english Icono del idioma   español Icono del idioma  

Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/20.500.12008/47003 Cómo citar
Título: Motor intention recognition in EEG : in pursuit of a relevant feature set
Autor: Iturralde, Pablo
Patrone, Martín
Lecumberry, Federico
Fernández, Alicia
Tipo: Ponencia
Fecha de publicación: 2012
Resumen: Brain-computer interfaces (BCIs) based on electroencephalograms (EEG) are a noninvasive and cheap alternative to get a communication channel between brain and computers. Some of the main issues with EEG signals are its high dimensionality, high inter-user variance, and non-stationarity. In this work we present different approaches to deal with the high dimensionality of the data, finding relevant descriptors in EEG signals for motor intention recognition: first, a classical dimensionality reduction method using Diffusion Distance, second a technique based on spectral analysis of EEG channels associated with the frontal and prefrontal cortex, and third a projection over average signals. Performance analysis for different sets of features is done, showing that some of them are more robust to user variability.
Descripción: Trabajo presentado en Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications (CIARP 2012)
Citación: Iturralde, P, Patrone, M, Lecumberry, F, Fernández, A. "Recognition in EEG: in pursuit of a relevant feature set". Publicado en: Alvarez, L., Mejail, M., Gomez, L., Jacobo, J. (eds) Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications. CIARP 2012. Lecture Notes in Computer Science, vol 7441. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33275-3_68
Departamento académico: Procesamiento de Señales
Grupo de investigación: Tratamiento de Imágenes
Licencia: Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)
Aparece en las colecciones: Publicaciones académicas y científicas - Instituto de Ingeniería Eléctrica

Ficheros en este ítem:
Fichero Descripción Tamaño Formato   
IPLF2012.pdf430,78 kBAdobe PDFVisualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons