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Abstract—The growing importance of wireless communications
drives an increasing interest in dynamic access to spectrum
resources. This requires efficient management policies that allow
spectrum sharing between licensed primary users (PU) and
unlicensed secondary users (SU). On such scenario, PUs shall
preserve their usage priority right over any SU. Also, no SU shall
interfere on any PU. Technical viability can be achieved through
Cognitive Radio devices that adjust their operating parameters
adaptively.

After discussing several economic and technical models to
achieve efficient spectrum sharing, we propose an on-demand
secondary market model regulated by a spectrum broker who
controls resource allocation. This model provides economic in-
centives for both kind of users to cooperate: SUs are charged
by the broker on behalf of PUs for resource utilization but are
indemnified if expelled to ensure PU priority. We describe the
main characteristics of such a system and address the question
of what allocation decisions should the broker take in order to
achieve economic benefit regardless of users behavior. Several
online expert-based no-regret algorithms are proposed to guide
the decision taking process and evaluated under different user
behavior patterns. Their results are compared with the ones
achieved by dynamic programming to assess its convenience.

Index Terms—Access control, Dynamic spectrum access,
Decision-making, Communication system economics.

I. INTRODUCTION

In recent years there has been a dramatic increase in the
demand (and thus cost) for radio spectrum [1], [2], [4], mainly
due to the evolution and growth of wireless networks. This
trend is only expected to increase, driven by technologies such
as 5G or the “Internet of Things” (IoT) [3], [26].

Instead of relying on traditional policies, where a spectrum
administrator issues long-term and exclusive licenses, in the
context of Cognitive Radio (CR) and Dynamic Spectrum
Access (DSA) the concept of Spectrum Secondary Market has
emerged [4], [37]. Basically, it allows the exchange of usage
rights between licensed primary users (PUs) and unlicensed
secondary users (SUs), which should result (in the absence
of market failures) in an efficient allocation of the scarce
resources due to the information transmitted by prices [29],
[31], [41].

After reviewing the possible implementations of the spec-
trum secondary market proposed so far in the literature, we
argue why a centralized, real-time and on-demand scheme
should be favored. In this implementation, allocation of radio
resources to SUs is managed by a so-called Spectrum Broker
(or simply “broker”) [42], [46], [50]. Moreover, any authorized

SU can request resources from the broker as they see fit, which
in turn decides whether to accept the request or not. The broker
is also responsible for enforcing PUs priority usage rights. This
means that if a PU requires resources and there is not enough
available capacity, it will remove a SU from the system (if
any are present) and indemnify her for that situation.

However, for DSA to be viable both types of users must
be willing to cooperate and share the spectrum. For SUs
motivation comes from fast on-demand resource allocation
and eventual compensation for service suspension. Earnings
coming from the fees charged to SUs should be the economic
incentive for the spectrum broker and the PUs to participate
(as long as the latter’s priority usage is asserted at all times).

Our main contribution is to study how this economic in-
centive may be achieved under a broad set of user behaviors
and operating conditions. In particular, we are interested in
providing the spectrum broker with simple and robust decision
taking rules that maximize the benefits. We also discuss how,
when benefits are maximized, the compensation due to a
suspended service provides proper incentives (in terms of the
resulting Quality of Service) for the SUs to participate.

The main difficulty of this maximization problem lies on
how to model the user’s behavior taking as few assumptions
as possible. To handle this issue we resort to mathematical
tools known as no-regret algorithms or expert-based sequential
prediction [16]. In a nutshell, to decide whether to accept a
SU or not, these algorithms compare suggestions from several
arbitrarily complex decision rules called experts, and combine
them to provide similar results to those of the best available
expert in hindsight.

We discuss the particularities of the spectrum broker’s
problem in this context, and propose adaptations to the base
algorithms to consider them. For instance, the fact that a SU
has to be accepted in order to verify if it will eventually
constitute an earning (i.e. not indemnified due to service
suspension) constitutes a variation of the so-called Multi-
Armed Bandit problem.

As we show through extensive simulations, our proposal is
capable of managing essentially arbitrary behaviors for both
kind of users and obtain nearly optimal results. As a practical
benchmark, we compare our results with the ones achieved by
Dynamic Programming Algorithms (DPA), which are known to
be optimal for online Markov Decision Processes (MDPs), and
extensively used for this type of sequential decision-making
problems. Our results show that if the behavior does not
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comply to a markovian setting (an expected behavior), our
algorithm largely outperforms DPA (and in addition is much
simpler computationally).

The rest of this article is organized as follows. On section
II, after reviewing key aspects of cognitive radio, we compare
different technological and economic models present in the
literature geared towards more efficient sharing of spectrum
resources. Arguments in favor of a centralized, real-time and
on-demand secondary market are discussed in that section.
Section III provides a deeper description of no-regret expert-
based algorithms for robust predictions. Then, it proposes
a model of the spectrum broker problem and our solution.
Why compensations are necessary in order to provide proper
incentives to SUs is discussed at the end of this section.
Afterwards section IV describes the methodology to evaluate
the performance of each algorithm and then discusses the
obtained results. Finally, section V presents the conclusions
of the work.

II. COGNITIVE RADIO

A. Technological Context

Cognitive Radio (CR) are wireless communications systems
capable of adapting their operating parameters in real time to
exploit vacant spectrum resources [39]. A spectrum resource is
any portion of the spectrum which could potentially be used as
a communication channel. As such, it is composed by several
dimensions [33] like central frequency, channel bandwidth,
transmission power, codification/modulation scheme, beam
directionality, or polarity among others.

In the most general case, a CR node should implement
the spectrum sensing, analysis, decision, mobility and sharing
functionalities [6], [7], [50]. However, in centralized (and thus
also cooperative) schemes a so-called spectrum broker exists,
which decides on resource allocation and coordinates medium
access procedures [42], [46], [50]. In infrastructure networks
the central base station entity may play the role of the spectrum
broker. In ad-hoc networks, the broker role could be performed
by any SU, group of, or even some distributed protocol like
in [9].

Several advantages stem from cooperation among both types
of users, where the spectrum broker connects to primary
and secondary networks. Firstly, the broker gets notified of
all communication activities and available resources over the
networks’ areas. With this information at hand the broker can
guarantee an operation without mutual interference simply
allocating each user to a portion of the multidimensional
spectrum that do not interfere with anyone else.

Secondly, in such architecture the SUs mechanism of per-
forming distributed spectrum sensing and sending the results to
the central entity becomes unnecessary. Relevant information
can be directly provided by the broker through a control
channel. This simplifies SUs cognitive functions and receiver
implementations as well as their cost, while efficiently using
the spectrum.

Several works agree that such an architecture (depicted in
Fig. 1 for the case of an infrastructure secondary network),
is indeed beneficial for SUs and can achieve better spectrum
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Fig. 1. CR Infrastructure Network Architecture. Red elements belong to
primary networks, blue elements to secondary networks. Ovals represent
network span.

utilization. For instance, the authors of [9] propose a proto-
col over a virtual channel for coordination of simultaneous
access between SUs and PUs, whereas a common signaling
channel with the participation of explicit spectrum brokerage
to coordinate access is proposed in [15]. Similarly, [14] uses
a spectrum broker figure to centralize coordination, devices’
management and access of cooperative users, storing and
distributing allocation information on a dynamic database.
More recently, [24] proposes a TV white spaces CR system in
which a broker has access to a shared database specifying
incumbent licensees (PUs), available frequency bands and
maximum transmit powers at the broker geolocation. SUs
can use resources marked as available in the database. A
similar approach is also taken by both IEEE 802.22 [40] and
IEEE802.11af [27] standards. A GPS-assisted geolocation is
used by the base transceivers (BTS) to access a centralized
database providing temporarily local available TV bands, loca-
tion of primary stations and maximum allowable transmission
power.

Because of its significant benefits, we will consider this kind
of architecture for the rest of this work.

B. Economic Context

We now discuss the economic context under which CR
may be implemented. The simplest form is one where SUs
would attempt to access the spectrum resources opportunis-
tically at zero-cost (the so-called free-sharing scheme) [38].
However, no incentives are provided to PUs to cooperate in
the allocation, and it moreover leads to complex (and costly)
technological SU devices as discussed in the previous section.

The alternative is a paid-sharing model [38] in which SUs
pay for resource usage. That is to say, the implementation of a
spectrum secondary market. This approach provides economic
incentives for incumbent PUs to permit their underutilized
licensed resources to be shared, as long as their usage priority
right is honored at all times (which may be achieved by means
of the spectrum broker as we also discussed in the previous
section).
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Taking into account the benefits of paid-sharing models,
many works and government agencies propose different im-
plementations of this spectrum secondary markets (SSM) [1],
[4], [25], [37], which we now review.

Auctions are recommended by the literature as the method
that provides greater potential benefits for all actors while
increasing the spectrum utilization efficiency via reuse [17],
[34], [37]. Several variants of auctions have been introduced
specially for the spectrum sharing case [52]. For instance,
the Federal Communications Commission (FCC) after trying
several traditional approaches currently uses auctions for al-
location of spectrum resources [20]. However, auctions have
their problems. Existing efforts on dynamic spectrum auctions
mostly strive at maximizing the auction’s revenue. This cannot
ensure that the bidder with the highest social value (reflecting
the benefits of improved competition) wins as intended, but the
one with the highest private value (the bid in the auction) [19],
[20], [51].

This is not the case of on-demand allocation with a fixed
price, where available resources are allocated to SUs that
actually need them, thus being more likely to be the high social
value bidders and to achieve an efficient allocation policy.
Auctions can also be prone to manipulations, which might
result in lower revenues for the auctioneer [22].

Moreover, auctions (as well as the more traditional contests
or lotteries) require the gathering of interested candidates to
work properly. This poses a limit on the flexibility of spectrum
sharing, as SUs needing immediate access to resources might
not be well served by this allocation scheme. For example,
the closer the spectrum exchange is to being able to make
spectrum trades in real time, the more attractive the system is
for service providers acting as SUs needing to solve short term
capacity shortages [10]. Such users or applications may be
better served by an on-demand real-time spectrum secondary
market (RTSSM), where SUs request immediate temporary
access to spectrum as needed [43].

To compensate the drawbacks of real-time markets several
measures could be taken. As an example, previous evaluations
of SUs could be used in order to allow only properly qualified
users to ask for service. Such a measure could also be useful
to prevent ill-intentioned users to enter the system. Proper reg-
ulatory frameworks must prevent other undesirable economic
effects such as the hoarding and intentional underutilization
of the spectrum (i.e. artificial spectrum scarcity) [10].

Some works had studied this scenario, suggesting good
results with fee-based pricing strategies in which the price
paid by SUs is essentially fixed given the characteristics of
resources [13], [23], [36], [43]. In particular, the authors of
[13] argue that fixed-price policies tend to minimize spectrum
fragmentation and claims that performance evaluation simula-
tions verified the validity of the proposed architecture.

The discussion up to this point clearly justifies the choice
of a centralized, real-time and on-demand secondary market.
Regarding incentives for the SUs, a paid-sharing model and
a dynamic market allows them to acquire spectrum when
needed, and furthermore simplify their operation. However,
an aspect not taken into account in all works cited so far,
is that in order for the proposal to be attractive enough for

SUs to pay for the resource, it is expected that they demand a
compensation if their service is terminated due to the arrival
of a PU. Actually, as we discuss at the end of the next section,
this reimbursement implicitly considers the Quality of Service
obtained by SUs.

The question remains then, and it is the subject of the rest of
this article, on how may the broker decide whether to accept
or not a new SU to the system in order to maximize its
total payoff. To the best of our knowledge, only [48], [49]
consider the same scenario as we do. However, they both
assume a Markovian behavior of users. As we show in Sec.
IV, designing the broker’s decision algorithm assuming this to
be true has an important negative effect when this is not the
case.

Besides being robust to user’s behaviors, the proposed
decision algorithms are simple enough to be used online
(real-time), and are scalable with respect to the system’s
capacity. These characteristics distinguish our work from that
of [48], [49] that make use of dynamic programming which
has computationally prohibitive costs. This aspect is further
discussed in Sec. IV-D.

III. ONLINE NO-REGRET EXPERT-BASED PREDICTION

A. Basic Model

Having discussed the architectural and economical possi-
bilities, and after justifying our choice, we now focus on
the spectrum broker’s problem: obtaining economical benefits
from the system operation. To this end, let us now discuss
the notation and main assumptions we will use in the rest of
the article. Let x and y represent the number of PUs and SUs
currently using the system. We will assume that the system’s
capacity is C, so that x + y ≤ C. Moreover, accepted SUs
will pay a fixed amount equal to R for the resource, and
are compensated with an amount K in the event of a service
interruption.

More complex situations, where for instance SUs and PUs
are not equivalent in terms of the occupied resources, may be
easily considered through simple modifications to the model.
The tuple (x, y) ∈ S = {(x, y) ∈ N2 : x + y ≤ C} represents
the current state of the system.

Let us index with τ ∈ N the moments when PUs or SUs
either arrive of leave the system. At any given τ one of the
following scenarios may happen:

1) A PU arrives to the system and there is enough remaining
capacity (i.e. x + y < C), then x ← x + 1.

2) A PU arrives to the system when x + y = C and y > 0,
then a SU will be expelled due to the PUs priority. Thus,
in this case x ← x + 1 and y ← y − 1, and the spectrum
broker compensates the SU by paying her an amount
equal to K .

3) A SU arrives to the system when x+y < C and is granted
access by the spectrum broker. Then, the SU pays R and
y ← y + 1.

4) A SU arrives to the system when x + y < C but the
spectrum broker decides to refuse her access. Thus, the
system state and total payoff remain unmodified.
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Fig. 2. Example sequence of basic events. At τ = 1 a PU arrives to the
system (scenario 1), and at τ = 6 a PU arrives and causes a SU to be expelled
(scenario 2). At τ = 2 and τ = 5 a SU arrives and is accepted and increases
payoff (scenario 3), at τ = 8 the SU is rejected (scenario 4).

5) A SU attempts to arrives when the system is full
(x + y = C) so she cannot be accepted. No decision is
necessary, and the system state remains unaltered.

6) A PU leaves, then x ← x − 1.
7) A SU leaves, then y ← y − 1.

Figure 2 provides an illustrative example of the evolution of
the system. The upper graph shows the state of the system by
stacking the number of PUs and SUs on the system, i.e. how
many PUs (x, in blue at the bottom of the stack) and SUs (y,
green at the top of the stack) are currently being served for
any given time τ. The lower graph shows the evolution of the
total payoff. On top of the upper graph there is an indication
of which events are happening and which scenario number
describes them (black circles with light numbers).

The figure shows that the spectrum broker’s problem is an
online decision problem. At each time τ which includes a SU
arrival (which we will call round and denote as t), the broker
has to decide whether to accept or reject (allocate resources or
not) the incoming SU. The question becomes which sequence
of decisions should be taken in order to maximize earnings
(and thus incentivize the PUs’ participation). This work’s
objective is to design a simple and robust decision-making
algorithm that achieves this.

B. Online Non-Regret Expert-Based Prediction

The optimal decision for the broker will naturally depend on
the system’s current state, its parameters (i.e. capacity but also
the values of K and R) and on the arrival and service processes
for each kind of user. One may assume that those processes are
stochastic with known distribution families. Nevertheless that
is a strong hypothesis that might not be verified in practice.
To account for this fact this work states the problem in

the framework of Online Non-Regret Expert-Based Prediction
(ONREBP) [16].

Instead of making any hypothesis regarding users processes,
let us assume that on each round t the broker has access to
advices from N external forecasters (called experts) and their
past results. These experts are essentially arbitrary complex
black boxes that at each round generate a recommendation
to accept the SU or reject it. The broker then makes its own
decision. If accepted, eventually the fate of the SU is revealed
(she either completed her service or got expelled).

The objective of ONREBP algorithms is to obtain results
similar to those of the best available expert (naturally, without
previously knowing which this expert is). In other words, to
minimize the regret of not having followed its advice.

Let us formalize this notion. Let fi,t (i = 1, . . . , N) be the i-
th expert’s advice on round t. We will arbitrarily code fi,t = 0
if the recommendation is to reject the SU, and fi,t = 1 if it is
to accept her. The decision by the broker on round t will be
denoted by p̂t and let ut represent the outcome of the service
provided to the SU; if it completed its service then ut = 1,
and ut = 0 if the SU was expelled. Also, let h(dt, ut ) be the
payoff generated by decision dt ∈ {0, 1} (dt will be evaluated
as p̂t or as fi,t depending on the case) and SU outcome ut .

The following cases are possible:
1) The SU is accepted (p̂t = 1), pays R, uses the allocated

resource for an arbitrary period and then leaves the sys-
tem. The broker receives a payoff h(p̂t, ut ) = h(1, 1) = R.
Experts which recommended to accept will also receive
payoff h( fi,t, ut ) = h(1, 1) = R, otherwise they will
receive payoff h( fi,t, ut ) = h(0, 1) = 0 (since no gain
nor loss would have been obtained if their advice was
followed).

2) The SU is accepted and pays R. Eventually, the spectrum
broker expels the SU from the system to ensure PU
privilege, indemnifying her with an amount K . The broker
receives a payoff h(1, 0) = R − K as do experts which
recommended to accept. As in the previous case, the other
experts receive a payoff h(0, 0) = 0.

3) The SU is rejected (p̂t = 0). Since this decision does
not generate loss nor gain (i.e. h(0, 1) = h(0, 0) = 0), the
payoff of the broker and of the experts that recommended
to reject is left unchanged. However, the outcome ut of
this particular SU, would it have been accepted, cannot
be known. So neither can the instantaneous payoff of the
experts that recommended to accept. We will handle this
specific issue in following sections.

Note that the payoffs corresponding to a particular accepted
SU are definitely fixed once she quits the system (either
because she finished or she was expelled). This topic will also
be further discussed in the following sections.

Let Hn and Hi,n be the broker’s and the i-th expert’s
accumulated payoff or simply payoff up to time n respectively.
Then,

Hn =

n∑
t=1

h(p̂t, ut ), (1)

Hi,n =

n∑
t=1

h( fi,t, ut ). (2)
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Fig. 3. Types of Experts: (a) Action Map Experts - AME, (b) Linear Boundary Experts - LBE, (c) Class Based Experts - CBE

Let the regret of the spectrum broker with respect to the
i-th expert be the difference between their cumulative payoffs
up to round n [16]:

Ri,n = Hi,n − Hn =

n∑
t=1

h( fi,t, ut ) − h(p̂t, ut ). (3)

Given any set of experts, the goal of an ONREBP algorithm
is to minimize the cumulative regret Rn generated by not
following the advice of the best available expert for any
sequence of outcomes:

Rn = max
i=1,...,N

Hi,n − Hn = max
i=1,...,N

n∑
t=1

h( fi,t, ut ) −
n∑
t=1

h(p̂t, ut ).

(4)
Formally, an algorithm is said to be Hannan Consistent or

to have No Regret Property with respect to the whole set
of available experts if for any sequence u1, u2, . . . , un of n
outcomes the following inequality holds:

lim
n→∞

Rn

n
≤ 0 a.s.∀ u1, u2, . . . , un, (5)

where the almost surely convergence is taken with respect to
any possible randomization that the algorithm uses [30].

Then, the no-regret property of ONREBP algorithms can
be interpreted as having a per round regret that vanishes with
time, meaning the cumulative payoff difference between the
best available expert in hindsight and the broker is sublinear
with the number of rounds. The result will be that the broker’s
payoff will be close to that of the best expert in hindsight, a
desirable property for a decision-making rule.

Before discussing how this may be achieved, let us present
the experts we will consider in this work.

C. Experts

An expert could be any arbitrarily complex black box that at
each round generates a recommendation to accept or to reject
the SU. Experts might have access to information unavailable
to the spectrum broker. They could also be known solutions
for certain conditions (e.g. for certain stochastic cases).

We consider three types of simple decision rules as experts.
The idea is to compare the performance of the different
families of experts to decide on the one that consistently
achieves the best results.

1) Action Map Experts (AME): Each expert is an explicit
mapping of each possible system state (x, y) to a decision; i.e.
fi(x, y) : S → D = {0, 1}. An example mapping is shown
in Fig. 3a. The rationale is that SU’s success may depend
on the system’s state at arrival, but also on the primary’s
behavior. A SU accepted when the PUs arrive in bursts might
be likely to be expelled from the system before finishing her
session, even if the system was largely underutilized when
it was accepted. In this case the optimal policy would be to
reject all arrivals. The opposite happens for situations where
few PUs arrive, for which an accept all arrivals policy would
be optimal. According to these observations, experts in this
case are chosen to cover a wide range of mappings from
all rejection ( fi(x, y) = 0∀x, y) to all acceptance ( fi(x, y) =
1∀x, y) of arrivals. To be coherent, experts must comply
fi(x, y) ≥ fi(x + δx, y + δy)∀x, y and δx, δy ∈ {0, 1}.

2) Linear Boundary Experts (LBE): This expert can be seen
as a particular case of the previous one. In this case, expert i
is represented by two real numbers (ai, bi) with 0 < ai ≤ C
and 0 < bi ≤ C corresponding to the parameters of a line
segment according to the following decision rule:

fi(x, y) =

{
1 if bi − ai x ≥ y,

0 otherwise.
(6)

According to [47], [49] under markovian assumptions on the
user processes of arrival and sojourn, the broker’s problem has
an optimal decision boundary that is approximately linear. An
LBE expert represents a simple possible solution for such a
condition. Experts in this class are chosen to cover the whole
state space similarly to AME experts as shown in figure 3b.

3) Class Based Experts (CBE): Instead of having a single
set of experts providing a decision for each possible state of
the system, the broker may choose a different set of experts for
each state of the system. We will consider a simple case, where
each set is composed by only two experts: always accept or
always reject, as depicted by figure 3c. Regret comparisons
has to be done on a per-state basis only.
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D. Particularities of the Broker’s Problem

This section considers significant and particular aspects of
the spectrum broker’s online decision problem. As stated, the
system can be thought of as a game between the broker and
the market (or the environment). CR secondary markets are
composed of many disparate and legitimate users that only
care about their own service requirements. As they act with
good faith they do not intend to act against the spectrum
broker. This condition might be met at an administrative level
through screening of SU candidates. The sequence of intended
SU’s arrival and service times is then independent of the
broker’s actions.

Consequently, the model of a state-aware oblivious oppo-
nent [16] appears as the most appropriate for the market. Thus,
the intended sequence of PUs and SUs arrivals and services
could as well be computed in advance, at least for simulating
the system.

Note that in our case the outcome (the market action) is
known only after an arbitrary delay (when the SU either
finishes or is expelled). This is a deviation from usual game
theory hypothesis. Following theoretical work in [35], in this
paper all tested algorithms decisions are taken considering
only revealed outcomes up to that time. In practice the effect
is similar to having taken the decision later in time (just
before the outcome was known), yet possibly with slight less
information.

Moreover, and as noted before, if the spectrum broker
rejects a SU arrival, then it becomes impossible to know the
payoff of the experts that recommended to accept it and regret
cannot be calculated. This is known as a Partial Information
[16] scenario, in which the decision-taking algorithm has to
compensate for the missing information.

Nevertheless if the broker chooses to accept the SU the
payoff of all experts will be known. It is then said that p̂t = 1
is a Revealing Action. Essentially, the spectrum broker will
have to find a proper balance between taking the decision
that provided the best payoff in the past (exploitation) and
choosing the revealing action to get information about all
experts (exploration). It can be shown that if a revealing action
exists for a given problem, then a no-regret predictor also
exists (see chapter 6 of [16]). Basically the decision-taking
algorithm must ensure that the revealing action is taken at
least a fraction of the times to ensure proper exploration of
the environment. For examples of revealing-action algorithms
for partial information settings refer to chapter 6 of [16].

E. Prediction Techniques

Let us now discuss how the broker may combine the
experts’ advice in order to obtain a total payoff close to the
best expert. In order to limit the broker’s regret, a simple
algorithm would be to chose an expert at random at every
round. We might start using the same probability of choosing
each expert (maximum entropy), reflecting our ignorance.
As decisions are taken, some experts might achieve greater
payoffs than others, and it seems convenient to follow the
former’s advice with a higher probability. That is, to lower the
distribution’s entropy to reflect our increased knowledge [8].

Most no-regret algorithms roughly work as described above.
Others combine the predictions with weights according to
each expert’s regret. Table I summarizes all tested prediction
techniques. More details of the techniques we used follow.

1) FTPL - Follow the Perturbed Leader: An algorithm
introduced by James Hannan in a seminal paper in 1956 [30].
It states that the spectrum broker must follow the advice of
the expert whose regret plus a random signal is the greatest
up to the last round. That is to say:

p̂t = fIt,t, where It = arg max
i=1,..,N

(
Z (η)i,t +

t−1∑
s=1

h(i, us)

)
(7)

with random variable Z (η)i,t ∼ Laplace
(
0, 1
η

)
acting as a

perturbation. The distribution of Z (η)i,t is chosen as discussed
in [16].

The logic behind following the largest regret is determin-
istic, simple and intuitive. Nevertheless, if no perturbation is
added there will always be a sequence of outcomes such that
the broker’s regret is not sublinear. The added noise introduces
a random perturbation that allows the algorithm to escape
sequences that otherwise would lead to suboptimal decisions.
Then it can be proved that FTPL is a no regret algorithm [30].

2) EPRF - Exponential Potential Random Forecaster: A
slightly different approach is to use explicit probabilities to
choose the expert at random at every round. Intuitively the
experts that achieve greater payoffs (greater regret) should
have a higher probability and consequently be chosen more
often than the rest. A simple way to do this is by using the
Hedge Algorithm by Freund and Schapire [8], [16], [28]. It
consists of updating the probability pi,t of choosing expert i
(∀i) at round t according to a weighted exponential function
of its observed payoff up to round t − 1. That is to say, at
round t, the broker chooses expert i according to distribution:

pi,t =
eηHi, t−1∑N
j=1 eηHj, t−1

∀i ∈ {1, . . . , N} , η > 0, (8)

where η acts as a learning rate parameter. This algorithm has
achieved success on several cases, see for example [18] [45]
[12] [21].

The rationale behind this rule is that the larger an expert’s
payoff (or equivalently its regret) with respect to other experts
is, the larger its probability of being chosen. Also all experts
will always have a non-zero probability of being chosen,
which can be useful for exploration. Thus, the balance between
exploitation and exploration is tuned according to the past
performance of each expert. Experts showing consistently
good performance will be chosen most of the times but if
their relative performance drops (i.e., some other experts starts
to obtain greater payoffs) then the algorithm will adjust and
become more exploratory.

Another interesting point about the Hedge Algorithm is
that it makes no assumption about the sequence of events.
This fact added to the algorithm’s rationale suggests that this
algorithm is a no-regret forecasting strategy. Proof is given in
[16] chapters 2 (directly proving bounds on the algorithm’s
regret using potential functions) and 7 (under the framework
of Blackwell’s approachability [5], [11]) and also in [8].
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3) EWAF - Exponential Weight Average Forecaster: With
this algorithm, instead of choosing an expert for each round
t and following its advice, the broker receives advice { f·,t }
from each expert and combines them to get a new advice. The
recommendations of the experts are averaged using weights
proportional to the exponential of their payoffs to get the
broker’s decision as follows:

p̂t =
∑N

i=1 eηHi, t−1 fi,t∑N
j=1 eηHj, t−1

, (9)

where η acts as a learning rate parameter. As expert recom-
mendations are always in the {0, 1} domain, the prediction will
belong to the continuous domain [0, 1] and can be interpreted
as a score or confidence level on which the SU should be
accepted. A decision is taken using a threshold at 0.5.

According to [32], online convex optimization methods can
be used to prove that this algorithm obtains regret rates of
order O(

√
n) for payoff functions that are linear on their first

argument (the prediction) and convex domain.
4) Main Decision Algorithm: The general algorithm to be

used by the spectrum broker is described in Algorithm 1.

Algorithm 1 Spectrum Broker Main Algorithm
Require:

• System Capacity C (determines set S of system states).
• Resource access price R.
• Expulsion compensation K .
• Set E of experts with N = |E | (LBE,AME) or a set

of two experts E(x,y) = {reject (0), accept (1)} for each
state (x, y) (CBE).

For each round t = 1, 2, . . .

(1) The spectrum broker gets to know her payoff Ht and
the payoffs revealed for the experts Hi,t up to time t.

(2) Current system state (x(t), y(t)) is revealed.
(3) • If using CBE experts, the broker chooses an action

according to the payoffs of the state experts.
• Else, each expert i = {1, . . . , N} makes its advice

fi,t ∈ {reject(0) , accept(1)} and tells the broker.
(4) The broker takes its decision p̂t ∈ {0, 1} according to

the chosen forecasting technique.
• If p̂t = 0 she observes h(0, ut ) = 0 immediately. The

(estimated) payoff for the experts is also zero (payoffs
remain unchanged).

• If p̂t = 1 (revealing action), both the broker and the
experts will have to wait until the start of some later
round to know their respective payoffs.

F. On the Quality of Service as perceived by SUs

We have so far focused on maximizing the total payoff of
the broker. However, a pertinent question is how will this
policy impact on the quality of the service (QoS) provided
to the SUs. Before presenting the simulation results, we will
briefly discuss this important aspect.

Given that each SU will use the spectrum as they see fit, the
only two indicators that may be considered by the spectrum
broker regarding the SUs service are the access and completion
probability. That is to say, what proportion of all incoming SUs
are accepted to the system, and of these, what proportion are
not expelled (denoted as Paccept and 1−Pexpel respectively). Let
us then write the spectrum broker’s problem (over a certain
number of rounds n) in terms of these two probabilities:

arg max
{p̂t }t=1, . . .,n

R
n∑
t=1

1(p̂t = 1) − K
n∑
t=1

1(p̂t = 1 ∩ ut = 0) =

arg max
{p̂t }t=1, . . .,n

1
n

(
R #{accepted SUs} − K #{expelled SUs}

)
=

arg max
{p̂t }t=1, . . .,n

RPaccept −
K
n

#{accepted SUs}
#{accepted SUs}

#{expelled SUs} =

arg max
{p̂t }t=1, . . .,n

RPaccept − KPacceptPexpel =

arg max
{p̂t }t=1, . . .,n

Paccept

(
1 −

K
R

Pexpel

)
.

The above equality means that both QoS indicators are taken
into account implicitly on the broker’s problem: the broker
is actually maximizing the multiplication of both indicators,
where the ratio between K and R dictates the relative im-
portance of Pexpel. For instance, these two pricing parameters
may be thus adjusted by the broker depending on the SUs
preference.

Further considerations on these aspects are left for future
work. As we mention on the conclusions section, we intend
to incorporate new pricing schemes and market dynamics
on the next stages of research, allowing for a more direct
measurement of the quality of the provided service.

IV. SIMULATION RESULTS AND ANALYSIS

A. Methodology

The objective is to evaluate the performance achieved by the
different combinations (mechanisms) of prediction techniques
and expert families. In order to do this, the main measurement
used is the payoff per round

m =
Hn

n
. (10)

Where n is the total number of rounds and Hn is the
payoff from eq. (1) up to round n. As the payoff is measured
relative to the total number of rounds, the results from different
processes and run times can be compared. It also has the nice
property of being bounded between R − K and R.

Notice that it would be interesting to directly measure the
regret per round, Rn

n = max
i=1,...,N

Hi,n

n − m as we seek methods

that make that value vanish with time. Unfortunately, that is
impossible as the true accumulated payoff Hi,n of each expert
cannot be known if the revealing action (accept) is not taken
by the broker. This fact leaves us with m as the best observable
metric, and also a direct measure of the broker’s earnings, i.e.,
the ultimate interest of the broker. Moreover, and as discussed
on section III-F, m also serves as an indirect measure of SU’s
level of satisfaction.
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TABLE I
IDS FOR COMBINATIONS OF PREDICTIVE ALGORITHM AND EXPERT TYPE

PRED ↓ ALG → Action Map (AME) Line Segment (LBE) State Based (CBE)
Follow-the-Perturbed-Leader (FTPL) AME-FTPL LBE-FTPL CBE-FTPL

Exponential Potential Random Forecaster (EPRF) AME-EPRF LBE-EPRF CBE-EPRF
Exponential Weight Average Forecaster (EWAF) AME-EWAF LBE-EWAF

As we intend to find simple an fast methods, another
important metric for this work is the computational complexity
of the technique. This is directly calculated on section IV-D.

B. System Dynamics

The system dynamic can be roughly split in three cases:
• Saturated System. When PUs arrive in large bursts

or when most of the time most system’s resources are
allocated to PUs, accepted SU are likely to get expelled
often. In this case a reject all SUs policy leads to a (likely)
optimal result of m ≈ 0. Every expert family includes an
expert suggesting reject all SUs.

• Idle System. The opposite happens when most resources
are generally available, making it unlikely for accepted
SUs to be expelled. On this scenario an accept all SUs
policy leads to maximal earnings, m→ R. Every expert
family includes an expert suggesting an accept all SUs.

• Loaded System. Finally when most of the time x + y ≈ C
and x and y are not very different (i.e., less than a factor
of 5) then the SUs might (or not) have a successful and
lasting operation. This is an interesting dynamic as there
is no self-evident optimal policy so we will focus in this
case.

C. General Tests

Unless stated otherwise, all tests were run according to:
• C = 20
• K = 3
• R = 1
• For each system dynamic, we generate several sets of the

users’ random processes parameters and instantiate ten
different simulations per set.

• After every simulation a result m(ω) is obtained for each
mechanism ω. Being interested in identifying methods
that provide good performance under worst case scenar-
ios, results of different simulations for the same process’
set of parameters are summarized with its minimum
value.

• For all usages of AME and LBE algorithms the experts
were chosen from five different slopes and eight different
intersection points (when seen as line segments).

As shown in equations 7, 8 and 9, the considered forecasting
techniques have each a single parameter (η), although with a
different meaning: perturbation intensity for FTPL, a learning
rate parameter for ERPF and EWAF. Due to space constrains
we cannot provide a complete discussion about the way in
which η was determined in each case so we briefly mention
the main lines.

The objective when choosing a value for η is to provide
the predictive technique with a value that achieves a robust
performance in a wide range of scenarios, but such that
said performance does not depend greatly in the specific
value –algorithm performance should be relatively insensitive
to the value of η. To determine the best value for η for
each forecasting technique we used a set of simulations with
Poisson processes. In particular we focused on loaded systems,
where the arrival rate of PUs and SUs are uniformly chosen
from the interval (C/10, 9C/10) and (C/10, 1.5C) respectively,
and the departure rates of PUs in the interval (0.25, 4), whereas
the departure rate of SUs is fixed at 1.

We used an exploratory approach by trying different values
of η, uniformly spaced for mechanisms with [0, 1] domains
and logarithmically spaced for [0,+∞). Then we filtered the
possible values for η for each technique to the ranges that
exhibited low sensitivity to variation across the different tests.
In the last step of estimating the best value for η we chose
values that showed both high values for the median and
minimum of m. This method allowed us to pick values for η
in each forecasting technique and expect a robust performance
of them.

Finally, to select the most promising mechanisms (i.e. fore-
casting technique and set of experts), we considered several
aspects. On the one hand, we prefer those mechanisms that
achieved the higher values for the minimum of m on the
general tests. Nevertheless, to account for the (likely) bias
introduced by using Poisson processes, we also considered a
diversity criteria – the final set of candidates mechanisms must
have at least one mechanism from each forecasting technique
and one mechanism from each expert family.

This lead us to chose the following set of candidates: AME-
EWAF, CBE-ERPF and LBE-FTPL (cf. Table I).

D. Performance against Dynamic Programming

The first test consisted in evaluating the performance of
the selected mechanisms on a Poisson arrival and departures
scenario. To benchmark the mechanisms their performances
are compared against the static policy obtained by a particular
DPA called Modified Policy Iterator Algorithm (MPIA) [44],
which is known to provide an optimal policy for the considered
scenario.

The simulations provided very close results between MPIA
and the expert-based mechanisms for idle and saturated sys-
tems. Figure 4 shows the minimum m achieved for each
mechanism and MPIA after 10 simulations for 50 different
experiments (i.e. set of parameters for the arrival and departure
processes) corresponding to loaded systems. In particular, we
plot as a point each experiment’s result corresponding to
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Fig. 4. ONREBP decision algorithms against DPA.

MPIA (in the abscissa) against those obtained by the proposed
mechanisms. Arrival and departure rates where chosen as in
the previous subsection.

Note that in this case MPIA is optimal in the long-run, so
almost all points are below the y = x line (shown as a dashed
line in the graph), and those that are not are very near it.
However, it can be seen that expert-based mechanisms almost
always achieved positive payoffs. Moreover, MPIA’s optimal
policy and expert-based mechanisms results are similar in the
sense that when MPIA’s policy got a high payoff so did the
experts mechanisms. Finally, among the proposed algorithms,
CBE-ERPF is the one that performs best, with results relatively
similar to MPIA in all experiments.

Regarding complexity, we equate it to the number of
operations the algorithm requires to operate. Table 8.7.2 of
[44] shows that in order to compute the optimal policy, the
operations per iteration of MPIA (ζMPIA) is proportional
to |S|2, where |S| is the number of states (the policy is
computed through several iterations). On the broker’s problem
|S| =

(C+1)(C+2)
2 , so we can state that ζMPIA is O(C4).

On the other hand, expert-based mechanisms only perform
operations during each decision round t. At this moments, the
operations are over vectors of size N (the number of experts).
Then the number of operations required by these mechanisms
depends only on the number of experts N , and not on the
number of states |S| nor the system capacity C. Even in the
case of CBE, where N = C, the computations per round
involve only two experts. This is a great scalability advantage,
and proves that the expert-based mechanisms are conveniently
simple algorithms even for cases were an optimal yet costly
algorithm is known.

E. Large Capacities

According to the results of the previous section, one could
argue that expert-based mechanisms provide a useful alterna-
tive to DPAs for Poisson arrivals and exponential service times
when the capacity C of the system is large enough to make

-0.2

0

0.2

0.4

0.6

0.8

1

FULLEXPERT AME-EWAF LBE-FTPL CBE-ERPF

Fig. 5. Decision algorithms on large capacity systems.

DPAs impractical or even unfeasible. To test this hypothesis,
we consider a large system with C = 50. We tried MPIA
on this scenario but it did not converge to a solution after
running for several days, while the expert-based mechanisms
run in matter of minutes. To have a reference against which to
compare performance, we note as “FULL EXPERT” an AME
decision algorithm considering all different possible experts
from the same set of slopes as the algorithms under test.

Figure 5 shows the results achieved by each mechanism
under test, for 10 different experiments of loaded systems
(arrival and departure rates were chosen as before). The
simulations are in the same order for each mechanism for
ease of comparison. It can be seen that the expert-based
algorithms achieved payoffs slightly lower than the “FULL
EXPERT” case. On idle and saturated systems results were
almost identical between all mechanisms, as expected from all
of them having an expert suggesting the optimal decision. The
tiny performance loss on those cases comes from the initial
exploratory transient until the optimal policy is identified.

This shows that the expert-based approach proposed here
can be an efficient alternative to computational costly DPAs.

F. Oblivious Opponents

Finally we drop Poisson-based users behavior and test the
expert-based mechanisms under different processes complying
with the oblivious opponent hypothesis. For instance, we focus
on two different kinds of processes.

First, we considered a Cauchy heavy-tailed distribution for
arrival and service intended times of both PUs and SUs. Then,
we considered processes with two phases: one were the users
arrive with Poisson distribution and serviced with exponential
times (the ON phase) and one when users cease to arrive (the
OFF phase). The switching times from one phase to another
are randomly chosen as we discuss below. We call these
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Fig. 6. Performance against DPAs with Heavy tailed Opponents.

behavior an “ON-OFF Process” and use them independently
for PUs and SUs.

Again the performance achieved by the algorithms under
test is compared to the one achieved by MPIA. In order to
apply a DPA algorithm, we proceed as the broker would: we
estimate the involved parameters from the incoming traffic,
using maximum-likelihood estimators. The DPA will then
provide the optimal static policy that best adjusts to a Pois-
son/exponential approximation of the users’ process.

1) Heavy Tail Processes: Figure 6 shows the results of the
tests for heavy-tailed processes. We considered 21 different
sets of parameters for simulation of users’ processes, with 10
repetitions of each one and then the minimum achieved payoff
is considered. On these set of simulations the system behaved
between a loaded and a saturated system. In particular, the
interarrival and service times were chosen as the absolute
value of a random variable with a distribution Cauchy(0, 1/λ)
(where 1/λ is the so-called scale). Parameter λ is uniformly
chosen in the intervals (0.4C, 0.6C) and (0.5C,C) for the
arrival time of the PUs and SUs respectively, and the intervals
(1, 2) and (0.1, 0.5) for the service times.

It is possible to see that while several times MPIA achieved
greater payoffs than the expert-based mechanisms, it fails to be
consistent. In at least 4 cases, the MPIA policy was off target
and lead to losses, some of them considerable. In other cases,
while not resulting in losses, MPIA obtained lower payoffs
than the algorithms under test.

On the other hand, expert-based algorithms consistently
achieved positive payoffs, as intended. This shows that all
of them behave robustly to these kind of processes. Between
them the higher median and the greatest minimum for m across
simulations was achieved by CBE-ERPF.

For systems that behaved like saturated or idle systems,
no clear difference could be found between MPIA and the
algorithms under test.
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Fig. 7. Performance against DPAs with ON-OFF Opponents.

2) ON-OFF Processes: The results are shown in Figure
7. Again 21 different simulation sets were considered, with
10 repetitions each one. The system behaved sometimes as
a loaded system and sometimes as a saturated system. In
particular, service and departure rates were uniformly chosen
from the same intervals as in the Cauchy case. Moreover, in
this case, the number of switches between on and off periods
was uniformly chosen between 3 and 11. Switching times are
then uniformly chosen in the simulation interval.

At first sight results are similar to the heavy-tailed scenario,
except by the bad performance obtained by the MPIA algo-
rithm most of the time. This shows that the MPIA is not a
robust algorithm and suffered from the hypothesis deviation.

In contrast expert-based algorithms managed to obtain non-
negative payoffs every time (with only one exception for
AME-EWAF that incurred minimal loss on start), confirming
their robustness. Although AME-EWAF obtained the highest
values for min(m) occasionally, it was again CBE-ERPF that
achieved the greatest minimum of minimums across simula-
tions. This time the greatest median for minimum of m across
simulations was for LBE-FTPL.

It can be concluded that all expert-based mechanisms are
simple and accomplished robust performances against non-
Poisson opponents. Between them, although having very close
performances, CBE-ERPF showed perhaps the most consistent
results by obtaining the highest minimums across simulations
and competitive medians.

V. CONCLUSIONS

We studied the current problem of radioelectric spectrum
usage and allocation. We proposed the usage of dynamic
allocation policies under a secondary market system with
fixed price and on demand-basis. A central entity called the
spectrum broker is in charge of receiving arriving requests
from secondary users and deciding whether or not to provide
them access.
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Such a system would be enabled by cognitive radio, a
software controlled radio technology that allows dynamic
coexistence between different users (for example with inter-
ference avoidance techniques) thus allowing the adoption of a
dynamic market system.

We provided reasons and references showing that such
a system allows the licensed users to sell or rent already
allocated bands to secondary users with the highest possible
dynamism and likely achieving high spectrum efficiency. We
cited some works already making use of similar architectures.

The incentive for secondary users to actively cooperate
with the broker when sharing the spectrum (as opposed to
them using opportunistic access techniques) lies on simplified
hardware and software (equating to lower costs) and also to the
possibility of a compensation in case of service cancellation
by the broker.

We propose several simple and robust practical mechanisms
labeled as ONREBP to aid the broker decision-taking in an
attempt to make a profit despite having to pay compensations.
These mechanisms use the framework of expert-based predic-
tion with different kinds of experts. They also use a variety of
predictive techniques, from the fields of no-regret prediction
and online-convex optimization.

After testing on simulations, we found the proposed tools to
be effective independently of user’s behavior, avoiding losses
and also being able to make a profit most times. We com-
pared their performance against a commonly used Dynamic
Programming Algorithm (DPA) and found several advantages.
First, ONREBP mechanisms have lower complexity and do
not require previous knowledge nor estimations of the users
arrival and services processes. This allow them to be used
on scenarios were DPA becomes prohibitive. Secondly, the
performance against Poisson/exponential processes were close
to that of optimal DPA-derived rules, proving them as a
lower cost alternative. Finally, they outperformed DPA on
more general non-Poisson dynamics, in terms of achieving
higher minimum cumulative payoffs and avoiding losses, thus
providing the sought guarantees against worst case scenarios.

The results achieved by ONREBP mechanisms were very
similar to each other. Nevertheless, algorithm CBE-ERPF
exhibited the most consistent results by obtaining the highest
minimums across simulations.

We believe that these results and techniques also apply to
other economic scenarios involving prioritization privileges
with reimbursement, admission control decisions and resource
allocation. Finally, the next stage in our research line would
be to incorporate to the problem different market dynamics
such as dynamic pricing features and auctions. On the expert-
based learning aspect of our research, we will study the use of
dynamic experts that can themselves learn from the experience
by implementing evolutionary algorithms or Q-Learning.
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