english Icono del idioma   español Icono del idioma  

Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/20.500.12008/47000 Cómo citar
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorRamírez, Ignacioes
dc.contributor.authorSapiro, Guillermoes
dc.date.accessioned2024-11-13T19:24:36Z-
dc.date.available2024-11-13T19:24:36Z-
dc.date.issued2011es
dc.date.submitted20241113es
dc.identifier.citationRamírez, I, Sapiro, G. "Sparse coding and dictionary learning based on the MDL principle" IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Praga, República Checa, 22-27 may, 2011, pp. 2160-2163, doi: 10.1109/ICASSP.2011.5946755.es
dc.identifier.urihttps://hdl.handle.net/20.500.12008/47000-
dc.descriptionTrabajo presentado y publicado en IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Prague, Czech Republic, 2011.es
dc.description.abstractThe power of sparse signal coding with learned overcomplete dictionaries has been demonstrated in a variety of applications and fields, from signal processing to statistical inference and machine learning. However, the statistical properties of these models, such as underfitting or overfitting given sets of data, are still not well characterized in the literature. This work aims at filling this gap by means of the Minimum Description Length (MDL) principle a well established information-theoretic approach to statistical inference. The resulting framework derives a family of efficient sparse coding and modeling (dictionary learning) algorithms, which by virtue of the MDL principle, are completely parameter free. Furthermore, such framework allows to incorporate additional prior information in the model, such as Markovian dependencies, in a natural way. We demonstrate the performance of the proposed framework with results for image de noising and classification tasks.es
dc.languageenes
dc.relation.ispartofIMA Preprint Series no. 2345es
dc.rightsLas obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad De La República. (Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014)es
dc.subjectSparse codinges
dc.subjectDictionary learninges
dc.subjectMDLes
dc.subjectDenoisinges
dc.titleSparse coding and dictionary learning based on the MDL principlees
dc.typePonenciaes
dc.rights.licenceLicencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)es
udelar.academic.departmentProcesamiento de Señaleses
udelar.investigation.groupTratamiento de Imágeneses
Aparece en las colecciones: Publicaciones académicas y científicas - Instituto de Ingeniería Eléctrica

Ficheros en este ítem:
Fichero Descripción Tamaño Formato   
RS2011.pdf476,8 kBAdobe PDFVisualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons