english Icono del idioma   español Icono del idioma  

Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/20.500.12008/47036 Cómo citar
Título: Sequential non-bayesian network traffic flows anomaly detection and isolation
Autor: Fillatre, Lionel
Nikiforov, Igor
Vaton, Sandrine
Casas, Pedro
Tipo: Ponencia
Palabras clave: Statistical change detection/isolation, Nuisance parameters, Network traffic flow, Parsimonious model, Invariant decision algorithm
Fecha de publicación: 2008
Resumen: Sequential detection (and isolation) of unusual and significant changes in network Origin-Destination (OD) traffic volumes from simple link load measurements is considered in the paper. The ambient traffic, i.e. the OD traffic matrix corresponding to the non-anomalous network state, is unknown and it is considered here as a nuisance parameter because it can mask the anomalies. Since the OD traffic matrix is not recoverable from the simple link load measurements, the anomaly detection is an ill-posed decision-making problem. The method discussed in this paper consists of finding a linear parsimonious model of ambient traffic (nuisance parameter) and detecting/isolating anomalies by using an invariant decision algorithm. An optimal sequential algorithm has been discussed in our previous publication, the main goal of the present paper is to discuss a simple “snapshot” algorithm based on the last vector of observations.
EN: IWAP 2008: International Workshop on Applied Probability, Compiègne, France, jul. 2008.
Citación: Fillatre, L, Nikiforov, IV, Vaton, S, Casas, P. "Sequential non Bayesian network traffic flows anomaly detection and isolation" IWAP 2008: International Workshop on Applied Probability, Compiègne, France, jul. 2008.
Departamento académico: Telecomunicaciones
Grupo de investigación: Análisis de Redes, Tráfico y Estadísticas de Servicios
Aparece en las colecciones: Publicaciones académicas y científicas - Instituto de Ingeniería Eléctrica

Ficheros en este ítem:
Fichero Descripción Tamaño Formato   
FNVC08.pdf113,79 kBAdobe PDFVisualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons