Por favor, use este identificador para citar o enlazar este ítem:
https://hdl.handle.net/20.500.12008/47026
Cómo citar
Registro completo de metadatos
Campo DC | Valor | Lengua/Idioma |
---|---|---|
dc.contributor.author | Cornalino, Eliana | es |
dc.contributor.author | Chaer, Ruben | es |
dc.date.accessioned | 2024-11-13T19:24:45Z | - |
dc.date.available | 2024-11-13T19:24:45Z | - |
dc.date.issued | 2018 | es |
dc.date.submitted | 20241113 | es |
dc.identifier.citation | Cornalino, E, Chaer, R. “Probabilistic electric load forecasting model for the uruguayan interconnected electrical system” International Conference on Renewable Energies and Power Quality (ICREPQ’18) Salamanca (Spain), 21-23t Mar, 2018 | es |
dc.identifier.uri | https://hdl.handle.net/20.500.12008/47026 | - |
dc.description | Publicado también en Renewable Energy and Power Quality Journal (RE | es |
dc.description | PQJ) ISSN 2172-038 X, No.16 April 2018 | es |
dc.description.abstract | The aim of this research is to improve the capacity to represent and forecast the electric demand for next week’s scheduling. Currently the demand forecast used for this purpose is deterministic, which is not representative of reality, even if an ideal temperature forecast was available. The current context of the Uruguayan electrical system has high probability of exportable surplus energy. For this reason, improvements to the procedure used to calculate systems supply costs and the quantity of exportable energy are welcome, in order to maximize the benefit we can get from resources. The methodology applied is based on previous developments for simulation of stochastic variables within the SimSEE platform [2]. It combines daily step CEGH model [3] with a k-means clustering method [4]. Obtained results were satisfactory both from the point of view of the representation of the temporal behavior of the power demand, and from the point of view of the error obtained in the predictions. What is more, this improvements helps to reduce risks involved when making energy commitments with neighbouring countries | es |
dc.language | en | es |
dc.relation.ispartof | International Conference on Renewable Energies and Power Quality (ICREPQ’18) Salamanca. España, 21-23t Mar, 2018 | es |
dc.rights | Las obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad De La República. (Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014) | es |
dc.subject | Probabilistic load forecasting | es |
dc.subject | Simulation of stochastic variables | es |
dc.subject | Dispersion | es |
dc.subject | Decision at risk | es |
dc.title | Probabilistic electric load forecasting model for the uruguayan interconnected electrical system | es |
dc.type | Ponencia | es |
dc.rights.licence | Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0) | es |
udelar.academic.department | Potencia | es |
udelar.investigation.group | Energía Eléctrica | es |
Aparece en las colecciones: | Publicaciones académicas y científicas - Instituto de Ingeniería Eléctrica |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | ||
---|---|---|---|---|---|
Cornalino-Chaer-2018.pdf | 2,39 MB | Adobe PDF | Visualizar/Abrir |
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons