing
through the turbines. This level is also affected by the height of the next lake
downstream, if one exists. Therefore, the river height downstream Palmar de-
pends only on its water discharges, Baygorria’s river hrv

Bay depends on its own

discharges Qwds
Bay and on the height hlk

Pal of Palmar’s lake:

hrv
Bay = FR(h

lk
Pal, Q

wds
Bay). (2)

Baygorria’s lake is constant in height (run-of-the-river unit), so Bonete’s river
depends only on its discharges Qwds

Bon. Downstream rivers height can be approxi-
mated by linear functions or degree two polynomial. Such interdependencies end
up linking production variables of some units with state variables of others. The
Río Negro Complex must be optimized as a whole.

2.1 Formulation and Parameters Adjustment

To adjust all these functions, UTE provided us with the complete hourly time
series for the Río Negro, covering production, control, and state variables, as well
as natural inflows, over a ten-year period from January 1st, 2010, to December
31th, 2019. The final adjustment and formulation are in the polynomial of Eq.
(3), which renames control and state variables for sake of simplicity.
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P (x1h,y1h, v1h, x2h, y2h, x3h, y3h, v3h) =

T
∑

t=1

p
(1)
1 x1h,t + p

(2)
1 x1h,tv1h,t − p

(3)
1 x1h,tv

2
1h,t

− p
(4)
1 x2

1h,t − p
(4)
1 x1h,ty1h,t + p

(1)
2 x2h,t − p

(2)
2 x2

2h,t − p
(2)
2 x2h,ty2h,t − p

(3)
2 x2h,tv3h,t

+ p
(4)
2 x2h,tv

2
3h,t + p

(1)
3 x3h,t + p

(2)
3 x3h,tv3h,t − p

(3)
3 x3h,tv

2
3h,t − p

(4)
3 x2

3h,t

− p
(4)
3 x3h,ty3h,t + p

(5)
3 x3

3h,t + p
(5)
3 x3h,ty3h,t

2 + 2p
(5)
3 x3h,t

2y3h,t,

(3)

Subscripts 1h, 2h and 3h allude to hydraulic units, respectively Bonete, Bay-

gorria and Palmar. Constants p
(j)
i ≥0 are the coefficients for the production of

each unit 1≤i≤3. Variable names x, y and v respectively refer to turbinated flow
[m3/s], spilling [m3/s] and lake’s volume [m3] at each unit. It is assumed that
variables are discretized into time-slots of equal length, of one hour in this case,
along a time-horizon of T hours. While the result of the sum in Eq. (3) accounts
for the whole energy [MWh] produced during the period, each addend captures
the energy production at its time slot. To assess the quality of some regressions,
Figure 4 presents the real-world data (in red) for the height of each lake along a
reference year (2011), compared with the result of regressions (in blue).
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Fig. 4. Records and estimations for the height (over sea level) at each lake over the
Río Negro along 2011.

Considering that some input-data (e.g., natural inflows) have sampling er-
rors, and other variables affecting the result (e.g., wind speed and direction)
were disregarded for lack of data, the overall result is quite remarkable. After
computing the differences between the model in equation Eq. (3) and the actual
power series during 2011, is noted that: i) 79.5% of the samples have an absolute
error below 6 MW, which is 1% of the combined capacity of the Río Negro’s
power plant; ii) this figure increases to 92.9% when the absolute error is below
12 MW (i.e., 2% of the plant); and iii) the regression was based on data from the
entire ten-year period, during which several turbines were offline during days due
to scheduled maintenance or malfunctions, affecting the nominal production.

In summary, we conclude that the non-linear reference model in Eq. (3) is
highly accurate overall.

2.2 Medium-term Optimization Reference

The reference production model in Eq. (3) is a differentiable function, but the
Hessian matrices of these polynomials are generally not definite (i.e. neither
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convex nor concave) on a slot-by-slot basis, which poses a significant challenge for
conventional optimization techniques. The first step in addressing the problem is
to find solutions that allow optimizing energy production in a long-term reference
context of one year. The goal is to get insights of an ideal operation for a specific
context. The year 2011 was selected as the reference because it had the lowest
water inflows to the Río Negro basin during the ten-year period. This required
near-optimal use of water reserves, providing insights to simplify the general
model. The non-linear problem addressed in this section is















max
X,Y,V

P (X,Y, V )

dt ≥ Pt(Xt, Yt, Vt), (i)

(X,Y, V ) ∈ F. (ii)

, (4)

where P (X,Y, V ) =
∑T

t=1 Pt(x1h,t, y1h,t, v1h,t, x2h,t, y2h,t, x3h,t, y3h,t, v3h,t), be-
ing Pt(Xt, Yt, Vt) the addends/terms in the sum of Eq. (3). For the system to be
operational, the flows of water through the turbines (X), the spillways (Y ), as
well as the water volume in the reservoirs (V ), must stay within technical limits,
expressed in Eq. (4)−(ii) in the form of a set F . Additionally, at each time step
t, the power Pt generated and supplied to the grid cannot exceed the demand
dt of that period (Eq. (4)−(i)). The volume of water in each reservoir at any
time must always comply a mass balance equation (elaborated at Section 3). To
find reference solutions, a representative period is established, which inherits the
initial and final levels of each lake in 2011, as well as their inflows during the
period, respectively sketched in Figure 4 and Figure 5.
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Fig. 5. Natural Inflows to the lake of every hydroelectric unit over the Río Negro [2011].

Afterwards, a reference demand profile was needed. The available ten years of
hydraulic data only overlaps the early stages of Uruguay’s renewable energy
expansion. To create a representative demand scenario (scenario A), the 2018
residual demand was used, as wind power was fully deployed by then, and its
average inflows closely matched the ten-year dataset. Additionally, another syn-
thetic demand was crafted (demand scenario B), in this case after copying the
shape of the recorded production at the Río Negro during 2011. The second
instance was scaled to match the accumulated energy of the demand in the pre-
vious scenario. To determine optimized solutions for both scenarios, an iterative
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optimization algorithm employing successive approximations was used. We re-
mark here how the spilling was managed for demand instances A and B. The
Figure 6 sketches the result for the three solutions (red, blue and yellow curves)
of better quality (i.e., energy production) resulting from the iterative algorithm
previously mentioned. The results are for instance B, since it is slightly more ex-
treme in terms of spilling. Note that the maximum flow spilled at Bonete is under
400 [m3/s] at any time for the three solutions, a figure remarkably low, below
the 10% of its technical limit. The relative gap is similar regarding Baygorria.
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Fig. 6. Spilling graphic for the three better solutions found for demand instance B.

Regarding Palmar, no spillages are recorded in any solution across both in-
stances. This behavior is the cornerstone to simplify the model.

3 MIP APPROACH FOR RÍO NEGRO’s COMPLEX

The section introduces a MIP model to optimize the Unit Commitment and
Dispatch at the Río Negro Hydroelectric Complex. In Section 2.1, optimized
electricity production solutions were identified under the hydrological conditions
of a dry year (in terms of natural influxes). From these, six high-quality solu-
tions were selected, all using the same inflow series. Three of these solutions
were based on an annual demand scenario derived from the actual residual de-
mand of 2018 (scenario A), while the other three adapted the production pattern
from the 2011 energy series (scenario B). A year is composed of 24 consecutive
fifteen-day periods, plus a remainder with a few days more. To obtain refer-
ences of efficiently managed production at Río Negro during drought conditions,
the six one-year-long solutions were chopped into fifteen-day periods. This pro-
duced a reference set of 144 fifteen-day control periods. Addends Pt in Eq. (3)
are polynomials, each consisting of 18 monomials. However, since y3h,t is zero
for every t across all 144 solutions (as spilling at Palmar is nil), the monomials

p
(4)
3 x3h,ty3h,t, p

(5)
3 x3h,ty3h,t

2 and 2p
(5)
3 x3h,t

2y3h,t can be disregarded. Addition-
ally, across all 144 solutions, we checked that the combined relative influence of

terms: −p
(4)
1 x1h,ty1h,t, −p

(2)
2 x2h,ty2h,t and p

(5)
3 x3

3h,t was negligible.
Therefore, equation (3), which provides a high-quality approximation of Río

Negro’s production under any weather conditions, can be simplified to the twelve
monomials in equation (5) when the problem is considered within a sliding win-
dow during a mid-term dry weather season.
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P̂ (x1h, v1h, x2h, x3h, v3h) =

T
∑

t=1

p̂
(1)
1 x1h,t + p̂

(2)
1 x1h,tv1h,t − p̂

(3)
1 x1h,tv

2
1h,t − p̂

(4)
1 x2

1h,t + p̂
(1)
2 x2h,t

− p̂
(2)
2 x2

2h,t − p̂
(3)
2 x2h,tv3h,t + p̂

(4)
2 x2h,tv

2
3h,t + p̂

(1)
3 x3h,t + p̂

(2)
3 x3h,tv3h,t − p̂

(3)
3 x3h,tv

2
3h,t − p̂

(4)
3 x2

3h,t

. (5)

Note that constants p
(j)
i in Eq. (3) are renamed to p̂

(j)
i in Eq. (5). Their val-

ues were slightly adjusted to obtain a better match between the new/simplified
model and the former over the six solutions found. For simplicity, the optimiza-
tion problem discussed in this article includes only the opportunity cost of water
at Bonete and Palmar reservoirs (i.e., Bellman costs coming from longer term
planning models), as well as the penalty (i.e., cost of failure) for each MWh of
unmet dispatch at every hour. This is expressed as shown in Eq. (6).































































































min
xih,yih,vih

ca1h(v1h,0 − v1h,T ) + ca3h(v3h,0 − v3h,T ) + CF
T
∑

t=1

(dt − gh,t)

dt ≥ gh,t, (i)

gh,t = g1h,t + g2h,t + g3h,t, (ii)

g1h,t = ˆPtBon(x1h,t, y1h,t, v1h,t), (iii)

g2h,t = ˆPtBay(x2h,t, y2h,t, v3h,t), (iv)

g3h,t = ˆPtPal(x3h,t, y3h,t, v3h,t), (v)

v1h,t = v1h,t−1 + 3600(a1h,t − x1h,t − y1h,t), (vi)

x2h,t + y2h,t = a2h,t + x1h,t−8 + y1h,t−8, (vii)

v3h,t = v3h,t−1 + 3600(a3h,t − x3h,t − y3h,t + x2h,t−16 + y2h,t−16), (viii)

(xih, yih, vih) ∈ (X,Y, V ), (ix)

(6)

As it was elaborated in Section 1.2, this model assumes the existence of Bell-
man costs to estimate the cost of opportunity of the water. In the objective
function of (6), ca1h and ca3h (expressed in [USD/m3]) respectively quantify
those costs for Bonete and Palmar. The end-to-end variation of volume at reser-
voirs (i.e., (v1h,0 − v1h,T ) and (v3h,0 − v3h,T )) times its opportunity-cost are two
of the costs accounted; the third is the total cost of failure.

In terms of constraints, Eq. (6)−(i) ensures that the generation gh,t does not
exceed the demand dt at any time, which is essentially the same as Eq. (4)−(i).
Equations (6)−(ii) to (v) represent that the total hydroelectric energy gh,t at
any time-slot t, is the sum of the production from Bonete (g1h,t), Baygorria
(g2h,t) and Palmar (g3h,t).

Equations (6)−(vi) to (viii) enforce mass balance at each reservoir. Rain
in remote areas takes days to reach the reservoir and impact storage. With
permanent collection of rainfall data across the basin, natural inflows can be
treated as deterministic for dispatch planning purposes. Therefore, is assumed
that the inflows to the reservoirs are given: a1h,t (for Bonente), a2h,t (for Bay-
gorria) and a3h,t (for Palmar). Equation (6)−(vi) states that the water volume
in Bonete’s reservoir at time t + 1 must equal the volume at time t, plus the
natural inflows during that period, minus the discharges. The net inflow per
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second (a1h,t − x1h,t − y1h,t) –expressed in [m3/s]– must be multiplied by the
number of seconds in the time-slot, which in this case is 3600 (one hour). Since
Baygorria is a run-of-the-river hydroelectric station, inflows and outflows must
always match. Additionally, the balance at Baygorria must account for the wa-
ter discharged from Bonete eight hours earlier, as indicated in the last column
of Table 1 and captured in Eq. (6)−(vii). The balance at Palmar’s reservoir is
similar (Eq. (6)−(viii)). Finally, Eq. (6)−(ix) incorporates the technical limits
of the units within the complex. The formulation in Eq. (6) is nonlinear, because
even being simpler, the production addends at (5) are not linear yet. The terms
in Eq. (5) can be regrouped to identify each unit, as in Eq. (7).











ˆPtBon = (p̂
(1)
1 x1h − p̂

(4)
1 x2

1h) + (p̂
(2)
1 v1h − p̂

(3)
1 v21h)x1h

ˆPtBay = (p̂
(1)
2 x2h − p̂

(2)
2 x2

2h) − (p̂
(3)
2 v3h − p̂

(4)
2 v23h)x2h

ˆPtPal = (p̂
(1)
3 x3h − p̂

(4)
3 x2

3h) + (p̂
(2)
3 v3h − p̂

(3)
3 v23h)x3h

(7)

These expressions complete the formulation in Eq. (6). Observe that the first
term in the three production functions are analogous, and correspond to degree
two polynomials (p̂xih,t − q̂x2

ih,t) in xih, all of which are concave. A concave
function within a maximization process can easily and efficiently be captured by

means of tangents. That idea is used to capture (p̂
(1)
3 x3h − p̂

(4)
3 x2

3h) for Palmar
with three tangents: one at the minimum technical (0); one at at the maximum
technical; the other exactly in the middle. Hence, finding a good approach for
that term is equivalent to maximizing a variable z3h, while keeping it below these
three tangents at any time:















z3h,t ≤ r̂
(1)
3 x3h,t,

z3h,t ≤ r̂
(2)
3 x3h,t + ŝ

(2)
3 ,

z3h,t ≤ r̂
(3)
3 x3h,t + ŝ

(3)
3

(8)

The solution was similar for Bonete (z1h) and Baygorria (z2h), but even simpler,
as only two tangent lines were needed to achieve the desired accuracy. Up to this
point, only continuous variables were used. Boolean variables are now introduced

to account for the expressions (p̂
(2)
1 v1h − p̂

(3)
1 v21h)x1h and (p̂

(2)
3 v3h − p̂

(3)
3 v23h)x3h

of (7). These terms respectively swell the efficiency of Bonete and Palmar, by
incorporating the additional energy given from the extra height as the reservoir
volume expands. Next, the focus is set upon how the issue was addressed at
Bonete, with a similar approach applied to Palmar.

The approach quantizes Bonete’s reservoir levels and introduces variables to
capture additional efficiency. These variables activate or deactivate sequentially
as the reservoir volume crosses certain thresholds, which are relative to the initial
volume v1h,0. Due to Bonete’s large size, volume changes over a fifteen-day period
are expected to be minimal.

After analyzing the volume series of Bonete (v1h,t) across our reference set
of 144 solutions, the conclusion is that three levels were sufficient to achieve
the desired accuracy. Let’s denote the three levels into which Bonete’s volume



12 C. Risso et al.

is quantized –after the initial volume v1h,0 for a given fifteen-day short-term
instance– as: V 1h1, V 1h2 and V 1h3. The approximation to g1h,t follows the
replacement of Eq. (4)−(iii) with the following set of constraints















g1h,t = z1h,t +
∑3

i=1 θ
(i)
1h,t, (i)

z1h,t ≤ r̂
(1)
1 x1h,t, (ii)

z1h,t ≤ r̂
(2)
1 x1h,t + ŝ

(2)
1 (iii)

. (9)

The z1h,t addend approximates the concave portion, as shown for Palmar in Eq.

(8), thought this case only uses two tangents. The variables θ
(i)
1h,t correspond

to the additional production due to the extra height. To work properly, these
variables require constraints as in Eq. (10).











































0 ≤ θ
(1)
1h,t ≤ (p̂

(2)
1 V 1h1− p̂

(3)
1 V 1h1

2
)x1h,t, (i)

0 ≤ θ
(2)
1h,t ≤ (p̂

(2)
1 ∆V 1h2− p̂

(3)
1 ∆V 1h2

2
)x1h,t, (ii)

0 ≤ θ
(2)
1h,t ≤ 680(p̂

(2)
1 ∆V 1h2− p̂

(3)
1 ∆V 1h2

2
)ϕ

(1)
1h,t, (iii)

0 ≤ θ
(3)
1h,t ≤ (p̂

(2)
1 ∆V 1h3− p̂

(3)
1 ∆V 1h3

2
)x1h,t, (iv)

0 ≤ θ
(3)
1h,t ≤ 680(p̂

(2)
1 ∆V 1h3− p̂

(3)
1 ∆V 1h3

2
)ϕ

(2)
1h,t (v)

(10)

This equation introduces constants derived from V 1h1 to V 1h3, which are:

∆V 1h2 = (V 1h2 − V 1h1), ∆V 1h2
2
= (V 1h2

2
− V 1h1

2
), ∆V 1h3 = (V 1h3 −

V 1h2) and ∆V 1h3
2
= (V 1h3

2
− V 1h2

2
). Equation (10)−(i), which is linear,

allows θ
(1)
1h,t to take on a value similar to (p̂

(2)
1 v1h − p̂

(3)
1 v21h)x1h in Eq. (7).

These values align precisely when v1h,t = V 1h1. For now, keep in mind that

ϕ
(1)
1h,t = 1 only if v1h,t ≥ V 1h2, and ϕ

(2)
1h,t = 1 only if v1h,t ≥ V 1h3. If ϕ

(1)
1h,t = 0,

Eq. (10)−(iii) forces θ
(2)
1h,t = 0. The deactivation of ϕ

(2)
1h,t similarly affects θ

(3)
1h,t

due to Eq. (10)−(v). Conversely, since 680 [m3/s] is the maximum technical

turbinated flow for Bonete, Eq. (10)−(iii) deactivates when ϕ
(1)
1h,t = 1, and

as x1h,t changes, the sum of θ
(1)
1h,t + θ

(2)
1h,t approximates (p̂

(2)
1 v1h − p̂

(3)
1 v21h)x1h

when the reservoir volume is around V 1h2. A similar trigger effect occurs when

ϕ
(2)
1h,t = 1, which also implies that ϕ

(1)
1h,t = 1. In this case,

∑3
i=1 θ

(i)
1h,t approxi-

mates (p̂
(2)
1 v1h − p̂

(3)
1 v21h)x1h when the reservoir volume is near V 1h3. Equation

(11) shows how ϕ
(i)
1h,t variables can be forced to zero according on thresholds.















ϕ
(1)
1h,t ≤ 1−

V 1h2− v1h,t
M1

,

ϕ
(2)
1h,t ≤ 1−

V 1h3− v1h,t
M1

(11)

Note that, with a properly chosen value of M1, ϕ
(1)
1h,t cannot be activated if

v1h,t < V 1h2, as it is a boolean variable constrained to a value less than 1. The
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same idea goes for ϕ
(2)
1h,t. The strategy for addressing the problem at Palmar

is similar. The main difference lies in Palmar’s faster dynamics and smaller
reservoir, which allows its lake level to fluctuate more significantly than Bonete’s.
To account for this, five reservoir levels were used for Palmar instead of three.

The only remaining unresolved term is −(p̂
(3)
2 v3h − p̂

(4)
2 v23h)x2h, which im-

pacts Baygorria’s efficiency as the level of Palmar’s lake rises. Experimental
evaluations –both on the 144 prior solutions and on the results of test models
prior to this one– have shown that Palmar’s power and reservoir size dominate
the optimization outcome. It is Palmar’s reservoir management that influences
Baygorria, not the other way around. Therefore, the subproblem was handled
through a simple linear regression of the expression. The regression is performed
for each specific instance before running the problem, using the five designated
level thresholds V 3h1 to V 3h5 for Palmar in that instance.

4 EXPERIMENTAL EVALUATION

The evaluation of the MIP model was conducted using a test-set of 204 instances.
These instances were grouped into 6 subgroups, each consisting of 34 instances.
The subgroups are fifteen-day periods sampled over the three reference good-
quality solutions of scenario A as defined in Section 2.2, meaning that the profile
of residual demands match actual data from 2018. The first half of the instances
replicates the residual demand, while the second half increases it by a factor of
1.5 and adds a sustained demand of an additional 50 MW, as in Table 2.

Subgroup ca1h [USD/m3] ca3h [USD/m3] CF [USD/MWh] Residual Demand

1 0.0033 0.0063 3200 dt as in 2018
2 0.0063 0.0033 3200 dt as in 2018
3 0.0048 0.0048 3200 dt as in 2018

4 0.0033 0.0063 1600 50 MW + 1.5× dt
5 0.0063 0.0033 1600 50 MW + 1.5× dt
6 0.0048 0.0048 1600 50 MW + 1.5× dt

Table 2. Complementary parameters to complete the test-instances data-set.

Note that sampling among different solutions allow exploring changes in the
initial conditions of reservoirs of Bonete and Palmar, while natural inflows do the
proper with the series of natural inflows sketched in Figure 5. The economical
parameters ca1h, ca3h and CF derive from the actual hydro-production during
2011 for a reference cost of energy of 80 [USD/MWh]. Bellman values ca1h and
ca3h are equal at instances 3 and 6, whereas other instances shift toward either
Bonete or Palmar. The cost of failure for the last three subgroups is 20 times
the reference energy cost, and it is doubled for the first half.

Instances were solved by means of the software IBM(R) ILOG(R) CPLEX(R)

Interactive Optimizer 12.6.3.0, running on an HP ProLiant DL385 G7, with
AMD Opteron processor 6172, 24 cores at 2.1GHz and 64GB of RAM.
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All solutions reported here reached optimality, with relative differences be-
tween the cumulated reference production function in (3) and its equivalent
∑T

t=1 gh,t of the MIP’s approximation (eq-(6)−(ii)) ranging from -0.012% to
0.046%, with average -0.001%, which is negligible. When we move from total
energy to power (i.e., slot-by-slot energy) the difference in [MWh] ranges from
0.92 to 32.05, with a mean of 12.52. As a reference, consider that the combined
installed plant of Bonete, Baygorria and Palmar is 603 MW. The maximum de-
viation in power occurs for the 10th instance of subgroup 4 in Table 2, and its
corresponding curves are shown in Figure 7.
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Fig. 7. Real [(3) in red] vs MIP approximated production: g1h,t, g2h,t, g3h,t and gh,t.

Computation times ranged from under 1 to 1210 seconds, with an average
of 121 seconds. Notably, in most cases, the majority of the time was spent on
fine-tuning the solution to reach optimality. We remark that in over 95% of the
204 instances solved, a feasible solution with a proven duality gap (i.e., an error
estimate) of less than 1% was achieved within the first 2 seconds of runtime.

5 CONCLUSIONS AND FUTURE WORK
Merging conventional renewable energy sources with newer ones allows for the
best use of both, but poses challenges in operations. MIP and MISP models
are ideal for addressing parts of the problem and are better suited to adapt to
emerging challenges. This is not the case for legacy hydroelectric complexes such
as the one in Río Negro. This paper presents a MIP model for such a complex
that effectively tackles the subproblem. This research team is actively working
to incorporate additional components into the model to develop a more compre-
hensive and realistic Unit Commitment and Dispatch Optimization system.
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