english Icono del idioma   español Icono del idioma  

Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/20.500.12008/47505 Cómo citar
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorAlfonso, Leandro-
dc.contributor.authorRivoir, Nicolás-
dc.contributor.authorInglés, Lucas-
dc.contributor.authorRattaro, Claudina-
dc.contributor.authorCastro, Alberto-
dc.date.accessioned2024-12-12T14:57:11Z-
dc.date.available2024-12-12T14:57:11Z-
dc.date.issued2024-
dc.identifier.citationAlfonso, L., Rivoir, N., Inglés, L. y otros. Adaptive end-to-end monitoring framework for heterogeneous 5G and beyond networks [en línea]. EN: 5G-MeMU '24 : Proceedings of the 4th ACM Workshop on 5G and Beyond Network Measurements, Modeling, and Use Cases, Los Angeles, CA, USA, 9-12 dec 2024, pp 1-7.es
dc.identifier.urihttps://hdl.handle.net/20.500.12008/47505-
dc.description.abstract5G technology has ushered in complex multi-domain environments that demand dynamic and robust monitoring solutions. Traditional network monitoring strategies often fail to address the unique challenges of 5G networks, such as managing high data volumes, diverse service requirements, and cross-domain interactions across heterogeneous technologies. In this paper, we present an innovative end-to-end monitoring framework for 5G and beyond networks designed to enhance failure detection and localization capabilities, as well as overall performance evaluation across diverse 5G deployments. Our framework leverages statistical learning techniques to efficiently and adaptively analyze network data, focusing on specific traffic sub-populations that reflect immediate monitoring needs. The proposed monitoring system is designed to be programmable and application-sensitive, allowing on-the-fly configuration changes that are essential for multi-domain operations. By integrating flow-based measurements with intelligent sampling methods, our system significantly reduces the resource footprint traditionally required for comprehensive data collection and analysis. We have implemented and validated our framework using the ns-3 5G-LENA simulator. This approach enables us to evaluate the system's performance in realistic 5G scenarios and demonstrate its effectiveness across various network conditions and configurations, addressing the challenge of limited access to commercial 5G deployments. Preliminary results from our simulations demonstrate the framework's potential to remarkably improve network reliability, performance insights, and operational efficiency across heterogeneous 5G environments. Our approach facilitates more precise and scalable network management, setting the stage for adaptive monitoring solutions as 5G and beyond networks' demands evolve.es
dc.description.sponsorshipEste trabajo ha sido financiado parcialmente por la Comisión Sectorial de Investigación Científica (CSIC) bajo el programa de Investigación y Desarrollo “Convergencia de redes ópticas 5/6G : Una visión holística” y el programa de Becas de Doctorado CAP-UdelaR.es
dc.format.extent7 p.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenes
dc.publisherACMes
dc.relation.ispartof5G-MeMU ’24 : Proceedings of the 4th ACM Workshop on 5G and Beyond Network Measurements, Modeling, and Use Cases, Los Angeles, CA, USA, 9–12 dec 2024, pp 1-7es
dc.rightsLas obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad de la República.(Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014)es
dc.subjectMonitoringes
dc.subject5Ges
dc.subject6Ges
dc.subjectFailure localizationes
dc.subjectns-3es
dc.titleAdaptive end-to-end monitoring framework for heterogeneous 5G and beyond networkses
dc.typePonenciaes
dc.contributor.filiacionAlfonso Leandro, Universidad de la República (Uruguay). Facultad de Ingeniería.-
dc.contributor.filiacionRivoir Nicolás, Universidad de la República (Uruguay). Facultad de Ingeniería.-
dc.contributor.filiacionInglés Lucas, Universidad de la República (Uruguay). Facultad de Ingeniería.-
dc.contributor.filiacionRattaro Claudina, Universidad de la República (Uruguay). Facultad de Ingeniería.-
dc.contributor.filiacionCastro Alberto, Universidad de la República (Uruguay). Facultad de Ingeniería.-
dc.rights.licenceLicencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)es
udelar.academic.departmentTelecomunicacioneses
udelar.investigation.groupAnálisis de Redes, Tráficos y Estadísticas de Servicios (ARTES)es
Aparece en las colecciones: Publicaciones académicas y científicas - Instituto de Ingeniería Eléctrica

Ficheros en este ítem:
Fichero Descripción Tamaño Formato   
ARIRC24.pdfCamera ready1,38 MBAdobe PDFVisualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons