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Abstract. The aim of this research is to improve the capacity 

to represent and forecast the electric demand for next week’s 

scheduling. Currently the demand forecast used for this purpose is 

deterministic, which is not representative of reality, even if an ideal 

temperature forecast was available. 

The current context of the Uruguayan electrical system has high 

probability of exportable surplus energy. For this reason, 

improvements to the procedure used to calculate systems supply 

costs and the quantity of exportable energy are welcome, in order 

to maximize the benefit we can get from resources. 

The methodology applied is based on previous developments for 
simulation of stochastic variables within the SimSEE platform [2]. 

It combines daily step CEGH model [3] with a k-means clustering 

method [4]. 

Obtained results were satisfactory both from the point of view of 

the representation of the temporal behavior of the power demand, 

and from the point of view of the error obtained in the predictions.  

What is more, this improvements helps to reduce risks involved 

when making energy commitments with neighbouring countries. 
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1. Introduction 

 
The aim of this research is to improve the capacity to 

represent and forecast the electric demand for next week’s 

scheduling. The current context of the Uruguayan electrical 

system has high renewable energy penetration and high 

probability of exportable surplus energy. See Fig.1. 

There are a lot of new aspects to consider for the calculation 

of the optimal operation system due the strong incorporation 

of renewable sources that, accompanied by the big existing 

share of hydroelectric, can bring scenarios like shown in 

Fig. 1 with relatively high frequency. As a result, taking into 

consideration the uncertainty on the calculation and 

simulation of the input variables becomes increasingly 

important [1]. 

 

 
Fig. 1 Composition by source of Uruguayan electricity supply 

for three days of last spring.  

The more precise estimate of expected demand, together 

with the forecast of wind and solar energy generation, as 

well as the hydraulic contributions, the more certainty on 

the amount of energy exports availability determination. 

This certainty reduces the risk associated with the early 

negotiation of energy exports through interconnected 

countries, maximizing the benefits. 

The main advantage of the model developed is the non-

deterministic representation of the demand, allowing 

multiple simulations of the system supply to make 

decisions based on probabilistic results. 

The expected results of the application of this model, 

represent a substantial enhancement for internal energy 

supply forecasting, to the extent that it allows to valorise 

the power demand and its supply costs on the basis of 

probabilities. 

 

2.  Methodology 
 

The methodology to apply in order to build the model is 

based on previous developments for simulation of 

stochastic variables within the SimSEE platform [2]. 

The SimSEE platform is used to perform simulations of 

the electricity power system of a region or country. In the 

simulation, the power plants, the interconnections with 

other electrical systems and all system constraints and 

specifics are represented. That implies the representation 

of a reality full of details and uncertainties.  
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Multiple simulations are performed to represent statistically 

the infinite possible realizations of the stochastic processes 

involved. The system’s function cost is evaluated using 

Monte Carlo simulations and, consequently, the more 

number of draws used, the more confidence on the 

estimated value [3]. 

For the simulation of stochastic variables such as demand, 

generation based on renewable resources, the price of fossil 

fuels, etc., the platform includes a specific tool. This 

application serves to analyse time series data and identify a 

correlation model based on Gaussian Space with Histogram 

- CEGH [4] that can be used in the representation of a 

dynamic system. The identified model has the property of 

having a structure that enables its inclusion in the modelling 

of the system dynamics and generating synthetic series. 

These synthetic series preserve self-correlations and cross-

correlations in a transformed space, and the amplitude 

histograms in real space. 

 

A. Methodology for the daily behaviour identification 

 

Daily behaviour identification is performed by a daily step 

CEGH model extracted from the maximum and minimum 

temperatures forecasted for the day itself and the previous 

day registered demand. 

The performed model should take into account the 

seasonality and not only the temperature in isolation since 

the relationship between demand and temperature is not 

linear along the year. In any case it could be assumed linear 

in short intervals of temperatures. Based on this, a variable 

filter CEGH model with a 365 step was calculated. That is, 

a filter is identified for each day of the year, with reasonable 

buffer days around the corresponding day to smooth the 

filter, so the coefficients of the correlation matrix to be 

applied are changing continuously along the year. 

The data series correspond to the period July 1, 2012 to 

April 30, 2017. Initially, on the series of hourly data, the 

increasing trend was estimated and removed in order to 

obtain an approximately stationary series, with energy 

values equivalent to July 2012. 

To be more precise in the determination of covariations of 

the daily energy and temperature, the daily energy is 

separated into three time intervals. 

 

 
Table 1– Time intervals for daily energy demand 

These three time intervals represent differentiated sections 

in terms of the shape of the hourly curve (see Fig. 2) and, in 

addition represent sections of the day where the human 

activities that have greater influence over the use of electric 

power are very different, therefore, its dependence on 

temperature is also different. 

 
Fig. 2 Hourly curve for work days at each season 

The weekly cycle of the data series was estimated and 

removed before identifying the model. It was observed 

that the average coefficients for each day of the week (and 

for every season) in relation to the average demand for 

work days (Monday to Friday) keep approximately 

constant along the year. This allows generating a model 

based on working days which is then affected by the 

corresponding week day coefficients. 

 

B. Methodology for the hourly behaviour identification 

 

To represent the hourly behaviour, the energy is 

distributed according to the expected form of the power 

demand curve, which is very stable, i.e., it does not have 

high frequency oscillations. Based on a clustering method 

[5] of historical power demand curves, the procedure 

involves the selection and interpolation from an index of 

historical curves using as input information the average 

temperature, type of day (work day, weekend, public 

holiday) and the day of the year (from 1 to 365). 

Four clusters were made for each curve section. 

 

3. Results 

 
The representation achieved by the proposed method has 

the advantage of allowing to obtain multiple simulations 

of load evolution, appropriate to the historical average 

temperature (and dispersion) for this day of the year, and 

according to the type of day (holiday or working day). 

What is more, in case of availability of temperature 

forecasts, it allows to reduce the variance of the result. 

Regarding the hourly behaviour, the weekly cycle and the 

annual seasonality the results are also satisfactory. 

The mean daily power load behaviour during a complete 

year, from 1000 simulations performed with the developed 

model, can be seen in Fig. 3. 

 
Fig. 3 Mean daily power demand. Expected value, PE10% and 

PE90%. 
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4. Error Assessment  
 

In order to quantify the errors, a period of data - not included 

in the original data set used to perform the model- was used.  

Concretely, the period used for this assessment was from 

December 12, 2016 until August 31, 2017. 

For each day included in that period, 1000 simulations with 

a horizon of 14 days were performed within the SimSEE 

platform.  

The data generating source of power demand, was 

configured - from the developed CEGH model - introducing 

forecasts of daily maximum and minimum temperatures. 

The forecasts were introduced forcing the expected value of 

the simulations of temperatures to be equal to the forecast 

along the 13 steps of simulation. 

The scattering around the mentioned expected value, was 

configured with a linear growth in 13 steps. It means, at the 

beginning, the forecasted value is deterministic, then the 

scattering width, spreads, linearly, step by step, reaching the 

historical scattering at the last step of simulation. 

As a result the significance level regarding the forecast 

lowers with the increment of the time horizon. 

Errors were averaged, obtaining a medium error and 

exceedance probability averaged1 for each day of the 

forecast, from 1 to 14. The results in P.U. of the daily 

demand power value are portrayed in Fig. 4. 

 

 
Fig. 4 Daily demand power error. Expected value and averaged 

exceedance probabilities 

The accumulated error of the demand is not sufficiently 

damped (see Fig. 5) due to the fact that errors in the 

temperature forecast have some permanence. If at the 

beginning of a forecast a slight error is produced, for 

example, overestimating temperature, it is probable that this 

error maintains or amplifies with the time horizon of the 

forecast, as seen in Fig. 6. 

 

                                                           
1 That is depicted in figures 4 to 6 are not the exceedance 

probabilities concerning the whole period but the averages 

 
Fig. 5 Accumulated Daily demand power error. Expected value 

and averaged exceedance probabilities 

 
Fig. 6 Accumulated maximum temperature error. Expected 

value and averaged exceedance probabilities 

 

5. Relative impact of model improvements 
 

As mentioned before, the currently situation of the Electric 

Uruguayan System requires the handling of system 

operation based on probabilities, since the major part of 

the variables involved are aleatory. This implies that for 

improving the dispatch of the system and optimizing costs 

and benefits, it is required the consideration of all the 

uncertainties involved as accurate as possible. 

Of all the variables involved, the one that stands the most 

variability for its amplitude and frequency is wind power. 

Also solar power presents an important short term 

dispersion. However, until nowadays there is no very 

important incidence due to the low installed capacity. 

Currently, solar power capacity reaches 225 MW while 

wind power capacity is about 1400 MW.  FiguresFig. 7 

and Fig. 8 show the daily mean power for both energy 

sources simulated during a year, in expected value and 

with 10% and 90 % exceedance probability. 

 

of the corresponding exceedance probabilities of each 

day included in the period. 
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Fig. 7 Wind Power. Daily mean production during a year. 

Expected value and 10% and 90 % exceedance probability 

 
Fig. 8 Solar Power. Daily mean production during a year. 

Expected value and 10% and 90 % exceedance probability 

In order to have a reference of the involved dispersion level, 

note as it is showed from Fig. 5, that the average daily wind 

generation, with a confidence level of 80%, has a dispersion 

in the order of 500 MW. 

On the other hand, the hydroelectric power is managed by 

the system operator. According to this, you can appreciate 

in Fig. 9 that the hydro power production could be slightly 

accompanying the evolution of the power demand, in its 

weekly and also its annual cycle. See again Fig. 3 to 

compare. 

 
Fig. 9 Hydro Power. Daily mean production during a year. 

Expected value and 10% and 90 % exceedance probability 

In other aspects, the operation of the hydroelectric power 

plants is conditioned by the availability of hydric affluent to 

their respective lakes. This could result in a significant 

difference of cumulative generation for a year, like is shown 

in Fig. 10. There is depicted the dispersion of the 

accumulated generation based on 1000 simulations. 

In summary, it can be observed that the main sources of 

uncertainty, due to the magnitude of its powers and their 

dispersions, are wind and hydraulic generation. 

The power demand dispersion locates in an order near to 

10% of its magnitude. This is equivalent to around 150 MW. 

 

 

 
Fig. 10 Hydro Power. Accumulated production along a year. 

Expected value and 10% and 90 % exceedance probability 

In fact, the demand uncertainty, is not the most important 

parameter at the time of cuantificating uncertainty and risk 

in the system dispatch decisions. However its input is not 

negligible and contributes to a global improvement in the 

modelling of the system, as seen below.  

 

6. Risk reduction assessment 
 

A comparison made between the two models based on the 

evaluation of relevant variables used to define the export 

offers, is described below. 

For maximizing the benefits of energy exchanges with 

neighboring countries, the negotiation is starting to adopt 

the form of the offering of energy blocks for next week. 

This energy blocks are calculated and offered at a certain 

price, being calculated in function of own costs and the 

neighboring pricings of their system in order to obtain the 

maximum profit. It is, without taking risks of increasing 

overmuch the cost of the own system and achieving an 

attractive offer for the neighboring system. 

As main indicator for the calculation of the offer, the 

Marginal Exportation Cost (CME) is defined. It represents 

the cost of the last MW delivered to supply the exported 

energy, analogous to the Marginal Cost defined for the 

system. [6]. 

For the evaluation that is carried out in this research, a 

value of CME = 35 USD/MWh was taken as a reference 

to decide the amount of energy to be exported and 9 

scenarios with different levels of energy availability were 

tested. 

The decision is made based on the expected value of the 

CME. Considering that receipts from sales can be around 

90 USD/MWh, there is an acceptable margin of coverage 

against the risk of higher costs. 

In any case, once the decision of the amount of energy to 

be offered has been made based on these assumptions, it is 

important to observe the dispersion presented by the CME 

around its expected value. 

The deterministic demand forecast model used to date 

does not correctly represent the dispersion that the demand 

can reach. Therefore reduces the expected dispersion of 

system costs. 

The probabilistic model, by incorporating uncertainty 

around the expected value of demand, gives a more 

realistic view of high cost risks, allowing better 

quantification of risks. 

Fig. 11 shows a comparison of the distribution width of the 

expected CME, according to results obtained with the 

deterministic model (DET) and the probabilistic model 

(CEGH). 
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Fig. 11 Compared dispersion width of CME distribution for DET 

model vs. CEGH model 

As can be seen, for the case shown in Fig. 11, the CME with 

probability of exceedance of 5% varies by approximately 8 

USD / MWh between the results of one model and the other. 

Although it seems an amount of lesser order, it is not 

negligible when making the decision of the price to bid. It 

is beacuse the greater certainty regarding to the expected 

profit margin and to avoid unforeseen risks. 

The 9 scenarios were constructed by selecting for each 

variable -hydric affluent and wind and solar generation- 

three chronicles whose cumulative total was at 25%, 50% 

and 75% of the probability distribution to define the low, 

med and high levels respectively. 

The DDH-CME variable that represents the difference in 

the dispersion of the CME histograms between one model 

and the other, was calculated. That is, the difference 

between the values with 5% and 95% exceedance 

probability was calculated first as an indicator of the 

dispersion. Then the difference was made between the 

dispersion obtained with the DET model and that obtained 

with the CEGH model. 

The results obtained for each scenario are shown in Table 2. 

 

 
Table 2 Results of the difference among both models of the 

dispersion indicator (interval between exceedance probability 

5% and 95%). 

In the last row, the values of the dispersion difference are 

presented as a percentage of the average CME value. In the 

most relevant cases, difference of between 25% and 77% of 

the average CME can be observed. 

These values represent an appreciable improvement in the 

quantification of risk when defining sales prices with the 

desired level of confidence. 

To appreciate it more clearly, the comparison of CME 

values with 5% probability of exceedance is presented in 

Fig. 12 for each of the 9 scenarios evaluated. 

The cases in the graph of Fig. 12 are arranged as in Table 

2. The notation LH_HW indicates low hydro with high 

wind and so on. 

There it can be seen that, from the point of view of the risk 

of high export costs, the most critical case is HH_LW. In 

this case the CME with 5% exceedance probability is 70% 

higher than the expected value if evaluated with the model 

DET and 120% higher if evaluated with CEGH model. 

 

 
Fig. 12 Compared CME costs with 95% of confidence for DET 

model vs. CEGH model 

 

4.  Conclusion 
 

The application of the developed model will produce a 

substantial improvement to the procedure used to forecast 

the internal energy supply and the exportable energy to the 

extent that it allows decision making on the basis of 

probabilities.  

Obtained results were satisfactory both from the point of 

view of the representation of the daily and annual behavior 

of the power demand, and from the point of view of the 

error obtained in the predictions.  

The error with 5% of exceedance probability is reasonably 

increasing as the forecast horizon progresses. It goes from 

approximately 4% and reaches 11% on day 14 of forecast. 

The accumulated error remains around 4% for up to two 

weeks of accumulation, for the same level of confidence. 

Due to the dispersion of the other variables involved, is 

greater than the dispersion of demand, the impact on the 

dispersion of global results is not very noticeable. In any 

case, it is not negligible and, in the face of the negotiation 

of exports, especially the definition of the prices to be 

offered, the risk reduction is significant since the margins 

in which the dispersion of the expected costs increases - 

for a level of 90% confidence - they hover above values of 

25% of the average value of the CME. 

As a general conclusion, beyond the model’s evaluation 

results presented in this paper, it is noted the need to go 

forward with evaluation, calibration and improvement of 

the developed model, in all its aspects. In particular, it is 

necessary to work on the definition of parameters and 

control mechanisms that allow keeping the model’s 

correlation functions, calibrated to maintain or increase its 

accuracy in the forecast. 
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