english Icono del idioma   español Icono del idioma  

Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/20.500.12008/47036 Cómo citar
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorFillatre, Lioneles
dc.contributor.authorNikiforov, Igores
dc.contributor.authorVaton, Sandrinees
dc.contributor.authorCasas, Pedroes
dc.date.accessioned2024-11-13T19:24:49Z-
dc.date.available2024-11-13T19:24:49Z-
dc.date.issued2008es
dc.date.submitted20241113es
dc.identifier.citationFillatre, L, Nikiforov, IV, Vaton, S, Casas, P. "Sequential non Bayesian network traffic flows anomaly detection and isolation" IWAP 2008: International Workshop on Applied Probability, Compiègne, France, jul. 2008.es
dc.identifier.urihttps://hdl.handle.net/20.500.12008/47036-
dc.description.abstractSequential detection (and isolation) of unusual and significant changes in network Origin-Destination (OD) traffic volumes from simple link load measurements is considered in the paper. The ambient traffic, i.e. the OD traffic matrix corresponding to the non-anomalous network state, is unknown and it is considered here as a nuisance parameter because it can mask the anomalies. Since the OD traffic matrix is not recoverable from the simple link load measurements, the anomaly detection is an ill-posed decision-making problem. The method discussed in this paper consists of finding a linear parsimonious model of ambient traffic (nuisance parameter) and detecting/isolating anomalies by using an invariant decision algorithm. An optimal sequential algorithm has been discussed in our previous publication, the main goal of the present paper is to discuss a simple “snapshot” algorithm based on the last vector of observations.es
dc.languageenes
dc.relation.ispartofIWAP 2008: International Workshop on Applied Probability, Compiègne, France, jul. 2008.es
dc.rightsLas obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad De La República. (Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014)es
dc.subjectStatistical change detection/isolationes
dc.subjectNuisance parameterses
dc.subjectNetwork traffic flowes
dc.subjectParsimonious modeles
dc.subjectInvariant decision algorithmes
dc.titleSequential non-bayesian network traffic flows anomaly detection and isolationes
dc.typePonenciaes
dc.rights.licenceLicencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)es
udelar.academic.departmentTelecomunicacioneses
udelar.investigation.groupAnálisis de Redes, Tráfico y Estadísticas de Servicioses
Aparece en las colecciones: Publicaciones académicas y científicas - Instituto de Ingeniería Eléctrica

Ficheros en este ítem:
Fichero Descripción Tamaño Formato   
FNVC08.pdf113,79 kBAdobe PDFVisualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons