Por favor, use este identificador para citar o enlazar este ítem:
https://hdl.handle.net/20.500.12008/47003
Cómo citar
Registro completo de metadatos
Campo DC | Valor | Lengua/Idioma |
---|---|---|
dc.contributor.author | Iturralde, Pablo | es |
dc.contributor.author | Patrone, Martín | es |
dc.contributor.author | Lecumberry, Federico | es |
dc.contributor.author | Fernández, Alicia | es |
dc.date.accessioned | 2024-11-13T19:24:37Z | - |
dc.date.available | 2024-11-13T19:24:37Z | - |
dc.date.issued | 2012 | es |
dc.date.submitted | 20241113 | es |
dc.identifier.citation | Iturralde, P, Patrone, M, Lecumberry, F, Fernández, A. "Recognition in EEG: in pursuit of a relevant feature set". Publicado en: Alvarez, L., Mejail, M., Gomez, L., Jacobo, J. (eds) Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications. CIARP 2012. Lecture Notes in Computer Science, vol 7441. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33275-3_68 | es |
dc.identifier.uri | https://hdl.handle.net/20.500.12008/47003 | - |
dc.description | Trabajo presentado en Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications (CIARP 2012) | es |
dc.description.abstract | Brain-computer interfaces (BCIs) based on electroencephalograms (EEG) are a noninvasive and cheap alternative to get a communication channel between brain and computers. Some of the main issues with EEG signals are its high dimensionality, high inter-user variance, and non-stationarity. In this work we present different approaches to deal with the high dimensionality of the data, finding relevant descriptors in EEG signals for motor intention recognition: first, a classical dimensionality reduction method using Diffusion Distance, second a technique based on spectral analysis of EEG channels associated with the frontal and prefrontal cortex, and third a projection over average signals. Performance analysis for different sets of features is done, showing that some of them are more robust to user variability. | es |
dc.language | en | es |
dc.rights | Las obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad De La República. (Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014) | es |
dc.title | Motor intention recognition in EEG : in pursuit of a relevant feature set | es |
dc.type | Ponencia | es |
dc.rights.licence | Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0) | es |
udelar.academic.department | Procesamiento de Señales | es |
udelar.investigation.group | Tratamiento de Imágenes | es |
Aparece en las colecciones: | Publicaciones académicas y científicas - Instituto de Ingeniería Eléctrica |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | ||
---|---|---|---|---|---|
IPLF2012.pdf | 430,78 kB | Adobe PDF | Visualizar/Abrir |
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons