Por favor, use este identificador para citar o enlazar este ítem:
https://hdl.handle.net/20.500.12008/47766
Cómo citar
Título: | Weighted Sobolev regularity and rate of approximation of the obstacle problem for the integral fractional Laplacian. |
Autor: | Borthagaray, Juan Pablo Nochetto, Ricardo H. Salgado, Abner J. |
Tipo: | Preprint |
Palabras clave: | Obstacle problem, Free boundaries, Finite elements, Fractional diffusion, Weighted Sobolev spaces, Graded meshes |
Fecha de publicación: | 2019 |
Resumen: | We obtain regularity results in weighted Sobolev spaces for the solution of the obstacle problem for the integral fractional Laplacian (−Δ)s in a Lipschitz bounded domain Ω⊂Rn satisfying the exterior ball condition. The weight is a power of the distance to the boundary ∂Ω of Ω that accounts for the singular boundary behavior of the solution for any 0<s<1. These bounds then serve us as a guide in the design and analysis of a finite element scheme over graded meshes for any dimension n, which is optimal for n=2. |
EN: | Mathematical Models and Methods in Applied Sciences, 2019, 29(14), 2679-2717. |
Financiadores: | Juan Pablo Borthagaray ha sido financiado en parte por la subvención DMS-1411808 de la NSF. |
Citación: | Borthagaray, J, Nochetto, R y Salgado, A. Weighted Sobolev regularity and rate of approximation of the obstacle problem for the integral fractional Laplacian. Mathematical Models and Methods in Applied Sciences [preprint], 2019, 29(14), 2679-2717 |
Aparece en las colecciones: | Publicaciones académicas y científicas - IMERL (Instituto de Matemática y Estadística Rafael Laguardia) |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | ||
---|---|---|---|---|---|
BNS19.pdf | Preprint | 1,52 MB | Adobe PDF | Visualizar/Abrir |
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons