Por favor, use este identificador para citar o enlazar este ítem:
https://hdl.handle.net/20.500.12008/47036
Cómo citar
Registro completo de metadatos
Campo DC | Valor | Lengua/Idioma |
---|---|---|
dc.contributor.author | Fillatre, Lionel | es |
dc.contributor.author | Nikiforov, Igor | es |
dc.contributor.author | Vaton, Sandrine | es |
dc.contributor.author | Casas, Pedro | es |
dc.date.accessioned | 2024-11-13T19:24:49Z | - |
dc.date.available | 2024-11-13T19:24:49Z | - |
dc.date.issued | 2008 | es |
dc.date.submitted | 20241113 | es |
dc.identifier.citation | Fillatre, L, Nikiforov, IV, Vaton, S, Casas, P. "Sequential non Bayesian network traffic flows anomaly detection and isolation" IWAP 2008: International Workshop on Applied Probability, Compiègne, France, jul. 2008. | es |
dc.identifier.uri | https://hdl.handle.net/20.500.12008/47036 | - |
dc.description.abstract | Sequential detection (and isolation) of unusual and significant changes in network Origin-Destination (OD) traffic volumes from simple link load measurements is considered in the paper. The ambient traffic, i.e. the OD traffic matrix corresponding to the non-anomalous network state, is unknown and it is considered here as a nuisance parameter because it can mask the anomalies. Since the OD traffic matrix is not recoverable from the simple link load measurements, the anomaly detection is an ill-posed decision-making problem. The method discussed in this paper consists of finding a linear parsimonious model of ambient traffic (nuisance parameter) and detecting/isolating anomalies by using an invariant decision algorithm. An optimal sequential algorithm has been discussed in our previous publication, the main goal of the present paper is to discuss a simple “snapshot” algorithm based on the last vector of observations. | es |
dc.language | en | es |
dc.relation.ispartof | IWAP 2008: International Workshop on Applied Probability, Compiègne, France, jul. 2008. | es |
dc.rights | Las obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad De La República. (Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014) | es |
dc.subject | Statistical change detection/isolation | es |
dc.subject | Nuisance parameters | es |
dc.subject | Network traffic flow | es |
dc.subject | Parsimonious model | es |
dc.subject | Invariant decision algorithm | es |
dc.title | Sequential non-bayesian network traffic flows anomaly detection and isolation | es |
dc.type | Ponencia | es |
dc.rights.licence | Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0) | es |
udelar.academic.department | Telecomunicaciones | es |
udelar.investigation.group | Análisis de Redes, Tráfico y Estadísticas de Servicios | es |
Aparece en las colecciones: | Publicaciones académicas y científicas - Instituto de Ingeniería Eléctrica |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | ||
---|---|---|---|---|---|
FNVC08.pdf | 113,79 kB | Adobe PDF | Visualizar/Abrir |
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons