english Icono del idioma   español Icono del idioma  

Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/20.500.12008/47562 Cómo citar
Título: Locally moving groups acting on the line and R-focal actions.
Autor: Brum, Joaquín
Matte Bon, Nicolás
Rivas, Cristóbal
Triestino, Michele
Tipo: Preprint
Palabras clave: Group actions on the real line, Locally moving groups, Actions on real trees, Local rigidity, Left-orderable groups, Groups of piecewise linear homeomorphisms
Fecha de publicación: 2021
Resumen: We prove various results that, given a sufficiently rich subgroup G of the group of homeomorphisms on the real line, describe the structure of the other possible actions of G on the real line, and address under which conditions such actions must be semi-conjugate to the natural defining action of G. The main assumption is that G should be locally moving, meaning that for every open interval the subgroup of elements whose support is contained in such interval acts on it without fixed points. One example (among many others) is given by Thompson’s group F. A first rigidity result implies that if G is a locally moving group, every faithful minimal action of G on the real line by C1 diffeomorphisms is conjugate to its standard action. It turns out that the situation is much wilder when considering actions by homeomorphisms: for a large class of groups, including Thompson’s group F, we describe uncountably many conjugacy classes of minimal faithful actions by homeomorphisms on the real line. To gain insight on such exotic actions, we introduce and develop the notion of R-focal action, a class of actions on the real line that can be encoded by certain actions by homeomorphisms on planar real trees fixing an end. Under a suitable finite generation condition on a locally moving group G, we prove that every minimal faithful action of G on the line is either conjugate to the standard action, or it is R-focal and the action on the associated real tree factors via a horofunction onto the standard action of G on the line. This establishes a tight relation between all minimal actions of G on the line and its standard action. Among the various applications of this result, we show that for a large class of locally moving groups, the standard action is locally rigid, in the sense that every sufficiently small perturbation in the compact-open topology gives a semi-conjugate action. This is based on an analysis of the space of harmonic actions on the line for such groups. Along the way we introduce and study several concrete examples.
Editorial: arXiv
EN: Mathematics. Group Theory (math.GR), arXiv:2104.14678v1, apr. 2021, pp. 1-161.
Financiadores: Joaquín Brum recibió apoyo de CONICYT a través de la beca de posdoctorado FONDECYT 3190719.
Citación: Brum, J., Matte Bon, N., Rivas, C. y otros. Locally moving groups acting on the line and R-focal actions. [Preprint]. Publicado en: Mathematics. Group Theory (math.GR), 2021, pp. 1-161. arXiv:2104.14678v1. DOI: 10.48550/arXiv.2104.14678.
Licencia: Licencia Creative Commons Atribución (CC - By 4.0)
Aparece en las colecciones: Publicaciones académicas y científicas - IMERL (Instituto de Matemática y Estadística Rafael Laguardia)

Ficheros en este ítem:
Fichero Descripción Tamaño Formato   
BMRT21.pdfPreprint2,46 MBAdobe PDFVisualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons