Por favor, use este identificador para citar o enlazar este ítem:
https://hdl.handle.net/20.500.12008/47682
Cómo citar
Título: | Finite element approximations for fractional evolution problems. |
Autor: | Acosta, Gabriel Bersetche, Francisco M. Borthagaray, Juan Pablo |
Tipo: | Preprint |
Palabras clave: | Fractional Laplacian, Caputo derivative, Evolution problems |
Fecha de publicación: | 2018 |
Resumen: | This work introduces and analyzes a finite element scheme for evolution problems involving fractional-in-time and in-space differentiation operators up to order two. The left-sided fractional-order derivative in time we consider is employed to represent memory effects, while a nonlocal differentiation operator in space accounts for long-range dispersion processes. We discuss well-posedness and obtain regularity estimates for the evolution problems under consideration. The discrete scheme we develop is based on piecewise linear elements for the space variable and a convolution quadrature for the time component. We illustrate the method's performance with numerical experiments in one- and two-dimensional domains. |
Descripción: | También publicado en Fractional Calculus and Applied Analysis, vol. 22, no. 3, jun. 2019, pp. 767 - 794. DOI : https://doi.org/10.1515/fca-2019-0042. |
Editorial: | arXiv |
EN: | Mathematics. Numerical Analysis (math.NA), arXiv:1705.09815v2, apr. 2018, pp. 1-22. |
Citación: | Acosta, G., Bersetche, F. y Borthagaray, J. Finite element approximations for fractional evolution problems. [Preprint]. Publicado en: Mathematics. Numerical Analysis (math.NA), 2018, pp. 1-22. arXiv:1705.09815v2. |
Aparece en las colecciones: | Publicaciones académicas y científicas - IMERL (Instituto de Matemática y Estadística Rafael Laguardia) |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | ||
---|---|---|---|---|---|
ABB18.pdf | Preprint | 2,08 MB | Adobe PDF | Visualizar/Abrir |
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons