
Deep-TEMPEST: Using Deep Learning to Eavesdrop on HDMI
from its Unintended Electromagnetic Emanations

Santiago Fernández
Emilio Martínez

sfernandez@fing.edu.uy
emartinez@fing.edu.uy

Facultad de Ingeniería, Universidad
de la República

Montevideo, Uruguay

Gabriel Varela
jorge.varela@fing.edu.uy

Facultad de Ingeniería, Universidad
de la República

Montevideo, Uruguay

Pablo Musé
Federico Larroca
pmuse@fing.edu.uy
flarroca@fing.edu.uy

Facultad de Ingeniería, Universidad
de la República

Montevideo, Uruguay

ABSTRACT
In this research paper, we address the problem of eavesdropping
on digital video displays by analyzing the electromagnetic waves
that unintentionally emanate from the cables and connectors, par-
ticularly HDMI. This problem is known as TEMPEST. Compared
to the analog case (VGA), the digital case is harder due to a 10-bit
encoding that results in a much larger bandwidth and non-linear
mapping between the observed signal and the pixel’s intensity. As
a result, eavesdropping systems designed for the analog case ob-
tain unclear and difficult-to-read images when applied to digital
video. The proposed solution is to recast the problem as an inverse
problem and train a deep learning module to map the observed
electromagnetic signal back to the displayed image. However, this
approach still requires a detailed mathematical analysis of the sig-
nal, firstly to determine the frequency at which to tune but also
to produce training samples without actually needing a real TEM-
PEST setup. This saves time and avoids the need to obtain these
samples, especially if several configurations are being considered.
Our focus is on improving the average Character Error Rate in text,
and our system improves this rate by over 60 percentage points
compared to previous available implementations. The proposed
system is based on widely available Software Defined Radio and
is fully open-source, seamlessly integrated into the popular GNU
Radio framework. We also share the dataset we generated for train-
ing, which comprises both simulated and over 1000 real captures.
Finally, we discuss some countermeasures to minimize the potential
risk of being eavesdropped by systems designed based on similar
principles.

CCS CONCEPTS
• Security and privacy → Side-channel analysis and counter-
measures; • Computing methodologies→ Neural networks.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
LADC 2024, November 26–29, 2024, Recife, Brazil
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-1740-6/24/11. . . $15.00
https://doi.org/10.1145/3697090.3697094

KEYWORDS
Software Defined Radio, Side-channel attack, Deep Learning
ACM Reference Format:
Santiago Fernández, Emilio Martínez, Gabriel Varela, Pablo Musé, and Fed-
erico Larroca. 2024. Deep-TEMPEST: Using Deep Learning to Eavesdrop
on HDMI from its Unintended Electromagnetic Emanations. In 13th Latin-
American Symposium on Dependable and Secure Computing (LADC 2024),
November 26–29, 2024, Recife, Brazil. ACM, New York, NY, USA, 10 pages.
https://doi.org/10.1145/3697090.3697094

1 INTRODUCTION
TEMPEST is a term used to describe the unintentional emanation
of sensitive or confidential information from electrical equipment.
While it may refer to any kind of emissions, such as acoustic and
other types of vibrations [31], it primarily deals with electromag-
netic waves. In particular, this article focuses on electromagnetic
emissions from video displays. The issue of inferring the content
displayed on a monitor from the electromagnetic waves emitted by
it and its connectors has a long history, dating back to the 1980s
with the first public demonstrations by Win van Eck. This problem
is sometimes referred to as Van Eck Phreaking, but for the remainder
of this article, we will use the term TEMPEST [29].

Van Eck’s research was focused on the then-prevalent CRT mon-
itors. However, Markus Kuhn’s work in the early 2000s [15] studied
modern digital displays, including both the analog interface VGA
(Video Graphics Array) and the digital interfaces HDMI (High-
Definition Multimedia Interface) or DVI (Digital Visual Interface).
Nevertheless, reproducing these studies was challenging due to the
need for expensive and specialized hardware, such as a wide-band
AM receiver. This entrance barrier has been significantly reduced
in recent years by the development of Software Defined Radio
(SDR) [30]. SDR employs generic hardware that down-converts the
signal to baseband and then provides the sampled signal to the PC,
making the hardware more affordable and signal processing sim-
pler, since it is performed in software. This advantages resulted in
two open-source implementations of TEMPEST (TempestSDR [21]
and gr-tempest [17]) and several empirical studies of the problem,
particularly focusing on the HDMI interface [4–6, 10, 18–20, 24, 28].

However, despite all of these efforts “this threat still is not well-
documented and understood” [4]. Our first contribution is precisely
to address this issue by providing an analytical expression of the
signal’s complex samples as received by the SDR when spying on
an HDMI display. Virtually all of the above-mentioned studies use
an AM demodulation step as part of their processing chain, similar

https://doi.org/10.1145/3697090.3697094

LADC 2024, November 26–29, 2024, Recife, Brazil Santiago Fernández, Emilio Martínez, Gabriel Varela, Pablo Musé, and Federico Larroca

to the first studies by Van Eck with VGA, with the exception of [4],
which experimentally observed that by using FM demodulation, the
attacker may also obtain significant information on the display’s
content. As we will see, our analytical model explains why both the
magnitude and the phase of the complex samples provide informa-
tion on the eavesdropped image. Furthermore, these expressions
are crucial when setting up the eavesdropping system to choose
the frequency one should tune to in order to get maximum energy.
Instead of tuning the SDR to the frequency that obtains the best
Signal-to-Noise Ratio through trial-and-error (as in [18–20]), the
frequencies to be tested for a particular screen are manageable
when based in our analysis.

Equipped with this model, our second contribution is to re-cast
the TEMPEST problem as an inverse one. That is, recovering the
source image from the baseband complex samples gathered from the
SDR. Motivated by the success of deep learning in solving inverse
problems in other contexts [23], we propose designing and training
a deep convolutional neural network to infer the source image from
the baseband complex samples.

To our knowledge, three other works propose deep learning-
based algorithms for TEMPEST attacks [10, 18, 19]. Our work differs
significantly, overcoming some limitations of these previous studies.
In [19], the focus is on smartphone displays rather than HDMI or
DVI, which emit much lower power signals. They classified almost
unintelligible images from TempestSDR into digits, a simpler 10-
class classification task. The works in [18] and [10] target HDMI
but are less applicable to realistic scenarios, processing patches
with only a few characters. They both apply a denoiser to the
grayscale images produced by TempestSDR. Another relevant work
is [20], which reconstructs images from electromagnetic emissions
of embedded cameras. They used a modified TempestSDR and a
GAN-based image translator to restore spied images, offering a
potential adaptation to TEMPEST attacks.

More in particular, our contributions in this respect are twofold.
Firstly, we have developed and publicly shared an open-source im-
plementation of an end-to-end deep-learning architecture. Figure
1 presents an illustrative diagram of the system, including an ex-
ample of actual results. Our primary focus is on the restoration of
text. Our architecture surpasses vanilla implementations of either
TempestSDR or gr-tempest, producing significantly higher-quality
reconstructed images, achieving over 60 percentage points reduc-
tion in the average Character Error Rate (CER). Furthermore, and
based on the insights provided by our analytical model, we avoid
the AM demodulation step all previous works use (as they are based
on TempestSDR), which further distorts the signal, and instead learn
to map directly from the complex samples to the original image;
i.e. solve the inverse problem. As we report in Sec. 6, using the
complex samples and avoiding the information loss incurred in
demodulation results in a significant gain in performance.

Secondly, we have made this article’s complete dataset pub-
licly available. It includes two sources of data: several real-life
signals and a GNU Radio-based simulator, which we developed
and are sharing, that, given an image, produces the spied sig-
nal. This simulator is based on the analytical expressions derived
in this work. Furthermore, we discuss how to train the learn-
ing module (partially) based on these simulations, significantly
reducing the time-consuming stage of acquiring real-life signals

Convolutional
Neural Network

Antenna & SDR

Unintended
Electromagnetic

Emanations

gr-tempest

Figure 1: Proposed system. The HDMI cable and connectors
emit unintended electromagnetic signals, which are cap-
tured by the SDR and processed by gr-tempest, obtaining
a degraded complex-valued image, which in turn is fed to a
convolutional neural network to infer the source image. All
three images correspond to actual results.

without negatively impacting the quality of the recovered images.
The full dataset comprises around 3500 samples, out of which
approximately 1300 are real captures. Our aim is to make this
openness useful in further advancing research in this area. Please
visit https://github.com/emidan19/deep-tempest for the complete
dataset and code.

The rest of the article is structured as follows. The next sec-
tion discusses the threat model, whereas Sec. 3 provides a detailed
overview of the HDMI signal. In Sec. 4, we summarize the working
principle of SDR and characterize the forward operator by giving a
mathematical expression of the samples produced by the hardware
given an input image. How to recover the image from these sam-
ples by means of deep learning is discussed in Sec. 5. The obtained
results and countermeasures are presented in Secs. 6 and 7. Closing
remarks and future work are discussed in Sec. 8.

2 THREAT MODEL
This section presents the threat model we consider in this work.
The attacker’s objective is to recover the image displayed on a
monitor that contains sensitive or confidential information. This
monitor is connected through a standard digital display interface,
which may be either HDMI or DVI. To achieve their objective, the
attacker will resort to the electromagnetic energy emanating from
the connectors and cables of the digital display, from which they
will infer the monitor’s content.

https://github.com/emidan19/deep-tempest

Deep-TEMPEST: Using Deep Learning to Eavesdrop on HDMI from its Unintended Electromagnetic Emanations LADC 2024, November 26–29, 2024, Recife, Brazil

We assume that the attacker is equipped with off-the-shelf hard-
ware to capture and process these emanations. The necessary equip-
ment includes a laptop with a GPU (although a CPU-only laptop is
a viable, albeit slower, alternative), an SDR hardware (see Sec. 4 for
a discussion), an antenna, and a Low Noise Amplifier (LNA).

We foresee two separate operational scenarios. Firstly, one where
the attacker remains unnoticed, e.g., if the spied system is close to
a wall and the attacker operates from the other side. In this case,
the setup may include somewhat large directive antennas, and an
online operation is viable where, for instance, the attacker adjusts
the antenna’s direction until a proper image is obtained and only
saves the images that they are interested in.

A second scenario is one where only the attacker’s hardware
goes unnoticed. For instance, a small omnidirectional antenna is
left near the HDMI cable and connectors of the spied system, and
the spying PC is not visible or does not draw attention. In this
case, which requires physical proximity to the spied system, the
attacker’s PC may periodically (e.g., every second) record a signal,
process it to obtain an image, and save it for offline visualization.
If hard drive space is not an issue, the attacker may even record
the raw samples of the SDR periodically and apply our method to
these recordings.

3 UNINTENDED ELECTROMAGNETIC
EMANATIONS OF HDMI

3.1 Digital signal
Although there are seven different versions of HDMI (ranging from
1.0 up to 2.1) and five types of connectors (A to E), video is encoded
the same way for all of them except for version 2.1. This last version,
released in 2017, is typically used only in high-end TVs with 4k
or 8k video, and we will not consider it in this work. In any case,
HDMI is backward compatible with single-link DVI, so our results
are also valid for DVI-D or DVI-I.

To transmit audio and video, HDMI uses three separate TMDS
channels, each corresponding to the red, blue, and green compo-
nents regarding video, where each channel is sent serially over
three separate pins (positive, negative, and ground; further details
regarding the electrical signal are presented in the next subsection).
While 𝑌𝐶𝑏𝐶𝑟 pixel encoding and other color depths are possible,
the default configuration is 𝑅𝐺𝐵 encoding with 24 bits. We will thus
only consider this configuration for brevity, although extensions
to these scenarios are straightforward. As illustrated in Fig. 2, and
just as in VGA, each video frame includes a horizontal and vertical
blanking, where no video is transmitted. During these periods, au-
dio or control packets are transmitted instead (the so-called control
and data island periods).

This means that the pixel rate is actually higher than what is
being displayed. For instance, for a resolution of 1920 × 1080 with
progressive scan, there are actually 2200 × 1125 pixels per frame
(including blanking). In terms of the notation of Fig. 2, this means
that 𝑝𝑥 = 1920, 𝑝𝑦 = 1080, 𝑃𝑥 = 2200 and 𝑃𝑦 = 1125, which at a
frame rate of 60 Hz represents a pixel rate of 1/𝑇𝑝 = 148.5MHz. Sup-
ported resolutions and the corresponding timings may be consulted
at the EIA/CEA-861 standard, but it is important to note that the
possibilities are limited (e.g. 197 possible timings and resolutions
in HDMI 2.0, and only 64 for HDMI 1.4).

Figure 2: An illustration of the transmission of a frame on a
single TMDS channel. The red arrow indicates the order in
which the signal is transmitted. Video is actually sent only
during the video data periods.

Different fromVGA, the intensity of each color (from 256 possible
values) is encoded into 10 bits before transmission. The 8-bit input
word is first differentially XORed or XNORed using the first bit as
the reference. The encoder uses the operation that results in fewer
bit transitions given the input word, and the choice is indicated in
the ninth bit. The second stage negates or not the first 8 bits (flagged
by the tenth bit) to even out 1s and 0s in the encoded stream. Note
that each video data period is encoded independently, meaning that
the process is restarted for each line.

3.2 Electrical and electromagnetic signal
After analyzing the digital signal generated by the video, we can
now examine the resulting electromagnetic signal surrounding the
cable. Our main interest is to determine where the largest portion
of its power lies in the spectrum so we can tune our system to that
frequency. Additionally, we want to obtain an approximate expres-
sion of this electromagnetic signal, which will help us simulate it.
This will enable us to produce samples that we can use to train and
evaluate our learning system without necessarily using an actual
TEMPEST setup. We will defer this last problem to the next section
since it also includes the effects of the SDR hardware.

HDMI uses differential signaling, basically meaning that every
channel is composed of two cables, where the bit value is estimated
from the difference in voltage between the two. That is to say, for
any of the three TMDS channels, the voltage signal 𝑥+ (𝑡) and 𝑥− (𝑡)
in both cables would be:

𝑥+ (𝑡) = 𝑉𝑐𝑐 +
∑︁
𝑘

𝑥𝑏 [𝑘]𝑝 (𝑡 − 𝑘𝑇𝑏), (1)

𝑥− (𝑡) = 𝑉𝑐𝑐 −
∑︁
𝑘

𝑥𝑏 [𝑘]𝑝 (𝑡 − 𝑘𝑇𝑏), (2)

where 𝑉𝑐𝑐 is a constant, 𝑥𝑏 [𝑘] corresponds to the mapping of 𝑘-th
bit (e.g. a negative voltage for 0 and a positive one for 1), 𝑇𝑏 is the
bit duration, and 𝑝 (𝑡) is the shaping pulse (typically a rectangular
pulse of duration 𝑇𝑏).

The immediate consequence is that under an ideal system and
observing both cables together as in our case, we would mea-
sure 𝑥 (𝑡) = 𝑥+ (𝑡) + 𝑥− (𝑡) = 2𝑉𝑐𝑐 , which is independent of the
information-carrying sequence 𝑥𝑏 [𝑘]. However, as observed in pre-
vious works [28], the pulses in 𝑥+ (𝑡) and 𝑥− (𝑡) are not perfectly
aligned nor exactly the same. For instance, assuming that 𝑥− (𝑡) is

LADC 2024, November 26–29, 2024, Recife, Brazil Santiago Fernández, Emilio Martínez, Gabriel Varela, Pablo Musé, and Federico Larroca

delayed a time 𝜖𝑇𝑏 with respect to 𝑥+ (𝑡), we would obtain

𝑥 (𝑡) = 𝑥+ (𝑡) + 𝑥− (𝑡) =2𝑉𝑐𝑐 +
∑︁
𝑘

𝑥𝑏 [𝑘]𝑞(𝑡 − 𝑘𝑇𝑏), (3)

where 𝑞(𝑡) =𝑝 (𝑡) − 𝑝 (𝑡 − 𝜖𝑇𝑏) . (4)

That is to say, ignoring the constant 2𝑉𝑐𝑐 , a classic PCM (Pulse-
Code Modulation) signal with conforming pulse 𝑞(𝑡). By adding a
random delay to 𝑥 (𝑡), we can study it as a Wide-Sense Stationary
signal whose Power Spectral Density (i.e. the expected power per
Hertz) has the following well-known expression:

𝑆𝑋 (𝑓) = |𝑄 (𝑓) |2
𝑇𝑏

𝑆𝑋𝑏
(𝑓) = 4 sin2 (𝜋 𝑓 𝜖𝑇𝑏)

𝑇𝑏
sinc2 (𝑓 𝑇𝑏)𝑆𝑋𝑏

(𝑓), (5)

where 𝑆𝑋𝑏
(𝑓) = ∑

𝑙 𝑅𝑋𝑏
[𝑙]𝑒− 𝑗2𝜋 𝑓 𝑙𝑇𝑏 and 𝑅𝑋𝑏

[𝑙] = E{𝑥𝑏 [𝑘]𝑥𝑏 [𝑘 +
𝑙]}. That is to say, the Discrete-Time Fourier Transform 𝑆𝑋𝑏

(𝜔) of
the auto-correlation of the sequence 𝑥𝑏 [𝑘] evaluated at 𝜔 = 2𝜋 𝑓𝑇𝑏 .
Note that 𝑆𝑋𝑏

(𝑓) is a periodic function of period 1/𝑇𝑏 (the bit rate).
It is typically the case that consecutive frames in the spied moni-

tor are very similar (if not identical). This is also true for contiguous
lines. Denoting as 𝑇𝑝 the pixel time (i.e. 𝑇𝑝 = 10𝑇𝑏), and recalling
that each line is encoded independently, the previous two observa-
tions mean that high values of 𝑆𝑋𝑏

(𝑓) should be expected at mul-
tiples of 𝑓 = 1/(𝑃𝑥𝑃𝑦𝑇𝑝) (the frame rate) as well as 𝑓 = 1/(𝑃𝑥𝑇𝑝)
(the horizontal lines rate). Furthermore, given that TMDS encoding
enforces no DC component, 𝑆𝑋𝑏

(0) ≈ 0.
The other relevant time scale is precisely 𝑇𝑝 since consecutive

pixels are similar. Note that the analysis in this case is complicated
by the non-linear encoding we discussed before. As a first step, let
us consider a constant image, which produces at most two different
encoded words (the differentially encoded word or its negation),
which are sent alternately, the least significant bit first. This process
will produce a 𝑆𝑋𝑏

(𝑓) with large spikes at every multiple of 1/𝑇𝑝
since under a constant image, bits 10-bits apart are typically the
opposite (i.e. typically 𝑥𝑏 [𝑘] = −𝑥𝑏 [𝑘 + 10]). Another significant
spike should be present at 1/(2𝑇𝑝), too, since bits 20-bits apart are
typically the same.

This intuition is verified for more complex encoded images, as
shown in Fig. 3, which displays an estimation of 𝑆𝑋𝑏

(𝑓) for a TMDS
signal corresponding to eight frames of a user typing in a word
processor, multiplied by |𝑄 (𝑓) |2/𝑇𝑏 (cf. Eq. (5)) along with |𝑄 (𝑓) |2
for reference (using 𝜖 = 0.002). Note that the significant increase in
𝑆𝑋𝑏

(𝑓) at 𝑓 ≈ 0.05/𝑇𝑏 = 1/(2𝑇𝑝) is attenuated by |𝑄 (𝑓) |2, whereas
the peaks every multiple of 0.1/𝑇𝑏 = 1/𝑇𝑝 are not. The lower graph
in the figure displays a zoom-in to the third-pixel harmonic (marked
with a blue slashed rectangle), where the peaks corresponding to
multiples of 1/(𝑃𝑥𝑇𝑝) are clearly visible.

The conclusion of this section is that most of the power of the
emanations from anHDMI signal is located at the first fewmultiples
of the pixel rate. Naturally, the precise expression of 𝑞(𝑡) in (3) is
not known a priori. In (5), we have only assumed unaligned pulses
(with an unknown 𝜖), but other differencesmay also exist. Regarding
wheremost of the leaked power exists, a first approximation, like the
one we presented, is enough. Furthermore and quite interestingly,
as discussed in the following two sections, this expression will
also be enough to produce simulations that may be used to train
a learning system that maps samples of the emitted signal to the
source image that produced them.

Figure 3: The power spectral density of a TMDS encoded
signal computed by multiplying an estimation of 𝑆𝑋𝑏

(𝑓) and
|𝑄 (𝑓) |2/𝑇𝑏 (the dashed red curve, shown for reference); cf.
Eq. (5). Both curves are normalized to its maximum value
for clarity. Significant spikes every multiple of 0.1/𝑇𝑏 are
clearly visible. In the zoom-in around 𝑓 = 0.3/𝑇𝑏 shown below,
smaller but nevertheless important spikes every multiple of
1/(𝑃𝑥𝑇𝑝) (the inverse of the duration of each horizontal line)
are also clearly visible.

Figure 4: Diagram of an SDR. The drivers provide complex
samples 𝑦 [𝑙] whose real and imaginary parts correspond to
the in-phase and quadrature components.

4 SOFTWARE DEFINED RADIO
Having characterized our signal of interest 𝑥 (𝑡) in (3), let us now
discuss how to intercept it and, furthermore, provide an analytic
expression to the signal captured by the SDR and thus the one we
may consider to perform the eavesdropping.

4.1 Hardware
As illustrated in Fig. 4, an SDR hardware moves the signal to base-
band and provides its filtered samples. These samples will be pro-
cessed using software to produce the eavesdropped image. Starting
from (3), and ignoring the constant term, we may interpret 𝑥 (𝑡) as a
train of Dirac deltas that goes through a filter with impulse response
𝑞(𝑡). However, since we are down-converting this signal to base-
band, the complex baseband representation of this channel is actu-
ally a filter with impulse response 𝑔(𝑡) = F −1{𝑄 (𝑓 + 𝑓𝑐)𝐻𝐿𝐹𝑃 (𝑓)}
(see for example [9]). That is to say, the inverse Fourier transform
of the product between the Fourier transform of 𝑞(𝑡) moved to zero
from the tuning frequency 𝑓𝑐 (which, as we discussed before, will
be equal to a harmonic of 1/𝑇𝑝) times the transfer function of the
SDR’s low-pass filter. If a sampling rate 𝑓𝑠 is used, then 𝐻𝐿𝑃𝐹 (𝑓)
is ideally zero for |𝑓 | > 𝑓𝑠/2 and a constant otherwise. In other
words, instead of filtering the train of Dirac deltas with 𝑞(𝑡), we

Deep-TEMPEST: Using Deep Learning to Eavesdrop on HDMI from its Unintended Electromagnetic Emanations LADC 2024, November 26–29, 2024, Recife, Brazil

−0.4 −0.2 0.0 0.2 0.4
f [1/Tb]

0.0

0.5

1.0
T

ra
n

sf
er

F
u

n
ct

io
n fc = 3/Tp

fs = 1
30Tb

|Q(f)|
|G(f)|

Figure 5: Normalized Fourier Transform of𝑞(𝑡) (i.e. Eq. 4 with
𝜖 = 0.002) and 𝑔(𝑡), the complex baseband representation of
the channel as seen by the SDR.

use 𝑔(𝑡), whose Fourier transform 𝐺 (𝑓) is 𝑄 (𝑓) evaluated around
𝑓𝑐 and zeroed for |𝑓 | > 𝑓𝑠/2. This process is illustrated in Fig. 5
using 𝑞(𝑡) as defined in (4), 𝑓𝑐 = 3/𝑇𝑝 and 𝑓𝑠 = 1/(30𝑇𝑏).

All in all, after sampling, the following sequence is obtained:

𝑦 [𝑙] =
∑︁
𝑘

𝑥𝑏 [𝑘]𝑔(𝑙/𝑓𝑠 − 𝑘𝑇𝑏) . (6)

We may further enrich the model by adding noise, small errors
to 𝑓𝑐 (instead of precisely a multiple of the pixel rate), and offsets
in both time and phase (uniform between zero and 1/𝑓𝑠 or 2𝜋 ,
respectively). These impairments are included in our simulations
to make the learning system more robust to these non-idealities.
Note, however, that we are ignoring the antenna’s bandwidth and
possible non-linearities.

Regarding the sampling rate, mid-level SDRs allow for, at most,
some tens of MHz. For example, the USRP 200-mini [7] we used
in our experiments has a maximum sampling rate of 𝑓𝑠 = 50 MHz.
Just as in the example in Fig. 5, this is only a third of the pixel rate
at a resolution of 1920× 1080@60Hz (resulting in 1/𝑇𝑝 = 148 MHz),
meaning that each sample𝑦 [𝑙] will actually be a linear combination
of several tens of encoded bits, further complicating the image
reconstruction.

In fact, since the anti-aliasing filter of the SDR produces a 𝐺 (𝑓)
that is zero for |𝑓 | > 𝑓𝑠/2, and if 𝑓𝑠 ≪ 1/𝑇𝑏 as we just discussed,
the resulting loss of information means that the attacker cannot
recover the sequence of bits 𝑥𝑏 [𝑘] by observing the samples 𝑦 [𝑙].
It may appear that a viable alternative is to increase the sampling
rate 𝑓𝑠 up to 1/𝑇𝑏 , and after equalization, sample each bit separately
and decode the image. There are three important drawbacks to
this approach. Firstly, it would require an SDR that operates with
a sampling rate and a corresponding instantaneous bandwidth of
at least some GHz, which even high-end and extremely expensive
solutions struggle to provide (e.g. the USRP X440 by Ettus Research
provides up to 3200 MHz of bandwidth at the cost of over 25,000
dollars [8]). Secondly, it is unclear if the interference from other
sources (received due to the increased receiver’s bandwidth) will not
prove detrimental in recovering the image. Last but not least, there
is the problem of processing such an enormous amount of samples,
which would further impact the resulting cost of the spying setup,
this time in terms of the required PC.

For the above reasons, we will consider a sampling rate value 𝑓𝑠
as those obtained from less expensive (and also less conspicuous)
hardware, which will thus unavoidably result in an unrecoverable

bit sequence 𝑥𝑏 [𝑘]. However, recall that the attacker’s actual ob-
jective, as in any communications problem, is to estimate the most
plausible image that generated the observed complex sequence𝑦 [𝑙].
We propose a data-driven approach to this problem that leverages
the a priori information regarding what kind of images are typi-
cally displayed in a monitor (i.e., the original images used in the
training set should be representative of desktop content). This is
accomplished through a deep-learning module, which we present
in detail in the next section. Before that, the following subsection
discusses how, for the sake of simplicity, this estimation is simply
computed as |𝑦 [𝑙] | in TempestSDR.

4.2 Software
Regarding software, samples are provided by the driver and then
processed arbitrarily by the spying PC. Both TempestSDR and
gr-tempest adapt the sampling rate 𝑓𝑠 to produce an integer num-
ber of samples for every 𝑃𝑥 pixels, i.e., 𝑃𝑥𝑇𝑝 =𝑚/𝑓𝑠 for some integer
𝑚. When the sampling rate is successfully synchronized this way,
these𝑚 samples correspond to a line, and thus, displaying 𝑃𝑦 of
these lines produces a non-skewed and static image. Correlations
as the one we discussed before are searched for in the signal and
used in a PLL-like system to estimate the precise value of 𝑓𝑠 (see
[17] and [21] for details).

Given that (6) is a complex signal (as seen in Fig. 5, since |𝐺 (𝑓) |
is not symmetric around zero), TempestSDR actually takes the mag-
nitude of the samples (i.e. an envelope detector, termed AM de-
modulator in some contexts, e.g. [20]), which further distorts the
signal. To avoid this unnecessary degradation, for the case of VGA
gr-tempest instead applies an equalization filter to the complex
signal to produce much better results. We will also consider the
complex signal so as to provide the learning system with the most
information available. As we will see, this choice will have a non-
negligible impact on the performance of the model.

The other significant difference between TempestSDR and
gr-tempest is that the former was coded from scratch, whereas
the latter uses GNU Radio [1]. This is a framework that represents
a processing chain as a series of interconnected blocks (a so-called
flowgraph), each executing a well-defined operation on the signal
(e.g. filtering or resampling). New blocks can be easily created and
added to the already vast list of available ones. These new blocks
can be programmed either in C++ or Python. In the latter case,
Numpy is used to represent data, which further simplifies the in-
tegration of deep learning frameworks such as PyTorch, as in our
case. All of these features have been the main motivation behind
our choice of gr-tempest as the starting point of our system.

5 EAVESDROPPING IMAGES FROM GR-TEMPEST
COMPLEX SEQUENCES

5.1 Deep Learning to Solve the Inverse Problem
In this section, we consider the inverse problem of recovering a
clean or source image 𝑿 ∈ R𝑝𝑦×𝑝𝑥 from a degraded observation
𝒀 ∈ C𝑝𝑦×𝑝𝑥 , which is an array of complex numbers with equal size
of the source image. This observation is modeled as:

𝒀 = T (𝑿) + 𝑵 , (7)

LADC 2024, November 26–29, 2024, Recife, Brazil Santiago Fernández, Emilio Martínez, Gabriel Varela, Pablo Musé, and Federico Larroca

where T : R𝑝𝑦×𝑝𝑥 → C𝑝𝑦×𝑝𝑥 is a non-linear degradation operator,
and 𝑵 ∈ C𝑝𝑦×𝑝𝑥 is an additive complex noise, for which real and
imaginary parts are assumed to be mutually independent, each of
them being a white Gaussian noise image of variance 𝜎2. Recall
that in our case, 𝑿 refers to a monitor image to be spied on (and
thus of shape 𝑝𝑦 × 𝑝𝑥), while 𝒀 corresponds to an array of complex
samples defined by (6) and synchronized by gr-tempest. More
details on how we construct 𝑿 and 𝒀 are discussed in the following
subsection.

Due to the aforementioned inter-symbol interference, the degra-
dation operator T is severely ill-posed, so achieving perfect restora-
tion of 𝑿 is impossible. Therefore, we must settle for obtaining an
estimation 𝑿̂ by introducing regularization and hope to get as close
as possible to the original image. This corresponds to performing
Bayesian estimation to solve a Maximum A Posteriori problem,
which can be formulated as follows:

𝑿̂ = argmin
𝑿

1
2𝜎2

∥𝒀 − T (𝑿)∥2 + 𝜆R(𝑿), (8)

where the solution minimizes a data term 1
2𝜎2 ∥𝒀 − T (𝑿)∥2 and a

regularization term 𝜆R(𝑿) with regularization parameter 𝜆. Specif-
ically, the data term is responsible for demanding similarity with
the degradation process, while the regularization term is composed
of a function R : R𝑝𝑦×𝑝𝑥 → R+ that holds responsibility for deliv-
ering a stable solution. The proper choice of a regularizer is not a
trivial task as it involves considering prior knowledge of the kind
of images to be recovered. However, traditional hand-crafted priors
(e.g. Tikhonov regularization) are usually too over-simplistic and do
not capture the complexity of real images. This is why recent meth-
ods follow learning-based approaches that, using large datasets of
pairs of source/degraded image samples, directly learn the mapping
from the degraded observations to the source images [34] or learn
decoupled priors combined with the MAP formulation [33].

In this work, we propose to train an end-to-end deep convolu-
tional neural network (CNN) as a regressor 𝑿̂ = 𝑓 (𝒀 ,Θ) to learn
to map the degraded complex signals, spied, into the clean source
images. This training is performed by minimizing a certain loss
function L on a training set containing 𝑁 clean-degraded image
pairs {(𝑿𝑖 , 𝒀𝑖)}𝑁𝑖=1, i.e.

min
Θ

𝑁∑︁
𝑖=1

L
(
𝑓 (𝒀𝑖 ,Θ),𝑿𝑖

)
. (9)

Note that the CNN regressor 𝑓 (𝒀𝑖 ,Θ) does not depend on the degra-
dation operator T explicitly, but it does so in an implicit way since
the clean-degraded image pairs that are used to compute its weights
in (9) may be synthetically generated via 𝒀𝑖 = T (𝑿𝑖).

For the network 𝑓 (𝒀𝑖 ,Θ) we use DRUNet (Deep Residual
UNet) [32], a popular CNN with high expressive power. Its archi-
tecture, depicted in Fig. 6, is composed of a succession of intercon-
nected convolutional layers, activation functions, and pooling or
subsampling layers. Inspired by UNet [26], DRUNet uses an encoder-
decoder structure: in the first series of convolutional layers, the
image is down-sampled to a lower-dimensional space, and then,
throughout the second series of convolutional layers, the image is
up-sampled to its original size. Furthermore, as in other architec-
tures like ResNet [13], it is possible to interconnect non-adjacent

Skip Connection

Downsampling Upsampling

Figure 6: DRUNet architecture takes as input the in-phase
and quadrature components (red and green channels, respec-
tively) of the eavesdropped image and outputs a grayscale
image.

Figure 7: Experimental setup. The enumeration corresponds
to 1) antenna, 2) RF filters and amplifier, 3) SDR, and 4) the
spying computer running a GNU Radio flowgraph.

convolutional layers using residual blocks and skip connections. This
strategy has been shown to enhance the model capacity.

5.2 Generating the training set
Let us now discuss how we constructed the training set. Each pair
(𝑿𝑖 , 𝒀𝑖) stems from two possible sources: actual spied signals or
simulations. The former was obtained using the experimental setup
shown in Fig. 7. The antenna was placed somewhat close to the
cable and complemented with a Mini-Circuits ZJL-6G+ amplifier
and a band-pass filter composed of an SLP-450+ low-pass filter
and an SHP-250+ high-pass filter, both from Mini-Circuits. This
would correspond to the second scenario we discussed in Sec. 2. It is
worth mentioning anyhow that we are not interested in proving the
feasibility of TEMPEST, which has already been demonstrated [15,
21, 24, 28], but in improving the results obtained by the state of
the art (i.e. when gr-tempest or TempestSDR obtain reasonable
results, our system should further improve them). Our simple setup
is sufficient to this end.

It is important to emphasize that obtaining real captures is not a
simple task. We used a monitor with a resolution of 1600 × 900 @
60 fps, tuning the SDR to the third harmonic of the pixel frequency
(324MHz) using amodified version of the flowgraph of gr-tempest.
Modifications include minor improvements to the tuning frequency

Deep-TEMPEST: Using Deep Learning to Eavesdrop on HDMI from its Unintended Electromagnetic Emanations LADC 2024, November 26–29, 2024, Recife, Brazil

correction algorithm, and naturally output the complex samples
instead of their magnitudes. Furthermore, as we mentioned before,
gr-tempest automatically adapts the sampling rate 𝑓𝑠 to produce
an integer number𝑚 of samples per image row. We have further
interpolated this signal to produce 𝑃𝑥 complex samples per line (i.e.
using an interpolator with ratio 𝑃𝑥/𝑚).

The most challenging aspect was tagging which sample corre-
sponds to the first pixel of the image. This is a key step in performing
a pixel-by-pixel matching of the captured image with its respective
original version, which is necessary for the model’s supervised
training. Although gr-tempest, in addition to adapting the sam-
pling rate 𝑓𝑠 , also provides an automatic algorithm that re-centers
the image, in our experience, the results of the latter were not
sufficient for our purposes.

To address this limitation, we first detect the blanking periods
using the Hough Line Transform [11]. We then both remove them
entirely and shift the image, leaving the capture adjusted to the
original version. Detection is achieved by keeping only those lines
whose distance between each other corresponds to the blanking
size (for both horizontal and vertical). A grayscale conversion of
the original image constitutes 𝑿𝑖 (more in particular, the average
of the three RGB image color channels), whereas the re-centered
complex array of the samples constitutes the corresponding 𝒀𝑖 .

The rest of the degraded images were simulated under the same
conditions as the SDR (sampling rate and tuning frequency) and
the system being eavesdropped (resolution). The synthetic dataset
was generated with a Python script, also available at the project’s
repository, that simulates the pipeline composed of the HDMI trans-
mission protocol, the SDR baseband down-conversion, and low-pass
filtering and sampling (i.e. Eq. (6)). Gaussian noise, small frequency
errors, and a random delay were also added. To explore the effects
of using a precise expression of the pulse 𝑞(𝑡), we have tested two
different possibilities: the difference between two delayed rectan-
gular pulses (as in (4) with 𝜖 = 0.1), or simply a rectangular pulse.
As we will see, quite interestingly, the trained system is robust to
this choice.

6 EXPERIMENTS AND RESULTS
We gathered a set of 3491 clean-degraded image pairs following the
procedure presented in the previous section. The dataset includes
2189 simulated samples for each pulse (1738 used for training, 148
for validation, and 303 for test) as well as 1302 real-life samples
(882 for training, 120 for validation, and 300 for test). The dataset
was carefully constructed to represent the content of an actual
screen image, ranging from online sales pages [16] to conference
articles [22] and manual screenshots on a variety of web pages.

To evaluate the performance of the trained models, we first
need to define a representative restoration metric. Typical image
restoration metrics are the Peak Signal-to-Noise Ratio (PSNR) or
the Structural Similarity Index Measure (SSIM) [25]. However, it
is reasonable to assume that the eavesdropper is mostly interested
in the text being displayed on the monitor. In this case, neither of
them are suitable indicators as they are sensitive to changes in the
images’ contrast and are thus not indicative of the legibility of the
recovered text. For this reason, we chose to also report the Char-
acter Error Rate (CER), which was computed using the Tesseract

optical character recognition software [27]. We remark that the
OCR system was only used to evaluate performance, not for model
training. In particular, we compare the text produced by Tesseract
on the original image and on the recovered one. The percentage
of different characters between both outputs is the CER, and we
report the average over all images in the test set.

The hardware used for training and evaluation tasks consists of
an Intel Core i7-10700F CPU with 64GB of RAM and an NVIDIA
GeForce RTX 3090 GPU with 24GB of VRAM. Inference on 1600 ×
900 sized images takes approximately 0.5s with GPU and 15s on
CPU. The model parameters were optimized by minimizing the 𝐿2
norm between the recovered image and its ground truth. We used
the Adam optimizer [14] to train on image patches of 256 × 256
pixels (patch size) and batches of 48 patches (batch size). A Total
Variation regularizer [3] was also added to reduce noise while
preserving the edges. The values of the learning rate (𝑙𝑟 = 1.56 ×
10−5) and the regularization weight (𝜆𝑇𝑉 = 2.2×10−13) were found
through a hyper-parameter search using the Optuna framework [2].
Weights of the DRUNet architecture were initialized with He’s
Normal weights [12], except for certain cases we discuss below.
Synthetic data only. Let us first consider an ideal case where we
perfectly know the electromagnetic signal’s behavior, i.e. a model
trained and evaluated only on the synthetic data. We shall denote
it as Base Model, and it will be useful both to assess the impact of
the approximations we performed when deriving (6), but also to
evaluate what performance we may expect (at best) when using
real-life signals. As we mentioned in the previous section, we have
trained and evaluated our system using two different pulses: a
rectangular pulse, or a difference of two rectangular pulses as in (4),
with 𝜖 = 0.1. We trained both models 180 epochs, resulting in a CER
of around 30% when tested over their respective synthetic samples.
The complete set of results is summarized in Table 1.
Evaluation in real-life data. Next, we consider real-life signals
acquired with the setup displayed in Fig. 7. If we evaluate both
Base Models on this data, their performance drops significantly to a
CER of about 50%, still much better than those of the grayscale im-
ages produced by both TempestSDR or vanilla gr-tempest, which
obtain a CER of over 90%. Furthermore, the fact that both Base
Models obtain similar results indicates that a precise expression for
the conforming pulse 𝑞(𝑡) is unnecessary, which we will further
explore in the next section. However, synthetic data will prove sig-
nificantly useful when combined with real-life signals, dramatically
decreasing the number of samples required in training, a discussion
we defer to the end of the section.

The next step is, naturally, to re-train the model by using only
real-life data. We will refer to the resulting system as the Pure Model.
Evaluation of its inferred images results in a CER of about 35%, very
similar to those obtained by the Base Models when evaluated on
synthetic data. These are excellent results, which mean that only
about one-third of the characters are incorrectly detected by Tesser-
act on the inferred image. Redundancy enables a human operator
to recover most (if not all) of the rest of the text present in the
image. A representative inference example is shown in Fig. 8. Fur-
ther zoomed-in results are shown in Fig. 9, including the results of
vanilla gr-tempest. Note how, in the example on the left, the text is
restored with higher quality when the font size is larger, even if the
original text color is blue. Furthermore, the one on the right shows

LADC 2024, November 26–29, 2024, Recife, Brazil Santiago Fernández, Emilio Martínez, Gabriel Varela, Pablo Musé, and Federico Larroca

Figure 8: Example of a complete inference using the Pure
Model in a real-life sample.

Model PSNR (dB) SSIM CER (%)
Synthetic Data

Base (ideal pulse) 21.3 0.913 29.5
Base (real pulse) 20.2 0.908 32.8

Real-life Data
Base (ideal pulse) 10.0 0.610 49.4
Base (real pulse) 10.0 0.601 55.2

Raw image magnitude
(gr-tempest) 8.57 0.345 92.2

Pure (w/ complex values) 15.2 0.787 35.3
Pure (w/ magnitude only) 14.2 0.754 43.6

Table 1: Performance of all trained models, evaluated on
test sets of both synthetic and real captures. The best perfor-
mance for each dataset and metric is indicated in bold text.

great text restoration performance except for some characters (such
as “𝜏”, “𝜋” and “𝑥” symbols), which are less common and therefore
under-represented in the training set.
Denoising the grayscale images. A pertinent question is how
much information would have actually been lost had we not re-cast
the TEMPEST problem as an inverse one. That is to say, what would
the performance be had we proceeded as in [10, 18, 20] and applied
a denoiser to the grayscale image as produced by TempestSDR or
gr-tempest. We have thus trained a model with only real-life sig-
nals as before, but taking the magnitude of the complex samples.
This results in a significant increase in the CER, reaching almost
44%. This shows that using the complex samples as an input to the
network is a better choice, as the system can leverage information
from both magnitude and phase.
On the utility of synthetic data.Aswe discuss in the next section,
robustness of the spying system requires signals that span several
monitor configurations (i.e. resolutions) as well as SDR’s parameters
(i.e. harmonic and sampling rate). This means that the attacker
has to build a training set including several thousands of real-life
samples, which acquisition constitutes then a significant bottleneck
in developing a robust spying system. It is crucial, then, to study
how to reduce the number of real-life signals required and if it is
possible to do so without affecting the resulting performance.

Figure 9: Zoomed-in examples obtained by vanilla
gr-tempest (top), Pure Model (middle), and the origi-
nal image (bottom).

Fraction PSNR (dB) SSIM CER (%)
5% 14.6 0.766 39.0
10% 15.2 0.791 35.0
20% 15.4 0.797 33.3
50% 15.6 0.803 31.4
100% 15.7 0.806 29.8

Table 2: Performance of the fine-tuned BaseModel as we vary
the number of real-life samples (as a fraction of the complete
dataset) used in training.

The first idea is simply to build a smaller training set. For instance,
if we use a third of the training set on the Pure Model, the CER
would increase roughly by three percentage points, more precisely
resulting in a CER of 38.3%. Instead of training the Pure Model from
scratch, a very interesting and useful alternative is to use the Base
Model as a starting point, whose training samples are virtually free
to produce. The idea is to expose the Base Model to real-life samples
so that it can leverage what it has learned from the simulations to
better infer images from real-life signals. More in particular, we
start from the weights of the Ideal Base Model and further train
it for another 100 epochs using only a subset of real-life samples.
The results obtained with this methodology, a so-called Model
Fine-Tuning (which may be interpreted as Few-Shot Learning in
this case), is shown in Table 2. Note how simulated data may be
leveraged to obtain the same performance as the Pure Model but
using only 10% of the real-life samples. Quite interestingly, this fine-
tuning produces the best results from all of the evaluated models.

7 ROBUSTNESS AND COUNTERMEASURES
7.1 Robustness
This section evaluates our system’s performance when modifica-
tions are introduced in both the acquisition phase and the reference
images. For instance, the training set was generated with a fixed
sampling rate, tuning frequency, and monitor resolution configura-
tion for both actual signals and simulations. It is essential to assess
which changes in these parameters require complete retraining.
Robustness to the Signal Acquisition Process We start by
exploring changes in SDR tuning frequency. Our choice of the
third-pixel harmonic was based on the absence of other significant
sources of radio-frequency interference, but this is not always the
case, and the operator may need to tune to, for instance, the fourth
one. Note that in this case, the most important difference between

Deep-TEMPEST: Using Deep Learning to Eavesdrop on HDMI from its Unintended Electromagnetic Emanations LADC 2024, November 26–29, 2024, Recife, Brazil

(a) 1600×900 resolution image spied at
4th pixel frequency rate (CER = 26.6%).

(b) 1280x720 resolution image spied at
4th pixel frequency rate (CER = 50%).

Figure 10: Model inferences over non-trained setup spied
images. The inference of 10b shows themodel does not assure
a good performance at other spying setups.

the samples in the training set and the observed signal lies in the
form of 𝑔(𝑡) (cf. Eq. (6)), which will now correspond to another 𝑓𝑐 .
However, as illustrated in Fig. 5, the difference in the corresponding
pulses is not significant, and the learning system should obtain
reasonable results. This is confirmed in Fig. 10a, which shows an
inference example using a real signal tuned at 𝑓𝑐 = 4/𝑇𝑝 . The re-
sulting CER in this example was 26%, demonstrating the robustness
to changes in the tuning frequency.

As a second step, let us additionally modify the monitor’s resolu-
tion (thus resulting in a different pixel rate 1/𝑇𝑝) and choose again
𝑓𝑐 = 4/𝑇𝑝 . We interpolated the captured complex image resolution
to 1600×900 before computing the inference to feed the learning
module with the same array size that it was trained on, thus avoid-
ing any disadvantage compared to the previous configuration. An
example inference (using 1280 × 720@60fps) is shown in Fig. 10b.
In this case, the performance was clearly degraded, resulting in a
CER of 50%. Differently from the previous case, differences in the
resulting shaping pulses are enough to produce samples where the
learning system’s performance degrades significantly.

In any case, expecting the system to perform well under all
possible resolutions and harmonics would not be reasonable. How-
ever, since the number of possible configurations is limited, we
may envisage a set of different parameters for the DRUNet, each
trained on signals acquired when a specific resolution was used
in the monitor and a certain configuration was used on the SDR.
As discussed in the previous section, we may fine-tune the model
trained on simulations, so the acquisition process should not be
time-consuming.
Robustness to the Images’ Content Text fonts not used for train-
ing are another point to consider for testing the model’s robustness,
appearing in the examples we showed previously, especially that of
Fig. 9. Given that several of the images we included in our dataset
come from PDF documents obtained from a conference (and thus
with the same font), it is interesting to evaluate whether the system
presents certain overfitting to these kinds of images. To measure
the performance of the model for unseen fonts, we created a new
dataset consisting of 800 new simulated samples. Each of these
images consists of random text, where each line alternates between
147 different font types (those included in the default Ubuntu in-
stallation and that contain the Latin script). The simulation uses
the same image resolution, pixel harmonic frequency, and sampling
rate as in the previous section.

Using a subset of 300 of these images to evaluate the Base Model
with the ideal pulse results in an increase of the average CER,

Figure 11: Image inferences when synthetic low-level noise
is added to the original image. Inference performance is sig-
nificantly degraded, even with an imperceptible noise level.

that moves from about the 30% that we obtained before (cf. Table
1) to 48.7 %. However, simply by further training the model for
another 10 epochs, where the remaining 500 samples were added
to the training set, the resulting CER drops again to 29.8 %. This
experiment shows that the architecture has the potential to learn
new text font types with a few training epochs and provides further
evidence of its expressiveness.

7.2 Countermeasures
It is essential to expose the spying system flaws so the counterpart
(e.g., the computer user) can exploit them and ensure the protection
of personal or classified information. To this end, we mention two
countermeasures that, by modifying the displayed image (in a pri-
marily eye-imperceptible manner to the computer user), inference
based on the resulting emanations fails. These defects stem from
the analysis discussed in Sec. 3 and leverage the non-linearity of
the TMDS encoding.

One way to accomplish this is by adding low-level noise to the
image displayed on the monitor, creating an adversarial attack on
the neural network. This noise may be, for instance, an additive
Gaussian noise with a constant variance. The example in Fig. 11
illustrates this possibility by artificially adding a very small noise
to the original image (𝜎 = 3). Note how most of the text in the
inference becomes illegible.

A more perceptible but definitive solution is to use a color gra-
dient on the images’ background, as illustrated in Fig. 12a. When
using a horizontal gradient (a white-to-black ramp, for example), we
are changing the grayscale linearly over the image, but the TMDS
encoding will produce significant changes on the eavesdropped sig-
nal (see Fig. 12b). In this case, also shown in Fig. 12b, the inference
fails completely.

8 CONCLUSION
In this work, we have presented an open-source implementation of a
deep learning architecture trained to map from the electromagnetic
signal emanating from an HDMI cable to the displayed image. The
complete dataset, including simulations based on the analytical
expressions we derived (as well as scripts to generate them), is also
made available. Notably, the system obtainsmuch better results than
previous implementations, significantly improving the Character
Error Rate when eavesdropping text.

LADC 2024, November 26–29, 2024, Recife, Brazil Santiago Fernández, Emilio Martínez, Gabriel Varela, Pablo Musé, and Federico Larroca

(a) Image with horizontal gradient. (b) Eavesdropped image.

Figure 12: Gradient background experiment scenario. A hor-
izontal 0-127 grayscale ramp is subtracted from the original
image (a), resulting in an observed complex image (upper b)
with several vertical bands. Inference (lower b) thus fails to
restore the text.

This work paves the way for several interesting and challenging
research avenues. As we discussed in Sec. 7, the trained archi-
tecture’s performance degrades as we modify the spied system’s
parameters (e.g., the resolution or the tuned frequency). A possible
solution is to train several architectures, one for each foreseeable
set of parameters. Simulations will naturally come in handy in this
otherwise extremely time-consuming process. An alternative is to
leverage the fact that we have an explicit expression for the degra-
dation operator and strive at solving (8) directly. Deep learning has
also been successfully applied to these so-called plug&play meth-
ods, in particular, to apply the prior distribution or regularization
term, which takes the form of a denoiser (see [33] for example).
The main challenge in the case of TEMPEST is how to efficiently
find the optimum to the data term since the degradation operator
is highly non-linear.

We may also enrich the signal we are using for inference. As
we discussed before, the eavesdropped samples present significant
redundancy, which we implicitly used through gr-tempest to align
𝒀 and 𝑿 . However, this redundancy may also be used to produce
even better results. We may, for instance, use several consecutive
complex arrays of samples to construct a complex tensor, which
may then be fed to a network that infers the original image.

Finally, it is important to highlight that the architecture we
used takes some seconds to produce each inference. This is hardly
real-time, and it would be interesting to undertake a faster imple-
mentation now that the method’s feasibility has been verified.

REFERENCES
[1] 2024. GNU Radio. The free & open software radio ecosystem . https://www.

gnuradio.org/.
[2] Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori

Koyama. 2019. Optuna: A next-generation hyperparameter optimization frame-
work. In 25th ACM SIGKDD.

[3] T Chan, Selim Esedoglu, Frederick Park, and A Yip. 2006. Total variation image
restoration: Overview and recent developments. Handbook of mathematical
models in computer vision (2006), 17–31.

[4] Pieterjan De Meulemeester, Bart Scheers, and Guy A.E. Vandenbosch. 2020.
Differential Signaling Compromises Video Information Security Through AM
and FM Leakage Emissions. IEEE Transactions on Electromagnetic Compatibility
62, 6 (2020), 2376–2385. https://doi.org/10.1109/TEMC.2020.3000830

[5] Pieterjan de Meulemeester, Bart Scheers, and Guy A.E. Vandenbosch. 2020. Eaves-
dropping a (Ultra-)High-Definition Video Display from an 80 Meter Distance
Under Realistic Circumstances. In IEEE EMCSI 2020.

[6] Pieterjan De Meulemeester, Bart Scheers, and Guy A.E. Vandenbosch. 2020. A
Quantitative Approach to Eavesdrop Video Display Systems Exploiting Multi-
ple Electromagnetic Leakage Channels. IEEE Transactions on Electromagnetic
Compatibility 62, 3 (2020), 663–672. https://doi.org/10.1109/TEMC.2019.2923026

[7] Ettus Research. 2024. USRP B200mini. https://www.ettus.com/all-products/usrp-
b200mini/.

[8] Ettus Research. 2024. USRP X440. https://www.ettus.com/all-products/usrp-
x440/.

[9] Robert G Gallager. 2008. Principles of digital communication. Cambridge Univer-
sity Press Cambridge, UK.

[10] J. Galvis, S. Morales, C. Kasmi, and F. Vega. 2021. Denoising of Video Frames
Resulting FromVideo Interface Leakage Using Deep Learning for Efficient Optical
Character Recognition. IEEE Letters on Electromagnetic Compatibility Practice and
Applications 3, 2 (2021), 82–86. https://doi.org/10.1109/LEMCPA.2021.3073663

[11] Allam Shehata Hassanein, Sherien Mohammad, Mohamed Sameer, and Moham-
mad Ehab Ragab. 2015. A survey on Hough transform, theory, techniques and
applications. arXiv preprint arXiv:1502.02160 (2015).

[12] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2015. Delving Deep
into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification.
arXiv 1502.01852 [cs.CV] (2015).

[13] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual
learning for image recognition. In IEEE CVPR 2016.

[14] Diederik P. Kingma and Jimmy Ba. 2017. Adam: A Method for Stochastic Opti-
mization. arXiv:1412.6980 [cs.LG] (2017).

[15] Markus G. Kuhn. 2003. Compromising emanations: eavesdropping risks of com-
puter displays. Technical Report UCAM-CL-TR-577. University of Cambridge,
Computer Laboratory. https://doi.org/10.48456/tr-577

[16] Anurendra Kumar, Keval Morabia, William Wang, Kevin Chang, and Alex
Schwing. 2022. CoVA: Context-aware Visual Attention for Webpage Information
Extraction. In 5th ECNLP.

[17] Federico Larroca, Pablo Bertrand, Felipe Carrau, and Victoria Severi. 2022. gr-
tempest: an open-source GNU Radio implementation of TEMPEST. In 2022 Asian-
HOST. https://doi.org/10.1109/AsianHOST56390.2022.10022149

[18] Florian Lemarchand, Cyril Marlin, FlorentMontreuil, Erwan Nogues, andMaxime
Pelcat. 2020. Electro-Magnetic Side-Channel Attack Through Learned Denoising
and Classification. In ICASSP 2020.

[19] Z Liu, N Samwel, LJA Weissbart, Z Zhao, D Lauret, L Batina, and M Larson.
2021. Screen Gleaning: A Screen Reading TEMPEST Attack on Mobile Devices
Exploiting an Electromagnetic Side Channel. In NDSS 2021.

[20] Yan Long, Qinhong Jiang, Chen Yan, Tobias Alam, Xiaoyu Ji, Wenyuan Xu,
and Kevin Fu. 2024. EM Eye: Characterizing Electromagnetic Side-channel
Eavesdropping on Embedded Cameras. In NDSS 2024.

[21] Martin Marinov. 2014. Remote video eavesdropping using a software-defined
radio platform. MS thesis, University of Cambridge (2014). https://github.com/
martinmarinov/TempestSDR.

[22] Paul Mooney. 2019. CVPR 2019 Papers. https://www.kaggle.com/datasets/
paultimothymooney/cvpr-2019-papers. Visited on 2023-08-04.

[23] Gregory Ongie, Ajil Jalal, Christopher A. Metzler, Richard G. Baraniuk, Alexan-
dros G. Dimakis, and RebeccaWillett. 2020. Deep Learning Techniques for Inverse
Problems in Imaging. IEEE Journal on Selected Areas in Information Theory 1, 1
(2020), 39–56. https://doi.org/10.1109/JSAIT.2020.2991563

[24] Christian David O’Connell. 2019. Exploiting quasiperiodic electromagnetic radi-
ation using software-defined radio. PhD thesis, University of Cambridge (2019).
https://doi.org/10.17863/CAM.38085

[25] Marius Pedersen and Jon Yngve Hardeberg. 2012. Full-Reference Image Quality
Metrics: Classification and Evaluation. Foundations and Trends® in Computer
Graphics and Vision 7, 1 (2012), 1–80. https://doi.org/10.1561/0600000037

[26] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. 2015. U-net: Convolutional
networks for biomedical image segmentation. In MICCAI 2015. Springer.

[27] Ray Smith. 2007. An Overview of the Tesseract OCR Engine. In ICDAR ’07. IEEE
Computer Society, Washington, DC, USA, 629–633.

[28] Tae-Lim Song, Yi-Ru Jeong, and Jong-Gwan Yook. 2015. Modeling of Leaked
Digital Video Signal and Information Recovery Rate as a Function of SNR. IEEE
Transactions on Electromagnetic Compatibility 57, 2 (2015), 164–172.

[29] Wim van Eck. 1985. Electromagnetic radiation from video display units: An
eavesdropping risk? Computers & Security 4, 4 (1985), 269–286.

[30] Alexander M Wyglinski, Don P Orofino, Matthew N Ettus, and Thomas W Ron-
deau. 2016. Revolutionizing software defined radio: case studies in hardware,
software, and education. IEEE Communications magazine 54, 1 (2016), 68–75.

[31] Jiadi Yu, Li Lu, Yingying Chen, Yanmin Zhu, and Linghe Kong. 2021. An Indirect
Eavesdropping Attack of Keystrokes on Touch Screen through Acoustic Sensing.
IEEE Transactions on Mobile Computing (2021).

[32] Kai Zhang, Yawei Li, Wangmeng Zuo, Lei Zhang, Luc Van Gool, and Radu Timofte.
2021. Plug-and-play image restorationwith deep denoiser prior. IEEE Transactions
on Pattern Analysis and Machine Intelligence 44, 10 (2021), 6360–6376.

[33] Kai Zhang, Wangmeng Zuo, Shuhang Gu, and Lei Zhang. 2017. Learning deep
CNN denoiser prior for image restoration. In IEEE CVPR 2017. 3929–3938.

[34] Kai Zhang, Wangmeng Zuo, and Lei Zhang. 2018. FFDNet: Toward a Fast and
Flexible Solution for CNN-Based Image Denoising. IEEE Trans. Image Process. 27,
9 (2018), 4608–4622. https://doi.org/10.1109/TIP.2018.2839891

https://www.gnuradio.org/
https://www.gnuradio.org/
https://doi.org/10.1109/TEMC.2020.3000830
https://doi.org/10.1109/TEMC.2019.2923026
https://www.ettus.com/all-products/usrp-b200mini/
https://www.ettus.com/all-products/usrp-b200mini/
https://www.ettus.com/all-products/usrp-x440/
https://www.ettus.com/all-products/usrp-x440/
https://doi.org/10.1109/LEMCPA.2021.3073663
https://doi.org/10.48456/tr-577
https://doi.org/10.1109/AsianHOST56390.2022.10022149
https://github.com/martinmarinov/TempestSDR
https://github.com/martinmarinov/TempestSDR
 https://www.kaggle.com/datasets/paultimothymooney/cvpr-2019-papers
 https://www.kaggle.com/datasets/paultimothymooney/cvpr-2019-papers
https://doi.org/10.1109/JSAIT.2020.2991563
https://doi.org/10.17863/CAM.38085
https://doi.org/10.1561/0600000037
https://doi.org/10.1109/TIP.2018.2839891

	Abstract
	1 Introduction
	2 Threat Model
	3 Unintended Electromagnetic Emanations of HDMI
	3.1 Digital signal
	3.2 Electrical and electromagnetic signal

	4 Software Defined Radio
	4.1 Hardware
	4.2 Software

	5 Eavesdropping Images from gr-tempest Complex Sequences
	5.1 Deep Learning to Solve the Inverse Problem
	5.2 Generating the training set

	6 Experiments and Results
	7 Robustness and Countermeasures
	7.1 Robustness
	7.2 Countermeasures

	8 Conclusion
	References

