Por favor, use este identificador para citar o enlazar este ítem:
https://hdl.handle.net/20.500.12008/47626
Cómo citar
Título: | A deep first-order system least squares method for solving elliptic PDEs. |
Autor: | Bersetche, Francisco M. Borthagaray, Juan Pablo |
Tipo: | Preprint |
Palabras clave: | Numerical Analysis |
Fecha de publicación: | 2022 |
Resumen: | We propose a First-Order System Least Squares (FOSLS) method based on deep-learning for numerically solving second-order elliptic PDEs. The method we propose is capable of dealing with either variational and non-variational problems, and because of its meshless nature, it can also deal with problems posed in high-dimensional domains. We prove the Γ-convergence of the neural network approximation towards the solution of the continuous problem, and extend the convergence proof to some well-known related methods. Finally, we present several numerical examples illustrating the performance of our discretization. |
Descripción: | También publicado en Computers & Mathematics with Applications, vol. 129, jan. 2023, pp. 136-150. DOI: 10.1016/j.camwa.2022.11.014. |
Editorial: | arXiv |
EN: | Mathematics. Numerical Analysis (math.NA), arXiv:2204.07227v2, dec 2022, pp 1-23 |
Financiadores: | Francisco M. Bersetche ha sido financiado en parte por una beca postdoctoral de PEDECIBA y la beca ANPCyT PICT 2018-3017. |
Citación: | Bersetche, F. y Borthagaray, J. A deep first-order system least squares method for solving elliptic PDEs. [Preprint]. Publicado en: Mathematics. Numerical Analysis (math.NA). 2022, pp. 1-23. arXiv:2204.07227v2. DOI: 10.48550/arXiv.2204.07227. |
Aparece en las colecciones: | Publicaciones académicas y científicas - IMERL (Instituto de Matemática y Estadística Rafael Laguardia) |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | ||
---|---|---|---|---|---|
BB22.pdf | Preprint | 763,15 kB | Adobe PDF | Visualizar/Abrir |
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons