english Icono del idioma   español Icono del idioma  

Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/20.500.12008/47000 Cómo citar
Título: Sparse coding and dictionary learning based on the MDL principle
Autor: Ramírez, Ignacio
Sapiro, Guillermo
Tipo: Ponencia
Palabras clave: Sparse coding, Dictionary learning, MDL, Denoising
Fecha de publicación: 2011
Resumen: The power of sparse signal coding with learned overcomplete dictionaries has been demonstrated in a variety of applications and fields, from signal processing to statistical inference and machine learning. However, the statistical properties of these models, such as underfitting or overfitting given sets of data, are still not well characterized in the literature. This work aims at filling this gap by means of the Minimum Description Length (MDL) principle a well established information-theoretic approach to statistical inference. The resulting framework derives a family of efficient sparse coding and modeling (dictionary learning) algorithms, which by virtue of the MDL principle, are completely parameter free. Furthermore, such framework allows to incorporate additional prior information in the model, such as Markovian dependencies, in a natural way. We demonstrate the performance of the proposed framework with results for image de noising and classification tasks.
Descripción: Trabajo presentado y publicado en IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Prague, Czech Republic, 2011.
EN: IMA Preprint Series no. 2345
Citación: Ramírez, I, Sapiro, G. "Sparse coding and dictionary learning based on the MDL principle" IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Praga, República Checa, 22-27 may, 2011, pp. 2160-2163, doi: 10.1109/ICASSP.2011.5946755.
Departamento académico: Procesamiento de Señales
Grupo de investigación: Tratamiento de Imágenes
Licencia: Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)
Aparece en las colecciones: Publicaciones académicas y científicas - Instituto de Ingeniería Eléctrica

Ficheros en este ítem:
Fichero Descripción Tamaño Formato   
RS2011.pdf476,8 kBAdobe PDFVisualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons