english Icono del idioma   español Icono del idioma  

Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/20.500.12008/46936 Cómo citar
Título: Refining penalized ridge regression : A novel method for optimizing the regularization parameter in genomic prediction.
Autor: Montesinos-López, Abelardo
Montesinos-López, Osval A.
Lecumberry, Federico
Fariello, Maria Ines
Montesinos-López, José C.
Crossa, José
Tipo: Artículo
Palabras clave: Ridge regression, Genomic prediction, GenPred, Shared Data Resource, Plant breeding, Breeding values, Penalized regression
Fecha de publicación: 2024
Resumen: The popularity of genomic selection as an efficient and cost-effective approach to estimate breeding values continues to increase, due in part to the significant saving in phenotyping. Ridge regression is one of the most popular methods used for genomic prediction; however, its efficiency (in terms of prediction performance) depends on the appropriate tunning of the penalization parameter. In this paper we propose a novel, more efficient method to select the optimal penalization parameter for Ridge regression. We compared the proposed method with the conventional method to select the penalization parameter in 14 real data sets and we found that in 13 of these, the proposed method outperformed the conventional method and across data sets the gains in prediction accuracy in terms of Pearson's correlation was of 56.15%, with not-gains observed in terms of normalized mean square error. Finally, our results show evidence of the potential of the proposed method, and we encourage its adoption to improve the selection of candidate lines in the context of plant breeding.
Editorial: Genetics Society of America, Oxford University Press.
EN: G3 : Genes, Genomes, Genetics, nov. 2024, pp. 1-15.
Financiadores: Bill & Melinda Gates Foundation
Citación: Montesinos-López, A., Montesinos-López, O., Lecumberry, F. y otros. "Refining penalized ridge regression : A novel method for optimizing the regularization parameter in genomic prediction". G3 : Genes, Genomes, Genetics. [en línea]. 2024, pp. 1-15. DOI: 10.1093/g3journal/jkae246.
Departamento académico: Procesamiento de Señales
Grupo de investigación: Tratamiento de Imagenes
Licencia: Licencia Creative Commons Atribución (CC - By 4.0)
Aparece en las colecciones: Publicaciones académicas y científicas - Instituto de Ingeniería Eléctrica

Ficheros en este ítem:
Fichero Descripción Tamaño Formato   
MMLFMC24.pdfVersión publicada1,71 MBAdobe PDFVisualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons