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Abstract
5G technology has ushered in complex multi-domain environments
that demand dynamic and robust monitoring solutions. Traditional
network monitoring strategies often fail to address the unique
challenges of 5G networks, such as managing high data volumes,
diverse service requirements, and cross-domain interactions across
heterogeneous technologies. In this paper, we present an innovative
end-to-end monitoring framework for 5G and beyond networks
designed to enhance failure detection and localization capabili-
ties, as well as overall performance evaluation across diverse 5G
deployments. Our framework leverages statistical learning tech-
niques to efficiently and adaptively analyze network data, focusing
on specific traffic sub-populations that reflect immediate moni-
toring needs. The proposed monitoring system is designed to be
programmable and application-sensitive, allowing on-the-fly con-
figuration changes that are essential for multi-domain operations.
By integrating flow-based measurements with intelligent sampling
methods, our system significantly reduces the resource footprint
traditionally required for comprehensive data collection and analy-
sis. We have implemented and validated our framework using the
ns-3 5G-LENA simulator. This approach enables us to evaluate the
system’s performance in realistic 5G scenarios and demonstrate its
effectiveness across various network conditions and configurations,
addressing the challenge of limited access to commercial 5G deploy-
ments. Preliminary results from our simulations demonstrate the
framework’s potential to remarkably improve network reliability,
performance insights, and operational efficiency across heteroge-
neous 5G environments. Our approach facilitates more precise and
scalable network management, setting the stage for adaptive moni-
toring solutions as 5G and beyond networks’ demands evolve.

∗Both authors contributed equally to this research.
†Corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
5G-MeMU ’24, December 9–12, 2024, Los Angeles, CA, USA.
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-1253-1/24/12
https://doi.org/10.1145/3694810.3700160

CCS Concepts
• Networks → Network monitoring; Network simulations;
Network measurement; Network architectures; Mobile networks.

Keywords
monitoring; 5G; 6G; failure localization; ns-3

ACM Reference Format:
Leandro Alfonso, Nicolás Rivoir, Lucas Inglés, Claudina Rattaro, and Alberto
Castro. 2024. Adaptive End-to-End Monitoring Framework for Heteroge-
neous 5G and Beyond Networks. In Proceedings of the 4th ACMWorkshop on
5G and Beyond Network Measurements, Modeling, and Use Cases (5G-MeMU
’24), December 9–12, 2024, Los Angeles, CA, USA. ACM, New York, NY, USA,
7 pages. https://doi.org/10.1145/3694810.3700160

1 Introduction
The evolution of mobile networks to 5G/6G introduces transforma-
tive capabilities, including significantly higher data rates, reduced
latency, and the ability to connect a massive number of devices
simultaneously [1, 11, 13, 21]. However, these advancements come
with increased complexity in network architecture [20], particularly
in monitoring. Traditional network monitoring strategies often fail
to address the unique challenges of 5G networks, such as manag-
ing high data volumes, ensuring diverse service requirements, and
maintaining seamless cross-domain interactions across heteroge-
neous technologies [16]. Effective monitoring is critical for ensuring
network reliability and security and managing the Quality of Expe-
rience (QoE) for end-users [1–3, 15]. In 5G/6G networks, not only
is detecting network failures crucial but localizing these failures is
equally essential for swift remediation and minimizing downtime.
Failure localization enables targeted interventions, reducing the
scope of disruptions and facilitating more efficient resource man-
agement and repair strategies. The dynamic and heterogeneous
nature of 5G/6G networks demands robust and adaptable monitor-
ing solutions capable of handling such complexity with enhanced
detection and precise localization capabilities.

Traditional network monitoring methods such as Simple Net-
work Management Protocol (SNMP), Remote Monitoring (RMON),
and packet sniffing, while foundational in legacy networks, strug-
gle to meet the dynamic demands of 5G/6G networks [17]. Their
static nature and inefficiency in processing and analyzing large vol-
umes of data compromise their effectiveness in these more complex
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environments [7, 22]. Furthermore, these traditional methods are
primarily reactive, typically identifying and reporting failures after
they have occurred without providing mechanisms for proactive
prevention or precise localization of issues.

As networks have evolved, there has been a shift towards the
adoption of software-defined networking (SDN) and network func-
tions virtualization (NFV), which require more sophisticated moni-
toring tools capable of dynamically adapting to changing network
conditions and supporting complex configurations [5, 14, 19]. De-
spite advancements in monitoring solutions, including those lever-
aging machine learning, significant challenges persist. These sys-
tems often struggle with scalability, particularly in multi-domain
5G/6G environments where they must process an exponential in-
crease in data points and network interactions [8]. Moreover, many
of these intelligent systems demand substantial computational re-
sources, hindering their ability to provide the real-time analysis
crucial for immediate failure localization. This limitation under-
scores the urgent need for a new generation of monitoring systems
that combine intelligence with agility and resource efficiency. Such
systems must operate effectively within the demanding and dy-
namic context of 5G/6G networks, providing rapid and accurate
monitoring and analysis across diverse network domains and tech-
nologies.

In this paper, we present an innovative end-to-end monitor-
ing framework for 5G and beyond networks designed to enhance
failure detection and localization capabilities, as well as overall per-
formance evaluation across diverse 5G/6G deployments. Our frame-
work leverages statistical techniques to efficiently and adaptively
analyze network data, focusing on specific traffic sub-populations
that reflect immediate monitoring needs. The proposed monitoring
system is designed to be programmable and application-sensitive,
allowing on-the-fly configuration changes that are essential for
multi-domain operations. By integrating flow-based measurements
with intelligent sampling methods, our system significantly reduces
the resource footprint traditionally required for comprehensive data
collection and analysis. We have implemented and validated our
monitoring framework using the ns-3 5G-LENA simulator [9, 12].
This approach enabled us to evaluate the system’s performance
in realistic 5G scenarios and demonstrate its effectiveness across
various network conditions and configurations, addressing the chal-
lenge of limited access to commercial 5G deployments.

Our contributions are fourfold: i) Enhanced Fault Detection and
Localization: Our monitoring system not only detects network
anomalies but also precisely pinpoints their location. This dual ca-
pability significantly reduces service disruptions and ensures high
levels of network availability; ii) Improved Network Management
Efficiency: Our system streamlines network management processes
by significantly reducing the operational overhead associated with
extensive data collection and analysis; iii) Resource Optimization:
Our approach significantly reduces the computational and storage
requirements through intelligent sampling and adaptive monitor-
ing, resulting in a cost-effective and highly scalable solution for
monitoring complex future network environments; and iv) Open-
Source Implementation and Dataset: We provide a public repository
containing our fully documented source code, which extends ns-3

functionalities to implement our monitoring system ([10]). Ad-
ditionally, we offer a comprehensive dataset generated from our
simulations.

2 Adaptive Monitoring Framework: Core
Principles and Design

Our proposed monitoring framework centers around a key com-
ponent: the Monitoring and Data Analysis (MDA) system. This
centralized entity is designed to collect and analyze various Quality
of Service (QoS) metrics across the entire network, encompassing
all end-to-end domains. The MDA system’s primary innovation lies
in its adaptive approach to network monitoring, which optimizes
resource utilization while maintaining comprehensive oversight of
network performance.

The core principles of our adaptive monitoring approach are as
follows: i) Centralized Metric Collection: The MDA system serves
as a central repository for network-wide QoS metrics, providing a
holistic view of the network’s performance; ii) Adaptive Measure-
ment Frequency: During normal network operation, measurements
are taken at regular intervals. However, when anomalous behavior
is detected, the system dynamically increases the monitoring fre-
quency, allowing for a more detailed analysis of potential issues;
iii) Performance Thresholds: The system employs predefined per-
formance thresholds to determine the state of the network. These
thresholds are based on a combination of key QoS metrics such
as delay, throughput, and jitter; and could be set dynamically ac-
cording to the network’s operational state; iv) Granular Monitoring
Escalation: When performance metrics fall below the acceptable
threshold, the system not only increases overall measurement fre-
quency but also initiates node-to-node measurements for the af-
fected flows. This granular approach allows for precise localization
of performance issues (e.g., backbone network, a specific link); and
v) Multi-domain Compatibility: The MDA system is designed to
operate across various network domains, including both mobile
and optical networks. This capability ensures comprehensive moni-
toring of complex 5G infrastructures spanning both wireless and
optical technologies.

In Figure 1, we illustrated the adaptive nature of our monitor-
ing approach. The graph depicts network performance over time,
with measurement instances represented by circles. The horizontal
line indicates the performance threshold. When performance drops
below this threshold, the measurement intervals decrease, reflect-
ing the system’s ability to adapt its monitoring intensity based on
network conditions. This adaptive strategy offers several advan-
tages: i) Resource Efficiency: By adjusting monitoring frequency
based on network conditions, the system minimizes unnecessary
data collection and analysis during periods of normal operation;
ii) Rapid Problem Detection: The increased monitoring frequency
during anomalous periods enables quicker identification and lo-
calization of network issues; and iii) Scalability: The approach is
inherently scalable, as it can be applied to networks of varying
sizes and complexities without requiring constant high-frequency
monitoring.

To implement and validate this adaptive monitoring framework,
we chose the ns-3 network simulator, specifically utilizing the 5G-
LENA module. This choice was motivated by ns-3’s widespread use
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QoS metric

time

Figure 1: Adaptive monitoring concept illustration. The
graph shows network performance (QoS metric) over simu-
lation time (ms). Circles represent measurement instances,
with the horizontal line indicating the acceptable perfor-
mance threshold. Measurement frequency increases (inter-
vals decrease) when performance falls below the threshold,
demonstrating the system’s adaptive nature.

in academia and its robust capabilities in simulating 5G network
environments.

3 ns-3 Implementation Based On FlowMonitor
To develop a monitoring system capable of localizing a poorly
performing link, it is necessary to identify the influence of each
point-to-point link on the end-to-end metrics. Our solution is im-
plemented based on the FlowMonitor module provided by ns-3
simulator [4].

The FlowMonitor framework provides a set of easily extendable
classes to model monitoring behaviors tailored to specific needs.
These include the FlowMonitor and FlowProbe classes, which are
responsible for maintaining traces at both the end-to-end flow
level and the probe or node level, respectively. Additionally, the
Ipv4FlowProbe class, a subclass of FlowProbe, introduces methods
for recording metrics during the transmission and reception of IPv4
packets across any of a node’s interfaces.

To achieve our goal, we have developed additional classes within
the simulation environment, as shown in Figure 2, which illustrates
all the classes involved. One of these is a class called BigBrother-
FlowProbe, which is derived from the Ipv4FlowProbe class. This new
class introduces an attribute called m_perPacketStats, designed to
store information about the delay each node introduces for each
flow and associated packet. This structure allows us to accurately
reconstruct the route of each packet through the network, enabling
the identification of the link with the worst performance at any
given time. Additionally, the class includes a polymorphic function,
AddPacketStats, which takes an additional attribute called packetId
and uses it to populate the m_perPacketStats map. Furthermore, a
class named BigBrotherFlowMonitor was created, inheriting from
FlowMonitor. Since the previous implementation was responsible
for instantiating the Ipv4FlowProbe class, and to use our solution
we need to instantiate "big-brother-flow-probes", a function Report-
FirstTx was overloaded as: ReportFirstTx(Ptr<FlowProbe> probe,
uint32_t flowId, uint32_t packetId, uint32_t packetSize).

Finally, an implementation of FlowMonitorHelper was also cre-
ated, named BigBrotherFlowMonitorHelper. This is simply a copy of
the originally provided implementation, but instead of instantiating
traditional FlowMonitors, it instantiates BigBrotherFlowMonitor. By

Figure 2: Architectural diagram of the monitoring sys-
tem implementation. The structure consists of four main
components: ’Helper’ (FlowMonitorHelper), ’Core’ (Flow-
Monitor, FlowProbe, FlowClassifier), ’IPv4’ (Ipv4FlowProbe,
Ipv4FlowClassifier), and ’BigBrother’ (BigBrotherFlowMoni-
tor, BigBrotherFlowMonitorHelper, BigBrotherFlowProbe).
This diagram illustrates the relationships and inheritance
between custom-developed classes and ns-3’s existing mod-
ules.

including the "flow-monitor-helper.h" class, this solution can be
utilized.

3.1 How Our Monitoring System works?
Amonitoring function called reportFlowStats is implemented, which
is responsible for measuring and analyzing the performance of a
simulation (in particular our goal is to analyze flows in a 5G network
simulation). This function works in conjunction with nodeToNode-
Trigger. The operation of both functions is described in detail below.

3.1.1 reportFlowStats cycle. This function is a critical component
of the developed monitoring system, designed to compute and store
key QoS performance metrics. The operation of reportFlowStats can
be detailed as follows:

(1) Initialization and Configuration:
• Initializes a structure called TrackedStats to store key per-
formance metrics such as throughput, average latency,
latency, and average jitter.

• Defines two time intervals: "NETWORK_OK_MEASURING
TIME" and "NETWORK_NOT_OK_MEASURING TIME,"
which determine the frequency of statistics collection
based on predefined thresholds. This can be scaled to other
granularities in monitoring frequency.
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(2) Statistics Collection:
• Retrieves flow statistics (FlowStats) from the FlowMonitor.
• Iterates over each flow, computing individual performance
metrics and storing them in the TrackedStats structure.

• Prints the computed metrics to the console for debugging
and writes them to a user-specified output file.

(3) Median Latency Calculation:
• Sorts the latency values of the flows and calculates the
median latency, referred to as FiftyTileFlowDelay.

(4) Threshold Comparison:
• Compares the calculated performance metrics with prede-
fined thresholds.

• If any metric exceeds its threshold, invokes the nodeToN-
odeTrigger function to analyze delays between network
nodes and identify potential bottlenecks.

(5) Scheduling:
• Resets all statistics of the FlowMonitor.
• Schedules itself to run again after a specified time interval,
determined by "MEASURING_TIME," which is adjusted
based on whether the performance metrics exceeded the
thresholds.

In summary, the reportFlowStats function is a key component in
our approach, as it collects and processes flow statistics, calculates
important performance metrics, identifies potential bottlenecks in
the network, and schedules itself to run periodically during the
simulation.

3.1.2 nodeToNodeTrigger cycle. The nodeToNodeTrigger function
is an essential component of the developed monitoring system,
leveraging the custom solution implemented with the BigBroth-
erFlowProbe and BigBrotherFlowMonitor classes. Its main goal is
to identify the link with the worst performance in terms of de-
lay between nodes in the simulated network. The functioning of
nodeToNodeTrigger can be broken down into the following steps:

(1) Initialization and Data Loading:
• The function receives a pointer to a “FlowMonitor” and
the path to an XML file where the results will be stored.

• Loads or creates an XML file to store the network mea-
surements.

(2) Statistics Collection:
• Obtains the flow statistics and the probes from the flow
monitor.

• Initializes a nodeToNodeDelay map to store the delays
between pairs of nodes.

(3) Flow Data Processing:
• Iterates over each flow in the statistics.
• For each flow, creates a perPacketStats map that stores
detailed information about the path of each packet.

(4) Probe Analysis:
• For each probe of type BigBrotherFlowProbe, extracts de-
tailed information about the packets that passed through
it.

• Collects data on the node ID and the accumulated delay
for each packet.

(5) Calculation of Delays Between Nodes:
• Processes the collected information to calculate the delay
between each pair of consecutive nodes in the packet path.

• Updates the nodeToNodeDelay map with these values.
(6) Identification of the Worst-Performing Link:

• Finds the pair of nodes with the highest accumulated delay.
(7) XML File Update:

• Records all delay measurements between nodes in the
XML file.

• Adds a special entry for the worst-performing link.
(8) Return of Results:

• Returns a pair of integers representing the IDs of the nodes
that form the worst-performing link.

This function leverages the information collected by BigBrother-
FlowProbe, processing the packet-level data to obtain a clear view
of the performance of each link in the network. By identifying the
link with the highest delay, it provides a valuable tool for analyzing
and optimizing the simulated network.

3.2 Standard Log Format
Previously, an element called “XML File” is mentioned. It refers
to an XML file designed to store system logs in a way that they
can be processed programmatically. The tiny-xml-2 library [18]
was chosen as a tool to build an XML document with the system
results after the simulation. This XML format represents delay
measurements and critical links in a network. The structure of the
file is described below:

<network-measurements> This is the root element contain-
ing all network measurement information.

<worst-links> This element contains a list of the slowest or
most critical links in the network.
<worst-link> Represents a specific critical link.
<delay-value> The delay value measured on this critical

link (in nanoseconds).
<timestamp> The timestamp at which this critical link

measurement was recorded (in nanoseconds).
<node-pair> The pair of nodes that defines the critical

link.
<node-id> The identifier of each node in the pair.

<delays> This element contains a list of delays measured be-
tween specific pairs of nodes.
<delay> Represents the delaymeasurements between a pair

of nodes.
<node-pair> The pair of nodes for which delay measure-

ments are recorded.
<node-id> The identifier of each node in the pair.

<measurements> Contains a list of individual delay mea-
surements for this pair of nodes.
<measurement> A specific delay measurement.
<delay-value> The delay valuemeasured (in nanosec-

onds).
<timestamp> The timestamp at which this measure-

ment was recorded (in nanoseconds).

In summary, the XML file contains information about the slowest
links in the network (<worst-links>), as well as detailed delay
measurements between pairs of nodes (<delays>). This can be
useful for identifying bottlenecks and performance issues in the
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network. It represents a more intuitive and compact way to ana-
lyze ns-3 traces, providing only the useful information needed for
decision-making based on monitoring.

4 Experimentation
A progressive validation strategy was adopted to validate the mon-
itoring system’s correct functioning. It began with simple simula-
tions to ensure certain aspects of the system worked correctly and
gradually increased in complexity to create scenarios that resem-
ble real 5G-NR networks. In our tests, the QoS metric evaluated
was the delay (it could have been throughput, jitter, or packet loss
probability).

4.1 Validation of Node-to-Node Metrics
Extraction

The first test validates whether the classes implemented within
the FlowMonitor module correctly extract node-to-node metrics
for a specific flow. This functionality is essential for the system, as
FlowMonitor cannot, by default, measure node-to-node link perfor-
mance; it can only record metrics at the end-to-end or node level
without being able to determine packet origins.

To demonstrate this, we designed several scenarios, ranging
from simple point-to-point networks to more complex topologies.
For this test, we used a simple topology consisting of four nodes
(n0, n1, n2, n3) connected by point-to-point links. Nodes n0 and n1
are connected to n2 by 5 Mb/s links with 4 ms delays. Node n3 is
connected to n2 by a 1.5 Mb/s link, with an initial delay of 10 ms,
later modified to 2 ms and 11 seconds. There are two constant UDP
flows (CBR) between n0 to n3 and n3 to n1. The UDP packet size is
210 bytes with a transfer rate of 448 Kbps. DropTail (FIFO) queues
are used, and all packet queues and receptions are recorded in a
trace file.

The flows are disjoint at nodes n0 and n1. Thus, when using the
monitoring solution, the system should correctly register traces
for nodes n0, n2, and n3 in Flow 1, but not for n1. Similarly, it
should register traces for nodes n2, n3, and n1 in Flow 2, but not
for n0. The system’s ability to generate low-granularity traces only
for nodes involved in the measured flow is crucial for operating in
more complex simulations with hundreds of nodes without creating
excessive overhead or inefficient traces.

When the monitoring system is installed in the scenario using
the nodeToNodeTrigger function (explained in Section 3.1.2), it suc-
cessfully obtains the system trace (see Figure 3). This demonstrates
the system’s capability to perform active measurements only on
the relevant nodes. In Figure 3, we show each section linked by
an arrow to the point-to-point link they measure. The following
points highlight why this experiment is successful:

• The links (n0,n2) and (n1,n2) are each measured once.
This is correct as they are used by only one flow each, flows
1 and 2, respectively.

• The link (n2,n3) is measured twice. This is correct as it
is accessed by both Flow 1 and Flow 2 and is the only link
present in both flows. Its two <measurements> entries in-
dicate success.

        <del ay>
            <node- pai r >
                <node- i d>0</ node- i d>
                <node- i d>2</ node- i d>
            </ node- pai r >
            <measur ement s>
                <measur ement >
                    <del ay- val ue>4000043</ del ay- val ue>
                    <t i mest amp>10100000000</ t i mest amp>
                </ measur ement >
            </ measur ement s>
        </ del ay>
 

Nodo_0

Nodo_2

Nodo_1

Nodo_3

5 Mb/s, 4ms

1.5Mb/s, 10ms -> 2ms (a los 10ms)

5 Mb/s, 4ms

        <del ay>
            <node- pai r >
                <node- i d>2</ node- i d>
                <node- i d>3</ node- i d>
            </ node- pai r >
            <measur ement s>
                <measur ement >
                    <del ay- val ue>10000043</ del ay- val ue>
                    <t i mest amp>10100000000</ t i mest amp>
                </ measur ement >

</ del ay>
 

        <del ay>
            <node- pai r >
                <node- i d>2</ node- i d>
                <node- i d>3</ node- i d>
            </ node- pai r >
                <measur ement >
                    <del ay- val ue>10000043</ del ay- val ue>
                    <t i mest amp>20100000000</ t i mest amp>
                </ measur ement >
            </ measur ement s>
        </ del ay>

        <del ay>
            <node- pai r >
                <node- i d>1</ node- i d>
                <node- i d>2</ node- i d>
            </ node- pai r >
            <measur ement s>
                <measur ement >
                    <del ay- val ue>4000043</ del ay- val ue>
                    <t i mest amp>20100000000</ t i mest amp>
                </ measur ement >
            </ measur ement s>
        </ del ay>

Figure 3: Validation scenario topology with associated
XML measurement outputs. Four-node network (Nodo_0 to
Nodo_3) with point-to-point links. XML snippets demon-
strate the system’s ability to correctly measure and record
delays for each link, with blue representing flow 1 (Nodo_0
to Nodo_3) and red representing flow 2 (Nodo_3 to Nodo_1).

• The measured delays correspond to those configured in the
scenario described, with (n0,n2) and (n1,n2) having a de-
lay of 4 ms or 4 × 106 ns, and (n2,n3) having a delay of 10
ms.

4.2 Controlled Anomaly Detection
In this second group of experiments, we simulate a 5G network and
generate anomalies at certain points during the simulation.

Indicators: Several key indicators were considered to evaluate the
performance and accuracy of the network monitoring system:

• True Positive (TP): Correct activation of the system
• False Positive (FP): Incorrect activation of the system
• False Negative (FN): Incorrect non-activation of the system
• True Negative (TN): Correct non-activation of the system
• Precision (PR): 𝑇𝑃

𝑇𝑃+𝐹𝑃
• Recall (RE): 𝑇𝑃

𝑇𝑃+𝐹𝑁
• Accuracy (CA): 𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑁+𝐹𝑃

Evaluation: To simulate a network and experiment by generating
anomalies, the scenario shown in Figure 4 was used. The 5G opera-
tor’s backbone network was emulated with several point-to-point
links where malfunctions were generated.

By evaluating these indicators, network administrators can de-
termine how well the monitoring system performs in detecting
anomalies, ensuring that the network remains robust, secure, and
efficient.
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Table 1: Performance Metrics.

UEs gNBs TP FP FN TN PR RE CA F1

30 3 21 1 0 17 0.954545 1 0.678571 0.971429
60 3 19 1 1 17 0.95 0.95 0.666667 0.944444
90 3 19 1 1 17 0.95 0.95 0.666667 0.944444
120 3 19 15 1 10 0.558824 0.95 0.537037 0.555556
210 21 13 5 4 15 0.722222 0.764706 0.583333 0.769231

Intermediate
node 1

remoteHost
Intermediate

node 2

Initial
bottle neck

Figure 4: Enhanced 5G end-to-end architecture for simula-
tion. The diagram illustrates the integration of intermediate
nodes (intermediate_node_1, intermediate_node_2) and re-
moteHost within a representative 5G network topology. This
configuration enables fine-grained control over link perfor-
mance and facilitates the simulation of backbone network
bottlenecks formore comprehensivemonitoring system eval-
uation. (Adapted from [6])

In Table 1, the results of the experimentation conducted are pre-
sented. For this evaluation, we have modeled a 5G network with
only NGMN_VIDEO DL traffic and UDP packets. The number of
ues and gNBs was incrementally increased in order to study the
monitoring system’s behavior in increasingly complex scenarios.
The conclusions from this experiment were that the system per-
formed satisfactorily, and the extracted metrics reflect this. It is
understood that the experiment’s success is partly due to the exper-
imental design favoring the monitoring system’s operation. This
refers to the fact that as the links where the bottleneck is installed
are progressively affected by introducing more delay, it is logical
that the system starts taking more frequent measurements because
they occurred at a time when the network was proactively dete-
riorated. Each of these will be classified as TP, thus achieving a
high rate of TP values and a low rate of FP, which substantially
improves the system’s performance. Although in this experiment
we have focused on the backbone network depicted in Figure 4, it is
important to emphasize that the system we have implemented not
only facilitates the monitoring of optical links (backbone links) but
also provides the capability to detect anomalies in the radio links.

5 Conclusions
We have introduced a novel multi-domain monitoring framework
for 5G and beyond networks, addressing the critical challenges
of failure detection and localization in complex, heterogeneous
network environments. This monitoring framework is designed

to be integrated into a comprehensive system supporting slice
provisioning, intelligent routing, and Quality of Experience (QoE)
management, while enhancing network security through improved
anomaly detection capabilities.

Preliminary results from our simulations demonstrate the frame-
work’s potential to remarkably improve network reliability, perfor-
mance insights, and operational efficiency across heterogeneous
5G environments. In particular, we showed several key advance-
ments: i) Dynamic Identification of Performance Bottlenecks: The
system can pinpoint the worst-performing node-to-node links in
real-time, enabling rapid localization and resolution of network
issues. This capability is crucial for maintaining the high reliability
and performance standards required in 5G networks; ii) Adaptive
Anomaly Detection: By dynamically adjusting measurement fre-
quency based on network conditions, the system efficiently detects
performance degradations across end-to-end data flows. This adap-
tive approach optimizes resource utilization while ensuring timely
detection of potential issues; iii) Scalable and Flexible Architecture:
The modular design allows seamless application across various net-
work architectures and traffic profiles, from simple test scenarios
to complex, realistic 5G deployments. This flexibility ensures the
system’s relevance across diverse network implementations; iv)
Standardized Logging Format: The implementation of a structured
XML log format enhances data analysis capabilities and facilitates
integration with existing network management tools. This stan-
dardization improves interoperability and simplifies the integration
of our monitoring solution into existing network management
ecosystems; and v) Comprehensive Dataset Generation: Through
extensive simulations, we have created a valuable dataset of delay,
throughput, and jitter metrics. This dataset will be made publicly
available and contribute to the broader research community’s ef-
forts in 5G network optimization. In line with principles of open
science and to foster collaborative advancement in 5G network
monitoring, we have made our entire project codebase publicly
available in a GitLab repository [10]. This includes the monitoring
architecture implementation, simulation scripts, and analysis tools.

Future work will focus on extending our framework to incorpo-
rate machine learning techniques for predictive failure detection,
exploring integration with emerging network slicing technologies,
and conducting large-scale trials in operational 5G networks.
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