Por favor, use este identificador para citar o enlazar este ítem:
https://hdl.handle.net/20.500.12008/47712
Cómo citar
Registro completo de metadatos
Campo DC | Valor | Lengua/Idioma |
---|---|---|
dc.contributor.author | Borthagaray, Juan Pablo | - |
dc.contributor.author | Li, Wenbo | - |
dc.contributor.author | Nochetto, Ricardo H. | - |
dc.date.accessioned | 2024-12-23T16:45:38Z | - |
dc.date.available | 2024-12-23T16:45:38Z | - |
dc.date.issued | 2022 | - |
dc.identifier.citation | Borthagaray, J., Li, W. y Nochetto, R. Fractional elliptic problems on Lipschitz domains : Regularity and approximation. [Preprint]. Publicado en: Mathematics. Numerical Analysis (math.NA). 2022, pp. 1-55. arXiv:2212.14070v1. DOI: 10.48550/arXiv.2212.14070. | es |
dc.identifier.uri | https://hdl.handle.net/20.500.12008/47712 | - |
dc.description | También publicado en A³N²M : Approximation, Applications, and Analysis of Nonlocal, Nonlinear Models. The IMA Volumes in Mathematics and its Applications, vol 165. Springer, Cham. DOI: 10.1007/978-3-031-34089-5_2. | es |
dc.description.abstract | This survey hinges on the interplay between regularity and approximation for linear and quasilinear fractional elliptic problems on Lipschitz domains. For the linear Dirichlet integral Laplacian, after briefly recalling Hölder regularity and applications, we discuss novel optimal shift theorems in Besov spaces and their Sobolev counterparts. These results extend to problems with finite horizon and are instrumental for the subsequent error analysis. Moreover, we dwell on extensions of Besov regularity to the fractional p-Laplacian and review the regularity of fractional minimal graphs and stickiness. We discretize these problems using continuous piecewise linear finite elements and derive global and local error estimates for linear problems, thereby improving some existing error estimates for both quasi-uniform and graded meshes. We also present a BPX preconditioner which turns out to be robust with respect to both the fractional order and the number of levels. We conclude with the discretization of fractional quasilinear problems and their error analysis. We illustrate the theory with several illuminating numerical experiments. | es |
dc.description.sponsorship | Juan Pablo Borthagaray ha sido financiado en parte por el Fondo Vaz Ferreira Beca 2019-068. | es |
dc.format.extent | 55 p. | es |
dc.format.mimetype | application/pdf | es |
dc.language.iso | en | es |
dc.publisher | arXiv | es |
dc.relation.ispartof | Mathematics. Numerical Analysis (math.NA), arXiv:2212.14070v1, dec. 2022, pp. 1-55. | es |
dc.rights | Las obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad de la República.(Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014) | es |
dc.subject | Numerical Analysis | es |
dc.title | Fractional elliptic problems on Lipschitz domains : Regularity and approximation. | es |
dc.type | Preprint | es |
dc.contributor.filiacion | Borthagaray Juan Pablo, Universidad de la República (Uruguay). Facultad de Ingeniería. | - |
dc.contributor.filiacion | Li Wenbo, University of Tennessee, USA | - |
dc.contributor.filiacion | Nochetto Ricardo H., University of Maryland, USA | - |
dc.rights.licence | Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0) | es |
Aparece en las colecciones: | Publicaciones académicas y científicas - IMERL (Instituto de Matemática y Estadística Rafael Laguardia) |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | ||
---|---|---|---|---|---|
BLN22.pdf | Preprint | 3,88 MB | Adobe PDF | Visualizar/Abrir |
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons