english Icono del idioma   español Icono del idioma  

Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/20.500.12008/47587 Cómo citar
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorFernández, Santiago-
dc.contributor.authorMartínez, Emilio-
dc.contributor.authorVarela, Gabriel-
dc.contributor.authorMusé, Pablo-
dc.contributor.authorLarroca, Federico-
dc.date.accessioned2024-12-17T17:24:17Z-
dc.date.available2024-12-17T17:24:17Z-
dc.date.issued2024-
dc.identifier.citationFernández, S., Martínez, E., Varela, G. y otros. Deep-TEMPEST : Using deep learning to eavesdrop on HDMI from its unintended electromagnetic emanations [en línea]. EN: LADC ´24 : Proceedings of the 13th Latin-American Symposium on Dependable and Secure Computing, Recife, Brazil, 26-29 nov. 2024, pp. 91-100.es
dc.identifier.urihttps://hdl.handle.net/20.500.12008/47587-
dc.description.abstractIn this research paper, we address the problem of eavesdropping on digital video displays by analyzing the electromagnetic waves that unintentionally emanate from the cables and connectors, particularly HDMI. This problem is known as TEMPEST. Compared to the analog case (VGA), the digital case is harder due to a 10-bit encoding that results in a much larger bandwidth and non-linear mapping between the observed signal and the pixel’s intensity. As a result, eavesdropping systems designed for the analog case obtain unclear and difficult-to-read images when applied to digital video. The proposed solution is to recast the problem as an inverse problem and train a deep learning module to map the observed electromagnetic signal back to the displayed image. However, this approach still requires a detailed mathematical analysis of the signal, firstly to determine the frequency at which to tune but also to produce training samples without actually needing a real TEMPEST setup. This saves time and avoids the need to obtain these samples, especially if several configurations are being considered. Our focus is on improving the average Character Error Rate in text, and our system improves this rate by over 60 percentage points compared to previous available implementations. The proposed system is based on widely available Software Defined Radio and is fully open-source, seamlessly integrated into the popular GNU Radio framework. We also share the dataset we generated for training, which comprises both simulated and over 1000 real captures. Finally, we discuss some countermeasures to minimize the potential risk of being eavesdropped by systems designed based on similar principles.es
dc.format.extent10 p.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenes
dc.relation.ispartofLADC ´24 : Proceedings of the 13th Latin-American Symposium on Dependable and Secure Computing, Recife, Brazil, 26-29 nov. 2024, pp. 91-100.es
dc.rightsLas obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad de la República.(Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014)es
dc.subjectSoftware Defined Radioes
dc.subjectSide-channel attackes
dc.subjectDeep Learninges
dc.titleDeep-TEMPEST : Using deep learning to eavesdrop on HDMI from its unintended electromagnetic emanations.es
dc.typePonenciaes
dc.contributor.filiacionFernández Santiago, Universidad de la República (Uruguay). Facultad de Ingeniería.-
dc.contributor.filiacionMartínez Emilio, Universidad de la República (Uruguay). Facultad de Ingeniería.-
dc.contributor.filiacionVarela Gabriel, Universidad de la República (Uruguay). Facultad de Ingeniería.-
dc.contributor.filiacionMusé Pablo, Universidad de la República (Uruguay). Facultad de Ingeniería.-
dc.contributor.filiacionLarroca Federico, Universidad de la República (Uruguay). Facultad de Ingeniería.-
dc.rights.licenceLicencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)es
udelar.academic.departmentProcesamiento de Señales y Telecomunicacioneses
udelar.investigation.groupTratamiento de Imagenes y Análisis de Redes, Tráficos y Estadísticas de Servicios (ARTES)es
Aparece en las colecciones: Publicaciones académicas y científicas - Instituto de Ingeniería Eléctrica

Ficheros en este ítem:
Fichero Descripción Tamaño Formato   
FMVML24.pdfVersión final8,28 MBAdobe PDFVisualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons