Por favor, use este identificador para citar o enlazar este ítem:
https://hdl.handle.net/20.500.12008/47602
Cómo citar
Título: | A realisation result for moduli spaces of group actions on the line. |
Autor: | Brum, Joaquín Matte Bon, Nicolás Rivas, Cristóbal Triestino, Michele |
Tipo: | Preprint |
Palabras clave: | Group actions on the real line, Semi-conjugacy of actions, Deroin space |
Fecha de publicación: | 2024 |
Resumen: | Given a finitely generated group G, the possible actions of G on the real line (without global fixed points), considered up to semi-conjugacy, can be encoded by the space of orbits of a flow on a compact space (Y,Φ) naturally associated with G and uniquely defined up to flow equivalence, that we call the \emph{Deroin space} of G. We show a realisation result: every expansive flow (Y,Φ) on a compact metrisable space of topological dimension 1, satisfying some mild additional assumptions, arises as the Deroin space of a finitely generated group. This is proven by identifying the Deroin space of an explicit family of groups acting on suspension flows of subshifts, which is a variant of a construction introduced by the second and fourth authors. This result provides a source of examples of finitely generated groups satisfying various new phenomena for actions on the line, related to their rigidity/flexibility properties and to the structure of (path-)connected components of the space of actions. |
Editorial: | arXiv |
EN: | Mathematics. Group Theory (math.GR), arXiv:2306.03846v4, sep. 2024, pp. 1-32. |
Financiadores: | Proyectos MATH AMSUD, DGT |
Citación: | Brum, J., Matte Bon, N., Rivas, C. y otros. A realisation result for moduli spaces of group actions on the line. [Preprint]. Publicado en: Mathematics. Group Theory (math.GR), 2024, pp. 1-32. arXiv:2306.03846v4. DOI: 10.48550/arXiv.2306.03846. |
Aparece en las colecciones: | Publicaciones académicas y científicas - IMERL (Instituto de Matemática y Estadística Rafael Laguardia) |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | ||
---|---|---|---|---|---|
BMRT24.pdf | Preprint | 463,5 kB | Adobe PDF | Visualizar/Abrir |
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons