english Icono del idioma   español Icono del idioma  

Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/20.500.12008/47602 Cómo citar
Título: A realisation result for moduli spaces of group actions on the line.
Autor: Brum, Joaquín
Matte Bon, Nicolás
Rivas, Cristóbal
Triestino, Michele
Tipo: Preprint
Palabras clave: Group actions on the real line, Semi-conjugacy of actions, Deroin space
Fecha de publicación: 2024
Resumen: Given a finitely generated group G, the possible actions of G on the real line (without global fixed points), considered up to semi-conjugacy, can be encoded by the space of orbits of a flow on a compact space (Y,Φ) naturally associated with G and uniquely defined up to flow equivalence, that we call the \emph{Deroin space} of G. We show a realisation result: every expansive flow (Y,Φ) on a compact metrisable space of topological dimension 1, satisfying some mild additional assumptions, arises as the Deroin space of a finitely generated group. This is proven by identifying the Deroin space of an explicit family of groups acting on suspension flows of subshifts, which is a variant of a construction introduced by the second and fourth authors. This result provides a source of examples of finitely generated groups satisfying various new phenomena for actions on the line, related to their rigidity/flexibility properties and to the structure of (path-)connected components of the space of actions.
Editorial: arXiv
EN: Mathematics. Group Theory (math.GR), arXiv:2306.03846v4, sep. 2024, pp. 1-32.
Financiadores: Proyectos MATH AMSUD, DGT
Citación: Brum, J., Matte Bon, N., Rivas, C. y otros. A realisation result for moduli spaces of group actions on the line. [Preprint]. Publicado en: Mathematics. Group Theory (math.GR), 2024, pp. 1-32. arXiv:2306.03846v4. DOI: 10.48550/arXiv.2306.03846.
Aparece en las colecciones: Publicaciones académicas y científicas - IMERL (Instituto de Matemática y Estadística Rafael Laguardia)

Ficheros en este ítem:
Fichero Descripción Tamaño Formato   
BMRT24.pdfPreprint463,5 kBAdobe PDFVisualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons