Por favor, use este identificador para citar o enlazar este ítem:
https://hdl.handle.net/20.500.12008/47036
Cómo citar
Título: | Sequential non-bayesian network traffic flows anomaly detection and isolation |
Autor: | Fillatre, Lionel Nikiforov, Igor Vaton, Sandrine Casas, Pedro |
Tipo: | Ponencia |
Palabras clave: | Statistical change detection/isolation, Nuisance parameters, Network traffic flow, Parsimonious model, Invariant decision algorithm |
Fecha de publicación: | 2008 |
Resumen: | Sequential detection (and isolation) of unusual and significant changes in network Origin-Destination (OD) traffic volumes from simple link load measurements is considered in the paper. The ambient traffic, i.e. the OD traffic matrix corresponding to the non-anomalous network state, is unknown and it is considered here as a nuisance parameter because it can mask the anomalies. Since the OD traffic matrix is not recoverable from the simple link load measurements, the anomaly detection is an ill-posed decision-making problem. The method discussed in this paper consists of finding a linear parsimonious model of ambient traffic (nuisance parameter) and detecting/isolating anomalies by using an invariant decision algorithm. An optimal sequential algorithm has been discussed in our previous publication, the main goal of the present paper is to discuss a simple “snapshot” algorithm based on the last vector of observations. |
EN: | IWAP 2008: International Workshop on Applied Probability, Compiègne, France, jul. 2008. |
Citación: | Fillatre, L, Nikiforov, IV, Vaton, S, Casas, P. "Sequential non Bayesian network traffic flows anomaly detection and isolation" IWAP 2008: International Workshop on Applied Probability, Compiègne, France, jul. 2008. |
Departamento académico: | Telecomunicaciones |
Grupo de investigación: | Análisis de Redes, Tráfico y Estadísticas de Servicios |
Aparece en las colecciones: | Publicaciones académicas y científicas - Instituto de Ingeniería Eléctrica |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | ||
---|---|---|---|---|---|
FNVC08.pdf | 113,79 kB | Adobe PDF | Visualizar/Abrir |
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons