english Icono del idioma   español Icono del idioma  

Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/20.500.12008/47509 Cómo citar
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorVanerio, Juan Martín-
dc.contributor.authorLarroca, Federico-
dc.date.accessioned2024-12-12T14:58:25Z-
dc.date.available2024-12-12T14:58:25Z-
dc.date.issued2020-
dc.identifier.citationVanerio, J. y Larroca, F. "Online expert-based prediction for cognitive radio secondary markets". IEEE Transactions on Cognitive Communications and Networking. [en línea]. 2020, vol. 6, no. 1, pp. 340-351.es
dc.identifier.issn2332-7731-
dc.identifier.urihttps://hdl.handle.net/20.500.12008/47509-
dc.description.abstractThe growing importance of wireless communications drives an increasing interest in dynamic access to spectrum resources. This requires efficient management policies that allow spectrum sharing between licensed primary users (PU) and unlicensed secondary users (SU). On such scenario, PUs shall preserve their usage priority right over any SU. Also, no SU shall interfere on any PU. Technical viability can be achieved through Cognitive Radio devices that adjust their operating parameters adaptively. After discussing several economic and technical models to achieve efficient spectrum sharing, we propose an on-demand secondary market model regulated by a spectrum broker who controls resource allocation. This model provides economic incentives for both kind of users to cooperate: SUs are charged by the broker on behalf of PUs for resource utilization but are indemnified if expelled to ensure PU priority. We describe the main characteristics of such a system and address the question of what allocation decisions should the broker take in order to achieve economic benefit regardless of users behavior. Several online expert-based no-regret algorithms are proposed to guide the decision taking process and evaluated under different user behavior patterns. Their results are compared with the ones achieved by dynamic programming to assess its convenience.es
dc.format.extent12 p.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenes
dc.publisherIEEEes
dc.relation.ispartofIEEE Transactions on Cognitive Communications and Networking, vol. 6, no. 1, mar 2020, pp. 340-351.es
dc.rightsLas obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad de la República.(Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014)es
dc.subjectResource managementes
dc.subjectEconomicses
dc.subjectBiological system modelinges
dc.subjectReal-time systemses
dc.subjectCognitive radioes
dc.subjectPrediction algorithmses
dc.subjectAdaptation modelses
dc.subjectAccess controles
dc.subjectDynamic spectrum accesses
dc.subjectDecision-makinges
dc.subjectCommunication system economicses
dc.titleOnline expert-based prediction for cognitive radio secondary markets.es
dc.typeArtículoes
dc.contributor.filiacionVanerio Juan Martín, Universidad de la República (Uruguay). Facultad de Ingeniería.-
dc.contributor.filiacionLarroca Federico, Universidad de la República (Uruguay). Facultad de Ingeniería.-
dc.rights.licenceLicencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)es
udelar.academic.departmentTelecomunicacioneses
udelar.investigation.groupAnálisis de Redes, Tráficos y Estadísticas de Servicios (ARTES)es
Aparece en las colecciones: Publicaciones académicas y científicas - Instituto de Ingeniería Eléctrica

Ficheros en este ítem:
Fichero Descripción Tamaño Formato   
VL20.pdfVersión enviada365,35 kBAdobe PDFVisualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons