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The popularity of genomic selection as an efficient and cost-effective approach to estimate breeding values continues to increase, due in 
part to the significant saving in genotyping. Ridge regression is one of the most popular methods used for genomic prediction; however, its 
efficiency (in terms of prediction performance) depends on the appropriate tunning of the penalization parameter. In this paper we pro-
pose a novel, more efficient method to select the optimal penalization parameter for Ridge regression. We compared the proposed meth-
od with the conventional method to select the penalization parameter in 14 real data sets and we found that in 13 of these, the proposed 
method outperformed the conventional method and across data sets the gains in prediction accuracy in terms of Pearson’s correlation was 
of 56.15%, with not-gains observed in terms of normalized mean square error. Finally, our results show evidence of the potential of the 
proposed method, and we encourage its adoption to improve the selection of candidate lines in the context of plant breeding.
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Introduction
The popularity of genomic selection (GS) continues to grow in 
plant and animal breeding due to the introduction of large-scale 
molecular genetic data that is used to train statistical machine 
learning models that are used to predict complex traits for which 
only molecular data is available. GS has proven to be successful 
for traits on many species (maize, wheat, groundnut, cotton, 
rice, soybean, etc.) in plant breeding, along with many successful 
applications in animal science. However, the GS is still not optimal 
for many plant breeding programs since many factors affect its 
accuracy. Some of these factors are the degree of relatedness be-
tween training and testing, quality and coverage of the markers, 
population size and architecture, the heritability of the target 
trait, prediction model, goal of prediction (tested lines in tested 
environments, untested lines in tested environments, untested 
lines in tested environments and untested lines in untested envir-
onments), genetic architecture, etc.

For this reason, research continues to optimize the GS method-
ology since its practical implementation requires good prediction 

accuracy. From the modeling point of view, many statistical and 
machine learning methods (linear models, mixed models, random 
forest, support vector machine, Bayesian methods, deep learning, 
etc.) had been explored for genomic prediction (Montesinos-López 
et al. 2022), but linear and mixed models are still among the most 
popular due to their robustness, simplicity, ease of implementa-
tion, and interpretability, as well as the fact that these models 
make it easier to account for genotype-by-environment interac-
tions and integrate multiomics data.

Regarding many machine learning models used in genomic 
prediction, in many cases, they produce similar or better results 
than linear or mixed models, but at the cost of a significant effort 
in the selection of the optimal hyperparameters; for this main rea-
son, these models are still less popular in plant and animal breed-
ing than linear and mixed models (Montesinos-López et al. 2021; 
de los campos and Gianola 2023). For example, deep learning 
models are the most difficult to train efficiently since they gener-
ally require a large sample size and many computational re-
sources for a successful implementation, since this model has a 
lot of hyperparameters to be tuned (Montesinos-López et al. 2021).
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Among the methods used in GS, Ridge regression is one of the 
most popular, because it is quite efficient to mitigate multicolli-
nearity (high correlation between predictor variables) and overfit-
ting in predictive models in the context of more predictors (p) than 
observations (n). Ridge regression addresses these issues by intro-
ducing a regularization (penalization) parameter, often denoted 
as lambda (λ), to the standard least squares objective function 
(Montesinos-López et al. 2022). This regularization parameter pe-
nalizes large coefficient values, effectively shrinking them toward 
0. The amount of shrinkage is controlled by the regularization par-
ameter λ, which is a nonnegative value chosen by the analyst. 
However, an efficient implementation of Ridge regression needs 
a good selection of the regularization parameter λ. Through their 
application, these models achieve heightened efficiency and pre-
diction accuracy, showcasing their instrumental role in contem-
porary data analytics. Due to this, Ridge regression is widely 
used in various fields, including statistics, machine learning, GS, 
and data analysis, particularly when dealing with datasets with 
multicollinearity or high-dimensional predictor spaces.

Ridge regression stands out as a crucial asset in the realm of 
genomic prediction, offering a versatile solution across a multi-
tude of fields. Its adept handling of high-dimensional genomic da-
tasets empowers researchers to extract pertinent insights, crucial 
to advance genetic improvement endeavors in plants, animals, 
and beyond. By tackling the complexities inherent in such data, 
Ridge regression plays a pivotal role in identifying and selecting 
elite individuals suited for breeding programs across diverse spe-
cies. Its ability to navigate through the intricacies of genetic infor-
mation underscores its significance as a fundamental tool in 
modern genetic research and agricultural innovation.

There is a large amount of empirical evidence that Ridge regres-
sion is a power tool to predict out-of-sample data in a quite effi-
cient manner; however, the quality of the predictions depends, 
to a great extent on and adequate selection of the regularization 
parameter. For this reason, some methods for its optimal selec-
tion have been developed so far; some methods are better than 
others, although anyone of them is still optimal. For this reason, 
in this paper, with the goal of improving the efficiency of the 
Ridge regression in terms of prediction performance, we propose 
a novel method to select the optimal regularization parameter. 
The proposed method was compared with the most popular 
method to select the regularization parameter that comes imple-
mented in the glmnet library (Friedman et al. 2010; Simon et al. 
2011; Tay et al. 2023). The empirical comparison was carried out 
using 14 real datasets with phenotypic and markers data.

Materials and methods
Datasets
A concise overview of the 14 datasets used in this study is provided 
in Table A1 (Appendix A).

Statistical model
In a general context, we have a covariate vector xi = (xi1, . . . , xip)T, 
i = 1, . . . , n, and we want to use this information to predict or ex-
plain how this variable affects a real-value response yi. The linear 
multiple regression model assumes a relationship given by

yi = β0 +
p

j=1

xijβj + ϵi (1) 

where ϵi is a random error vector with mean 0, E(ϵi) = 0 and is inde-
pendent of xi. This error is included in the model to capture 

measurement errors and the effects of other unregistered explana-
tory variables that can help explain the mean response. Then, the 

conditional mean of this model is E(yi |xi) = β0 +
p

j=1
xijβj and the 

conditional distribution of yi given xi is only affected by the infor-
mation of xi.

To estimate the parameters β = (β0, β1, . . . , βp)T, we usually 
have a set of data (xT

i , yi), i = 1, . . . , n, often known as training 
data, where xi is a vector of features measurement and yi is the re-
sponse measurement corresponding to the i th individual drawn. 
In the context of large p and small n, the most common method to 
estimate β is the Ridge regression method, which consists of tak-
ing the β value that minimizes the penalized residual sum of 
squares (Montesinos-López et al. 2022) defined as

PRSSλ(β) =
n

i=1

yi − β0 −
p

j=1

xijβj

⎛

⎝

⎞

⎠

2

+λ
p

j=1

β2
j 

where λ ≥ 0 is the regularization parameter, which determines 
the level or degree to which the beta coefficients are shrunk to-
ward 0. When λ = 0, the ordinary least square (OLS) is the solution 
to the beta coefficients, but when λ is large, the PRSSλ(β) is domi-
nated by the penalization term, and the OLS solution must shrink 
toward 0 (Christensen 2011). In general, when the number of para-
meters to be estimated is larger than the number of observations, 
the estimator resulting in the OLS is invalid. In this situation, the 
intuition of Ridge regression tries to alleviate this by constraining 
the sum of squares for the beta coefficients (Wakefield 2013).

Bayesian GBLUP
The Bayesian Genomic Best Linear Unbiased Predictor (GBLUP) 
model is formulated as a regression problem and is given by:

yi = μ + gi + ϵi (2) 

where yi denotes the continues response variable measured in the 
ith line, μ is a general mean or intercept. gj (i = 1, . . . , J), denotes 

the random effect of ith genotype, and ϵi is the random error com-
ponent of ith genotype distributed as an independent normal ran-

dom variable with mean 0 and variance σ2. It is assumed that 

g = (g1, . . . , gJ)
T ∼ NJ(0, σ2

gG), where G is a linear kernel known as 

genomic relationship matrix computed according with the meth-
od of VanRaden (2008). This model was implemented in the R stat-
istical software (R Core Team (2024)) with the BGLR library of Pérez 
and de Los Campos (2014). It is important to point out that this 
model given in Equation (2) is only a reparameterization of model 
given in Equation (1). Also, the model given in Equation (2) was im-
plemented under a mixed model framework in the library rrBLUP 
of Endelman (2011).

Conventional approach for tuning the lambda 
parameter (glmnet)
Given that there are many methods to select the regularization 
parameter (λ), in this study we will use the following cross- 
validation method as a reference to select this hyperparameter. 
We will illustrate this method by selecting 100 λ values. First, 
the data are divided into training and testing set. Then the training 
is divided into inner training and validation set. The steps accord-
ing to Tay et al. (2023) for this procedure are as follows: 
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1) Step 1. Standardize the training data (ytrn, Xtrn). We stand-
ardize the response variable (ytrn) and each column of the in-

put matrix (Xtrn), but with the variance computed as 

σ2
Xj,trn

=
ntrn

i=1
(Xij − X̅ j,trn)2/ntrn, where ntrn is the number of train-

ing data points and X̅ j,trn is the average of the column j of the 

matrix Xstrn. That is, each column of Xstrn is standardized as: 

X j,strn = Xij−X̅j,trn

σX j,trn

2) Step 2. We collect the standardized training data in (ystrn, 

Xstrn) by subtracting from it its sample mean and by dividing 
it by its standard deviation (SD).

ytrn = (y1, . . . , yntrn )T 

y̅trn =
ntrn

i=1 yi

ntrn 

σytrn
=

�����������������������
ntrn

i=1

(yi − y̅trn)2
/ntrn






ystrn =
ytrn − y̅trn

σytrn 

3) Step 3. We compute the element-wise product of each column 
of Xstrn with ystrn, and this information is saved in PXY, 

where Xstrn ϵ Rntrn×p, ystrn ϵ Rntrn×1 and PXY ϵ Rntrn×p

4) Step 4. Next, we compute the sum of each column of 
(PXY × 1000)/ntrn and this sum of columns is saved in SXY.

5) Step 5. We compute λmax = max(SXY)
6) Step 6. Next, we define the λmin.ratio = 0.01 if number of pre-

dictors (p) is larger than the number of observations (ntrn); 
otherwise the λmin.ratio = 0.0001.

7) Step 7. We compute λmin = λmax × λmin.ratio.
8) Step 8. Next, we generate 100 λ values equally spaced 

between the log(λmax) and loglog ( λmin). These 100 λ 
values can be generated as 

log( λl) = log( λmin) + [log(λmax)−log ( λmin)]
99

 
× (l − 1), l = 1, . . . , 100.

9) Step 9. Then, with 10-fold cross-validation, we divide the 
training in inner training and validation and with the inner 
training is trained, the model for each of the 100 regulariza-
tion parameters and its prediction error is evaluated in the 
validation set and as optimal lambda is chosen, the one 
that provide less MSE in the average of the 10-folds.

In the glmnet library, in which the models will be implemented, 
this method of tuning is provided by default but not necessary; in 
the tuning process, the 100 values of lambda are evaluated, since 
according to the default internal settings, the computations stop if 
either the fractional change in deviance down the path is less than 
1 × 10−5 or if the fraction of explained deviance reaches 0.999.

For example, in the scikit-learn Python library, the ElasticNetCV 
function facilitates the implementation of Lasso, Ridge, and Elastic 
Net regression. By default, ElasticNetCV generates 100 values for 
the regularization parameter, lambda, which range from 10–4 to 10 
and are spaced logarithmically. Additionally, it’s important to note 
that this library allows providing customized values for lambda.

Proposed approach for tuning the regularization 
hyperparameter (glmnet M)
From a mixed (or Bayesian) model framework, λ is estimated as a 
ratio of variance components as λ = σ2/σ2

β , where σ2 is the variance 
of the error term and σ2

β is the variance of the beta coefficients, 

which guarantees a lower mean squared error in future predicted 
values (Montesinos-López et al. 2022). However, under penalized 
Ridge regression, λ is typically chosen by cross-validation with 
the training set. This can be done with the default conventional 
approach explained above with the grid search method imple-
mented in the cv.glmnet function of the glmnet R package 
(Friedman et al. 2010).

With the goal of proposing a better approach to select the opti-
mal regularization parameter (λ), we propose to use the same 
cv.glmnet function but specifying a custom grid of values of λ. 
The approach explores approximately different proportion values 
of phenotypic variance (R2

l ) that the genotypic effects (xT
i β ) can ex-

plain, starting from a small value (10−5) up to a large value (0.999). 
Particularly, the explored grid values of λ are given by

λl =
σ2

l

σ2
lβ

=
(1 − R2

l )s2
y

R2
l s2

y/
1

ntrn

ntrn

i=1
xT

i xi

  =
1 − R2

l

R2
l /

1
ntrn

ntrn

i=1
xT

i xi

  ,

l = 1, . . . , 100

(2) 

where s2
y represent the phenotypic variance in the training data, 

and

σ2
lβ =

R2
l s2

y

1
ntrn

ntrn

i=1
xT

i xi

 

Denotes a proportion R2
l of the genotypic variance explained by the 

xT
i β term (genotypic effects) under method (1) (Montesinos-López 

et al. 2022; see details in Appendix A). σ2
l = (1 − R2

l )s2
y represents the 

remaining proportion of the phenotypic variance left to the variance 
error, where

R2
l = exp(lRl) (3) 

and

lRl = log (10−5) +
[log (0.9999) − log (10−5) ]

99

 

× (l − 1), (4) 

l = 1, . . . , 100, are the different proportions of phenotypic variance 
explained by the genotypic effects to be explored. For each value 
of λ in this grid, the average performance prediction, measured by 

the mean square error (MSE computed as 
nval

i=1
(yi − yi)

2 where nval de-

notes the number of observations in the validation set and yi de-
notes the predicted value i) obtained across an inner 10-fold 
cross-validation strategy, is calculated. Then, the value of λ that cor-
responds to the smallest MSE in this grid in the validation data, is 
chosen as the optimal λ value. Subsequently, the model is fitted 
with the entire training set using this optimal value, which is then 
evaluated on the testing set.

This proposed method for selecting the grid of values does not 
guarantee perfect results in every case. However, it is effective be-
cause it selects the grid values by computing the ratio of the vari-
ance components of the error (σ2) and inputs (σ2

β ), and for this 
reason has more chance to provide a more optimal result. More 
optimal results are expected because the derivation of the grid va-
lues considers both the inputs and the response variable of the 
available training set, that is, use prior information of the training 
in its derivation (See Equation A1, in Appendix A). Additionally, to 
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enhance the efficacy of the proposed method, it is important to 
consider using a grid with more than 100 values.

Outer cross-validation strategy
For the comparison of the proposed and conventional models, we 
used cross-validation. We implemented a 10-Fold Cross- 
Validation, dividing the dataset into 10 similarly sized subsets, using 
9 of them for training and 1 for testing, and repeating this process 10 
times (once for each subset as the test set). Then, for each testing set 
the accuracy was computed in terms of average Pearson’s correl-
ation (Cor) and normalized root mean square error (NRMSE) 

(Montesinos-López et al. 2022). MSE = 1
ntst

(
ntst

i=1
(yi −f̂ (xi))

2, where MSE 

denotes the mean square error, yi denotes the observed value of 

the ith observation, ntst denotes the size of the testing set and f̂ (xi) 

is the prediction that f̂ gives to the ith observation. Then 

NRMSE =
����
MSE
√

ntst
i=1

yi
ntst

. We used the NRMSE since this metrics allows 

the comparison of results between different traits since not depend 
on the scale of the trait. For the computation of both metrics we 

used the observed values (yi) and predicted values [ f̂ (xi) ] in each 
fold (partition) corresponding to the testing set. The average per-
formance across the 10 folds was reported using these metrics. It 
is important to point out that we used outer cross-validation to dif-
ferentiate the inner cross-validation that was used for tuning the 
regularization parameter (λ) in which each outer training set was di-
vided into inner training and validation set. For the inner cross- 
validation, we used 10-fold cross-validation. We used Cor and 
NRMSE since are 2 popular metrics of prediction performance in 
genomic prediction and of course, more metrics exist but for the 
goal of the paper these 2 metrics we consider enough and 
appropriate.

Results
The results presented in this section provide a detailed comparison 
of the performance between the conventional tuning process of the 
regularization parameter (λ), denoted as “glment,” since it was im-
plemented in this library, and the proposed novel tuning process 
denoted as “glmnet-M,” since we modified the tuning process given 
as default in the glmnet library. The comparison was carried out 
using 14 datasets: Disease, EYT_1, EYT_2, EYT_3, Groundnut, 
Indica, Japonica, Maize, Wheat_1-Wheat_6; see Table A1
(Appendix A). Additionally, an “across dataset” evaluation is pre-
sented. Note that this section provides the results for datasets 
Disease (Fig. 1), EYT_1 (Fig. 2), Indica (Fig. 3), Wheat_1-Wheat_6 
(Fig. 4) and “across datasets” (Fig. 5). The remaining results are in 
Appendix B for datasets EYT_2 (Fig. B1), EYT_3 (Fig. B2), 
Groundnut (Fig. B3), Japonica (Fig. B4) and maize (Fig. B5).

Furthermore, summarizes of the Average Normalized Root 
Mean Squared Error (NRMSE) and average Cor across the 10-folds, 
with glmnet and glmnet-M methods can be found for: (1) each da-
taset (Dataset) and for each trait (Trait) (Table 1), (2) across traits 
and (3) across folds (Table 2), and (4) across different datasets 
(Dataset) of the mean values obtained across traits (Table 3).

Disease
In the Disease dataset, Fig. 1 displays the comparative evaluation 
results between glmnet and glmnet-M approaches (Tables 1 and 
2), revealing subtle yet significant differences in their predictive 
performance. In terms of NRMSE, glmnet-M consistently shows 
a marginal improvement over glmnet for the PTR and SB traits, 
with average differences of 0.0035 and 0.0058, respectively. 
Regarding Cor, glmnet-M displays a notably superior performance 
for the same traits, outperforming glmnet with average differ-
ences of 0.092 and 0.068 respectively, both also with 95% CI, indi-
cating a significant difference. However, in the SN trait, while 

Fig. 1. Box plots for the disease dataset with glmnet and gmlnet-M methods. a) Boxplot of the performance with Cor between the observed and predicted 
values through a 10-fold cross-validation for each of the 3 traits (PTR, SB, and SN). b) Box plot of the performance with the NRMSE between the observed 
and predicted values through a 10-fold cross-validation for each of the 3 traits (PTR, SB, and SN).
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glmnet shows a slightly lower NRMSE than glmnet-M, the differ-
ence is not statistically significant (average difference of 0.0017 

with a confidence interval including 0), although glmnet-M exhi-
bits a marginally higher Pearson Correlation.

Fig. 2. Box plots for the EYT_1 dataset with glmnet and gmlnet-M methods. a) Box Plot of the performance with Cor between observed and predicted 
values through 10-fold cross-validation for each of the 4 traits (DTHD, DTMT, GY, and Height). b) Box Plot of the performance with the NRMSE between 
observed and predicted values through a 10-fold cross-validation for each of the 4 traits (DTHD, DTMT, GY, and Height).

Fig. 3. Box plots for the Indica dataset with glmnet and gmlnet-M methods. a) Box Plot of the performance with Cor between observed and predicted values 
through 10-fold cross-validation for each of the 4 traits (GC, GY, PH, and PHR). b) Box Plot of the performance with the NRMSE between observed and 
predicted values through a 10-fold cross-validation for each of the 4 traits (GC, GY, PH, and PHR).
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Fig. 4. Box plots for each of the Wheat_1-Wheat_6 datasets with glmnet and gmlnet-M methods. a) Box Plot of the performance with Cor between observed 
and predicted values through 10-fold cross-validation for the unique trait (GY). b) Box Plot of the performance with the NRMSE between observed and 
predicted values through a 10-fold cross-validation for the unique trait (GY).

Fig. 5. a) average Cor across traits of the mean values obtained across folds, with glmnet and glmnet-M methods in each dataset (dataset). The limits of the 
vertical lines in each bar indicate the average minus and plus 1 SD values of the correlation obtained across traits. b) Average NRMSE across traits of the 
mean values obtained across folds, with glmnet and glmnet-M methods in each dataset (Dataset). The limits of the vertical lines in each bar indicate the 
average minus and plus 1 SD values of the NRMSE obtained across traits.
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Table 1. Average NRMSE and average Cor across the 10-folds, with glmnet, glmnet-M, rrBLUP, and BGLR methods in each dataset (dataset) 
and for each trait (trait).

Method Dataset Trait NRMSE (SD) Cor (SD)

glmnet Disease_AL PTR 0.4285 (0.041) 0.0806 (0.1593)
glmnet-M Disease_AL PTR 0.425 (0.0389) 0.1726 (0.1257)
rrBLUP Disease_AL PTR 0.4231 (0.0378) 0.1912 (0.1106)
BGLR Disease_AL PTR 0.4236 (0.0371) 0.1941 (0.1038)
glmnet Disease_AL SB 0.3835 (0.0318) 0.1783 (0.1652)
glmnet-M Disease_AL SB 0.3777 (0.0323) 0.2464 (0.1416)
rrBLUP Disease_AL SB 0.3762 (0.0326) 0.2598 (0.1375)
BGLR Disease_AL SB 0.3754 (0.0339) 0.2648 (0.1282)
glmnet Disease_AL SN 0.4694 (0.0343) 0.1171 (0.1092)
glmnet-M Disease_AL SN 0.4711 (0.0318) 0.0852 (0.0892)
rrBLUP Disease_AL SN 0.4684 (0.0328) 0.1272 (0.0748)
BGLR Disease_AL SN 0.4697 (0.0308) 0.1269 (0.0688)
glmnet EYT_1_AL DTHD 0.0624 (0.005) 0.2985 (0.074)
glmnet-M EYT_1_AL DTHD 0.0549 (0.0055) 0.521 (0.0758)
rrBLUP EYT_1_AL DTHD 0.0546 (0.0054) 0.5259 (0.0686)
BGLR EYT_1_AL DTHD 0.0547 (0.0054) 0.5256 (0.0685)
glmnet EYT_1_AL DTMT 0.0397 (0.003) 0.2857 (0.0677)
glmnet-M EYT_1_AL DTMT 0.0355 (0.0028) 0.4933 (0.0937)
rrBLUP EYT_1_AL DTMT 0.0352 (0.0026) 0.5053 (0.0847)
BGLR EYT_1_AL DTMT 0.0352 (0.0027) 0.5053 (0.084)
glmnet EYT_1_AL GY 0.0593 (0.0046) 0.2732 (0.1524)
glmnet-M EYT_1_AL GY 0.0537 (0.0038) 0.4625 (0.0929)
rrBLUP EYT_1_AL GY 0.0531 (0.0043) 0.4809 (0.0968)
BGLR EYT_1_AL GY 0.053 (0.0043) 0.4821 (0.0956)
glmnet EYT_1_AL Height 0.039 (0.005) 0.2179 (0.0977)
glmnet-M EYT_1_AL Height 0.0362 (0.0046) 0.417 (0.0949)
rrBLUP EYT_1_AL Height 0.036 (0.0046) 0.4274 (0.0966)
BGLR EYT_1_AL Height 0.036 (0.0046) 0.4267 (0.0962)
glmnet EYT_2_AL DTHD 0.0491 (0.0053) 0.2141 (0.0692)
glmnet-M EYT_2_AL DTHD 0.0445 (0.0037) 0.4644 (0.0966)
rrBLUP EYT_2_AL DTHD 0.044 (0.0043) 0.48 (0.0962)
BGLR EYT_2_AL DTHD 0.044 (0.0043) 0.4789 (0.0947)
glmnet EYT_2_AL DTMT 0.0289 (0.0029) 0.2905 (0.0845)
glmnet-M EYT_2_AL DTMT 0.0248 (0.0023) 0.5537 (0.0746)
rrBLUP EYT_2_AL DTMT 0.0245 (0.0025) 0.564 (0.0825)
BGLR EYT_2_AL DTMT 0.0246 (0.0025) 0.5628 (0.0816)
glmnet EYT_2_AL GY 0.0616 (0.0046) 0.3447 (0.0527)
glmnet-M EYT_2_AL GY 0.0523 (0.0037) 0.5773 (0.0706)
rrBLUP EYT_2_AL GY 0.0513 (0.0034) 0.5974 (0.0811)
BGLR EYT_2_AL GY 0.0513 (0.0034) 0.5974 (0.0815)
glmnet EYT_2_AL Height 0.0373 (0.0037) 0.2679 (0.1167)
glmnet-M EYT_2_AL Height 0.0333 (0.0024) 0.4787 (0.1014)
rrBLUP EYT_2_AL Height 0.0328 (0.0025) 0.4989 (0.0827)
BGLR EYT_2_AL Height 0.0328 (0.0025) 0.4995 (0.0818)
glmnet EYT_3_AL DTHD 0.0398 (0.0015) 0.2176 (0.1001)
glmnet-M EYT_3_AL DTHD 0.0353 (0.0026) 0.4918 (0.0859)
rrBLUP EYT_3_AL DTHD 0.035 (0.0023) 0.505 (0.0837)
BGLR EYT_3_AL DTHD 0.0349 (0.0023) 0.5064 (0.0841)
glmnet EYT_3_AL DTMT 0.023 (0.0013) 0.2281 (0.0559)
glmnet-M EYT_3_AL DTMT 0.0204 (0.0014) 0.499 (0.0751)
rrBLUP EYT_3_AL DTMT 0.0202 (0.0014) 0.512 (0.0642)
BGLR EYT_3_AL DTMT 0.0202 (0.0014) 0.5134 (0.0644)
glmnet EYT_3_AL GY 0.0579 (0.0032) 0.2896 (0.0797)
glmnet-M EYT_3_AL GY 0.0514 (0.0028) 0.5081 (0.044)
rrBLUP EYT_3_AL GY 0.0508 (0.0031) 0.5278 (0.044)
BGLR EYT_3_AL GY 0.0508 (0.0031) 0.5273 (0.0439)
glmnet EYT_3_AL Height 0.0357 (0.0024) 0.3735 (0.0944)
glmnet-M EYT_3_AL Height 0.0319 (0.0017) 0.5128 (0.0444)
rrBLUP EYT_3_AL Height 0.0316 (0.0019) 0.524 (0.0433)
BGLR EYT_3_AL Height 0.0316 (0.0019) 0.5231 (0.0436)
glmnet Groundnut_AL NPP 0.2633 (0.0309) 0.2823 (0.2266)
glmnet-M Groundnut_AL NPP 0.2022 (0.0246) 0.6679 (0.0856)
rrBLUP Groundnut_AL NPP 0.2005 (0.0237) 0.6711 (0.0807)
BGLR Groundnut_AL NPP 0.2005 (0.0242) 0.6708 (0.0815)
glmnet Groundnut_AL PYPP 0.2395 (0.0381) 0.348 (0.2086)
glmnet-M Groundnut_AL PYPP 0.1931 (0.0337) 0.6334 (0.1233)
rrBLUP Groundnut_AL PYPP 0.1949 (0.0329) 0.623 (0.1239)
BGLR Groundnut_AL PYPP 0.1948 (0.0335) 0.6235 (0.1186)
glmnet Groundnut_AL SYPP 0.2645 (0.0397) 0.3335 (0.1941)
glmnet-M Groundnut_AL SYPP 0.2167 (0.0299) 0.6141 (0.1103)

(continued)
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Consequently, we concluded that glmnet-M prevails as the pre-
ferred model in most of the traits evaluated, due to its consistent 
improvement in predictive accuracy, as evidenced by the NRMSE 

and Pearson Correlation. Overall, glmnet-M is 0.59% better than 
glmnet for the NRMSE metric, while for COR, glmnet-M is 
34.16% better.

Table 1. (continued)

Method Dataset Trait NRMSE (SD) Cor (SD)

rrBLUP Groundnut_AL SYPP 0.2186 (0.0306) 0.6019 (0.1158)
BGLR Groundnut_AL SYPP 0.2185 (0.031) 0.6026 (0.111)
glmnet Groundnut_AL YPH 0.3245 (0.0522) 0.389 (0.2312)
glmnet-M Groundnut_AL YPH 0.2562 (0.0418) 0.6497 (0.1553)
rrBLUP Groundnut_AL YPH 0.2603 (0.0404) 0.6338 (0.1733)
BGLR Groundnut_AL YPH 0.2578 (0.0415) 0.6427 (0.1682)
glmnet Indica_AL GC 0.4568 (0.1139) 0.2396 (0.2903)
glmnet-M Indica_AL GC 0.4439 (0.1105) 0.3299 (0.2335)
rrBLUP Indica_AL GC 0.4367 (0.1038) 0.3984 (0.2086)
BGLR Indica_AL GC 0.4358 (0.1027) 0.3986 (0.208)
glmnet Indica_AL GY 0.063 (0.0065) 0.636 (0.0825)
glmnet-M Indica_AL GY 0.0549 (0.0069) 0.6392 (0.0793)
rrBLUP Indica_AL GY 0.0552 (0.0078) 0.6313 (0.0874)
BGLR Indica_AL GY 0.0554 (0.008) 0.627 (0.0899)
glmnet Indica_AL PH 0.0451 (0.0054) 0.5447 (0.1294)
glmnet-M Indica_AL PH 0.0425 (0.0068) 0.5334 (0.1444)
rrBLUP Indica_AL PH 0.0426 (0.0066) 0.5395 (0.1393)
BGLR Indica_AL PH 0.0428 (0.0066) 0.5362 (0.1394)
glmnet Indica_AL PHR 0.0369 (0.0078) 0.2493 (0.2163)
glmnet-M Indica_AL PHR 0.0349 (0.0048) 0.3537 (0.2553)
rrBLUP Indica_AL PHR 0.0331 (0.0055) 0.433 (0.2577)
BGLR Indica_AL PHR 0.0331 (0.0055) 0.4308 (0.2598)
glmnet Japonica_AL GC 0.2921 (0.0236) 0.4134 (0.146)
glmnet-M Japonica_AL GC 0.2652 (0.0185) 0.49 (0.1639)
rrBLUP Japonica_AL GC 0.2512 (0.0184) 0.5604 (0.146)
BGLR Japonica_AL GC 0.251 (0.0186) 0.5604 (0.1478)
glmnet Japonica_AL GY 0.0726 (0.0146) 0.4172 (0.1452)
glmnet-M Japonica_AL GY 0.0641 (0.0148) 0.5594 (0.1192)
rrBLUP Japonica_AL GY 0.0635 (0.0146) 0.5704 (0.1182)
BGLR Japonica_AL GY 0.0634 (0.0145) 0.5717 (0.1152)
glmnet Japonica_AL PH 0.0515 (0.0178) 0.3265 (0.1055)
glmnet-M Japonica_AL PH 0.0451 (0.0133) 0.5443 (0.1345)
rrBLUP Japonica_AL PH 0.0432 (0.0142) 0.6076 (0.0626)
BGLR Japonica_AL PH 0.043 (0.0145) 0.6093 (0.0666)
glmnet Japonica_AL PHR 0.0342 (0.0034) 0.465 (0.1046)
glmnet-M Japonica_AL PHR 0.0312 (0.0032) 0.5178 (0.0954)
rrBLUP Japonica_AL PHR 0.0304 (0.0034) 0.5434 (0.1035)
BGLR Japonica_AL PHR 0.0304 (0.0034) 0.544 (0.1042)
glmnet Maize_AL GY 125.4845 (387.7244) 0.4308 (0.0708)
glmnet-M Maize_AL GY 125.49 (387.724) 0.43 (0.0702)
rrBLUP Maize_AL GY 124.4375 (384.3821) 0.4368 (0.0692)
BGLR Maize_AL GY 124.4613 (384.4521) 0.4377 (0.0688)
glmnet Wheat_1_AL GY 0.0555 (0.0039) 0.2262 (0.0898)
glmnet-M Wheat_1_AL GY 0.0502 (0.0044) 0.4648 (0.0529)
rrBLUP Wheat_1_AL GY 0.0489 (0.0045) 0.5055 (0.0551)
BGLR Wheat_1_AL GY 0.0489 (0.0045) 0.5052 (0.0551)
glmnet Wheat_2_AL GY 0.0454 (0.0034) 0.1167 (0.1509)
glmnet-M Wheat_2_AL GY 0.0431 (0.003) 0.3242 (0.076)
rrBLUP Wheat_2_AL GY 0.0419 (0.003) 0.3948 (0.0875)
BGLR Wheat_2_AL GY 0.0419 (0.003) 0.3937 (0.0854)
glmnet Wheat_3_AL GY 0.0452 (0.0017) 0.3268 (0.0658)
glmnet-M Wheat_3_AL GY 0.0416 (0.0015) 0.4696 (0.0592)
rrBLUP Wheat_3_AL GY 0.0414 (0.0014) 0.4781 (0.0543)
BGLR Wheat_3_AL GY 0.0414 (0.0014) 0.4773 (0.0548)
glmnet Wheat_4_AL GY 0.0462 (0.0019) 0.1334 (0.113)
glmnet-M Wheat_4_AL GY 0.0438 (0.0019) 0.3349 (0.0399)
rrBLUP Wheat_4_AL GY 0.0431 (0.0018) 0.3775 (0.0188)
BGLR Wheat_4_AL GY 0.0431 (0.0018) 0.3761 (0.0186)
glmnet Wheat_5_AL GY 0.0404 (0.0029) 0.321 (0.0511)
glmnet-M Wheat_5_AL GY 0.038 (0.0025) 0.4318 (0.0489)
rrBLUP Wheat_5_AL GY 0.0376 (0.0025) 0.4486 (0.0517)
BGLR Wheat_5_AL GY 0.0377 (0.0025) 0.4475 (0.0509)
glmnet Wheat_6_AL GY 0.0461 (0.0028) 0.3528 (0.0482)
glmnet-M Wheat_6_AL GY 0.041 (0.0031) 0.5253 (0.0424)
rrBLUP Wheat_6_AL GY 0.0403 (0.0031) 0.548 (0.042)
BGLR Wheat_6_AL GY 0.0403 (0.0031) 0.5476 (0.0421)

SD represents the standard deviation across folds, with glmnet and glmnet-M methods in each dataset (Dataset) and for each trait (Trait).
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EYT_1
In Fig. 2, the results of the glmnet and glmnet-M methods in the 
“EYT_1” dataset (Tables 1 and 2) suggest substantial differences 
in their predictive capacity for the 4 traits (DTHD, DTMT, GY, 
and Height). Across all the evaluated traits, glmnet-M consistently 
displays a significantly higher performance compared with 
glmnet, as evidenced by both the NRMSE and Cor. In terms of 

NRMSE, glmnet-M presents a significant improvement across all 
traits, with average differences of 0.0048, 0.0042, 0.0056, and 
0.0028 for DTHD, DTMT, GY, and Height, respectively. Similarly, 
Cor shows a substantial improvement for glmnet-M across all 
traits, with average differences of 0.2095, 0.2076, 0.1893, and 
0.1991 for DTHD, DTMT, GY, and Height, respectively.

Therefore, we concluded that glmnet-M prevails as the pre-
ferred method for all the evaluated traits in the “EYT_1” dataset, 
given its statistically greater performance in terms of predictive 
error and correlation. Overall, glmnet-M is 11.33% better than 
glmnet for the NRMSE metric, whereas for Cor, glmnet-M is 
76.15% better.

Indica
For the “Indica” dataset and the trait “GC,” the glmnet-M model 
outperforms the glmnet model in terms of NRMSE (Tables 1 and 
2), with an average value of 0.4439 compared with glmnet’s 
0.4568. This represents an improvement of approximately 3.02% 
(Fig. 3). Additionally, in terms of Cor, the glmnet-M model also sur-
passes the glmnet method, with an average value of 0.3299 com-
pared with glmnet-M 0.2396. This represents an improvement of 
approximately 37.76%. In summary, the glmnet-M model is super-
ior to the glmnet model for the “GC” trait in the “Indica” dataset, 
with significant improvements in both evaluation metrics.

For the GY trait, the glmnet-M has an average NRMSE of 0.0549, 
whereas the glmnet has an average NRMSE of 0.063. This repre-
sents a 12.96% improvement in the NRMSE of the glmnet-M meth-
od against the glmnet. Regarding Cor, the glmnet-M model has an 
average value of 0.6392, which is higher than the glmnet method, 
with an average value of 0.636.

For the PH trait, the glmnet-M has an average NRMSE of 0.0425, 
whereas the glmnet has an average NRMSE of 0.0451. This repre-
sents a 5.76% improvement in the NRMSE of the glmnet-M method 
regarding the conventional approach (glmnet). Additionally, in 
terms of Cor, the glmnet-M model has an average value of 0.5334, 
which is higher than the glmnet method, with an average value of 
0.5447.

For the PHR trait, the glmnet-M has an average NRMSE of 
0.0349, whereas the glmnet has an average NRMSE of 0.0369. 
This represents a 5.42% improvement in the NRMSE. Regarding 
Cor, the glmnet-M has an average value of 0.3537, which is higher 
than the glmnet average value of 0.2493. Overall, glmnet-M is bet-
ter by 4.44% compared with glmnet for the NRMSE metric, while 
for Cor, glmnet-M is 11.16% better.

Wheat_1-Wheat_6
In the “Wheat_1” dataset, the glmnet-M method performed better, 
as it has an average NRMSE of 0.0502 and an average Pearson 
Correlation of 0.4648, whereas the glmnet has an average 
NRMSE of 0.0555 and an average Pearson Correlation of 0.2262. 
Consequently, glmnet-M is superior by 10.56% compared with 

Table 2. Average NRMSE and average Cor across traits and across 
folds, with glmnet, glmnet-M, rrBLUP, and BGLR methods in each 
dataset (dataset).

Method Dataset NRMSE (SD) Cor (SD)

glmnet Disease_AL 0.4271 (0.0429) 0.1253 (0.0493)
glmnet-M Disease_AL 0.4246 (0.0466) 0.1681 (0.0806)
rrBLUP Disease_AL 0.4226 (0.046) 0.1927 (0.0662)
BGLR Disease_AL 0.4229 (0.0471) 0.1953 (0.0689)
glmnet EYT_1_AL 0.0501 (0.0124) 0.2688 (0.0354)
glmnet-M EYT_1_AL 0.045 (0.0106) 0.4735 (0.0445)
rrBLUP EYT_1_AL 0.0447 (0.0105) 0.4849 (0.0424)
BGLR EYT_1_AL 0.0447 (0.0105) 0.4849 (0.0426)
glmnet EYT_2_AL 0.0442 (0.0142) 0.2793 (0.054)
glmnet-M EYT_2_AL 0.0387 (0.0121) 0.5185 (0.0554)
rrBLUP EYT_2_AL 0.0382 (0.0118) 0.5351 (0.0549)
BGLR EYT_2_AL 0.0382 (0.0118) 0.5347 (0.0549)
glmnet EYT_3_AL 0.0391 (0.0144) 0.2772 (0.0716)
glmnet-M EYT_3_AL 0.0348 (0.0128) 0.5029 (0.0093)
rrBLUP EYT_3_AL 0.0344 (0.0126) 0.5172 (0.0105)
BGLR EYT_3_AL 0.0344 (0.0126) 0.5175 (0.0094)
glmnet Groundnut_AL 0.2729 (0.0362) 0.3382 (0.044)
glmnet-M Groundnut_AL 0.217 (0.0278) 0.6413 (0.0229)
rrBLUP Groundnut_AL 0.2185 (0.0295) 0.6325 (0.029)
BGLR Groundnut_AL 0.2179 (0.0284) 0.6349 (0.0289)
glmnet Indica_AL 0.1505 (0.2045) 0.4174 (0.2032)
glmnet-M Indica_AL 0.1441 (0.2) 0.464 (0.1479)
rrBLUP Indica_AL 0.1419 (0.1967) 0.5006 (0.1058)
BGLR Indica_AL 0.1418 (0.1961) 0.4981 (0.104)
glmnet Japonica_AL 0.1126 (0.1206) 0.4056 (0.0576)
glmnet-M Japonica_AL 0.1014 (0.11) 0.5279 (0.0305)
rrBLUP Japonica_AL 0.0971 (0.1036) 0.5704 (0.0271)
BGLR Japonica_AL 0.097 (0.1036) 0.5714 (0.0277)
glmnet Maize_AL 125.4845 (0) 0.4308 (0)
glmnet-M Maize_AL 125.49 (0) 0.43 (0)
rrBLUP Maize_AL 124.4375 (0) 0.4368 (0)
BGLR Maize_AL 124.4613 (0) 0.4377 (0)
glmnet Wheat_1_AL 0.0555 (0) 0.2262 (0)
glmnet-M Wheat_1_AL 0.0502 (0) 0.4648 (0)
rrBLUP Wheat_1_AL 0.0489 (0) 0.5055 (0)
BGLR Wheat_1_AL 0.0489 (0) 0.5052 (0)
glmnet Wheat_2_AL 0.0454 (0) 0.1167 (0)
glmnet-M Wheat_2_AL 0.0431 (0) 0.3242 (0)
rrBLUP Wheat_2_AL 0.0419 (0) 0.3948 (0)
BGLR Wheat_2_AL 0.0419 (0) 0.3937 (0)
glmnet Wheat_3_AL 0.0452 (0) 0.3268 (0)
glmnet-M Wheat_3_AL 0.0416 (0) 0.4696 (0)
rrBLUP Wheat_3_AL 0.0414 (0) 0.4781 (0)
BGLR Wheat_3_AL 0.0414 (0) 0.4773 (0)
glmnet Wheat_4_AL 0.0462 (0) 0.1334 (0)
glmnet-M Wheat_4_AL 0.0438 (0) 0.3349 (0)
rrBLUP Wheat_4_AL 0.0431 (0) 0.3775 (0)
BGLR Wheat_4_AL 0.0431 (0) 0.3761 (0)
glmnet Wheat_5_AL 0.0404 (0) 0.321 (0)
glmnet-M Wheat_5_AL 0.038 (0) 0.4318 (0)
rrBLUP Wheat_5_AL 0.0376 (0) 0.4486 (0)
BGLR Wheat_5_AL 0.0377 (0) 0.4475 (0)
glmnet Wheat_6_AL 0.0461 (0) 0.3528 (0)
glmnet-M Wheat_6_AL 0.041 (0) 0.5253 (0)
rrBLUP Wheat_6_AL 0.0403 (0) 0.548 (0)
BGLR Wheat_6_AL 0.0403 (0) 0.5476 (0)

SD represents the standard deviation across traits and across folds, with 
glmnet and glmnet-M methods in each dataset (Dataset). Note that because 
there is only one trait in the Maize and Wheat_1-Wheat_6 datasets, the 
corresponding SD is 0.

Table 3. Average NRMSE and average Cor across different 
datasets (dataset) of the mean values obtained across traits, with 
glmnet and glmnet-M methods.

Method NRMSE (SD) Cor (SD)

glmnet 9.0614 (33.509) 0.2871 (0.1053)
glmnet-M 9.0538 (33.5128) 0.4483 (0.1131)
rrBLUP 8.9777 (33.2317) 0.473 (0.1052)
BGLR 8.9794 (33.2381) 0.473 (0.1051)

SD represents the standard deviation of the metric across different datasets of 
the mean values obtained across traits.
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glmnet in terms of the NRMSE metric, while in terms of Cor, 
glmnet-M is superior by 105.48% (Fig. 4, Tables 1 and 2).

In the “Wheat_2”, “Wheat_3”, “Wheat_4”, “Wheat_5”, and 
“Wheat_6” datasets, a better performance of glmnet-M was ob-
served compared with glmnet, expressed as a lower average 
NRMSE and a higher average Pearson Correlation in all datasets. 
This suggests that the glmnet-M model is more effective for these 
specific datasets in terms of prediction error (NRMSE) and Cor. 
Overall, glmnet-M is better by an interval of 5.34 to 12.44% com-
pared with glmnet for the NRMSE metric, while for Pearson 
Correlation, glmnet-M is between 34.52 and 177.81% better.

Across trait
In Fig. 5, the average NRMSE and average Pearson Correlation are 
presented for each dataset, comparing the glmnet and glmnet-M 
methods. The average NRMSE value for glmnet is 9.0614, with a 
SD of 33.509, whereas for glmnet-M, it is slightly lower, with a value 
of 9.0538 and a SD of 33.5128. Regarding the average Pearson 
Correlation, glmnet-M has a considerably higher value, with an 
average of 0.4483 and a SD of 0.1131, compared with glmnet, which 
has an average of 0.2871 and a SD of 0.1053. This suggests that the 
glmnet-M method tends to produce more accurate predictions 
across a variety of datasets compared with glmnet. Since in terms 
of Cor the average gain of the proposed method glmnet-M was 
56.15% regarding the conventional method (glmnet), no significant 
differences were observed in terms of NRMSE.

Table 3 gives the average NRMSE and average Cor across different 
datasets (Dataset) of the mean values obtained across traits, with 
glmnet and glmnet-M methods, Overall results show an important 
increase in correlation between observed and predicted values 
when using the glment-M (0.4483) over the standard glment (0.2871).

Furthermore, boxplots of the logarithm of the ratio of the “op-
timal” lambda values (log (λOglmnet /λOglmnet−M )) found in the tun-
ning process with the glmnet (λOglmnet) and glmnet-M (λOglmnet−M ) 
methods, obtained in each fold during the 10-fold cross-validation 
evaluation, are shown in Fig. 6. From this, we can observe that for 
all datasets, except for the traits SN (Disease_AL data) and GY 

(Maize data), in which only 6 out of the 10 folds and 7 out of 
10 folds, respectively, this log (λOglmnet /λOglmnet−M ) values 
are > 0. This indicates that the ratio of the “optimal”, 
λOglmnet /λOglmnet−M, are larger than 1 and therefore, the penaliza-
tion strength in the glmnet method tends to be much higher 
than in glmnet-M. This is a consequence of the larger search space 
of the grid lambda values used in the tunning process with the 
glmnet-M method compared with the corresponding grid used 
in the glmnet method. As shown in Fig. 7 for the Disease data, 
the support of the histogram of logarithmic lambda grid values 
in the glmnet method is entirely contained within the support of 
the histogram for the glmnet-M method, that is, the range of the 
histogram of the logarithmic lambda grid values in the glmnet 
method is entirely within the range of the histogram of lambda 
grid values in the glmnet-M method. Although not shown, a 
very similar behavior was observed in the other datasets.

Finally, in the same figures the results of the performance evalu-
ation of the glmnet and glmnet-M methods were reported, Figs. 1–4
and Figs. B1–B5 (Appendix B), the corresponding performance pre-
dictions of rrBLUP (Endelman 2011) and BGLR (Pérez and de Los 
Campos 2014) were also included for comparative purposes. 
These correspond to the classic GBLUP and Bayesian GBLUP predic-
tion methods, respectively. These are 2 of the current workhorses 
in genomic prediction due to their powerful prediction perform-
ance. We can observe that in all datasets, the proposed modified 
tuning parameter glmnet method, glmnet-M, is very competitive 
with respect to these 2 additional methods (rrBLUP and BGLR) in 
both evaluated metrics, except in the Wheat_2 and Wheat_4 data-
sets, where our proposal shows a slightly less competitive perform-
ance according to the Pearson correlation metric.

Discussion
Ridge regression continues to be a popular statistical learning al-
gorithm for genomic prediction, mainly due to its accuracy, sim-
plicity, and the availability of user-friendly software. For these 
reasons, it has been implemented in diverse fields such as finance, 

Fig. 6. Boxplots of the logarithm of the ratio of optimal lambda values for the glmnet and glmnet-M methods obtained in each fold during the 10-fold 
cross-validation for each trait and each dataset.
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economics, medicine and healthcare, marketing, geophysics and 
geology, engineering, social sciences, image and signal processing, 
text mining, and natural language processing, among others.

Although Ridge regression is widely used, it is important to high-
light that, in the version analyzed in this paper, the method as-
sumes a linear relationship between the features and the target 
variable. When this assumption is not met, the model’s predictive 
performance may be compromised, as Ridge regression is unable 
to capture nonlinear patterns in the data. It is important to note 
that Ridge regression is not limited to modeling linear relationships; 
it can also efficiently handle nonlinear patterns. Additionally, the 
prediction accuracy of this method depends on the bias-variance 
tradeoff. Ridge regression introduces bias to reduce variance, which 
can sometimes lead to underfitting, especially if the regularization 
parameter (λ) is too high. Therefore, the optimal selection of λ is crit-
ical to balance model complexity and generalization performance. 
It controls the tradeoff between overfitting and underfitting, ensur-
ing the model captures relevant patterns in the data without mem-
orizing noise. By tuning λ, practitioners can improve the model’s 
interpretability by adjusting the magnitude of coefficients. 
Additionally, λ helps stabilize coefficient estimation in the presence 
of multicollinearity, enhancing the model’s robustness. Ultimately, 
selecting the right λ maximizes the model’s predictive accuracy and 
reliability on unseen data.

To guarantee the best Ridge regression performance, the opti-
mal selection of the regularization parameter λ is essential. The 
prevailing method to determine the optimal regularization par-
ameter involves setting a range of λ values and a grid resolution 
for grid search, as outlined in the materials and methods section. 
However, the chosen grid resolution can significantly influence 
the selected λ value, potentially leading to suboptimal outcomes 
if the true optimal value is not covered by the grid points. 
Moreover, the prevalent methods to select the optimal λ through 
cross-validation and grid search primarily focus on optimizing 
model performance, often neglecting a thorough understanding 
of the relationships between predictors and the target variable. 
Consequently, the chosen λ value may lack interpretability and 
a robust connection with the target variable, increasing the likeli-
hood of not selecting the truly optimal λ.

To improve the optimal selection of the regularization param-
eter (λ), we propose a method that selects the grid of λ values by 
computing each component of λ as a proportion of the phenotypic 
response in the training set. This method is inspired by how priors 
are given in Bayesian ridge regression (details are provided in 
Appendix 2, Chapter 6 of the book by Montesinos-López et al. 
2022). Our results, evaluated on 14 real datasets, show significant 
gains—around 56.15% improvement in terms of Cor—although no 
gains were observed in terms of NRMSE. The observed gain can be 
attributed to the efficiency of the proposed method to select λ va-
lues for the grid that are strongly related to the inputs and the tar-
get variable. Thus, the proposed method enhances existing 
alternatives to select the optimal regularization parameter (λ).

In general, the proposed approach for the optimal selection of 
the regularization parameter (λ) in Ridge regression is of para-
mount importance as it enhances the prediction power of one of 
the most popular linear models used in many areas of science. 
Ridge regression is particularly important in genomic prediction 
due to its ability to handle multicollinearity among genetic mar-
kers, providing more stable and reliable estimates. It effectively 
shrinks coefficients, reducing overfitting and enhancing model 
generalizability. Ridge regression also accommodates large-scale 
genomic data by penalizing the magnitude of regression coeffi-
cients, thereby managing the high dimensionality characteristic 
of genomic datasets.

Additionally, it aids in the inclusion of all available markers, which 
is crucial for capturing the complex genetic architecture of traits. 
Ultimately, its regularization properties improve the predictive ac-
curacy and robustness of genomic studies. Furthermore, the 
Supplementary Materials demonstrate that the proposed method is 
effective not only for Ridge regression but also to tune the regulariza-
tion parameter (λ) in Lasso (α=1) and Elastic Net (0<α<1) regression. 
The most significant improvement was observed in Ridge regres-
sion, with the least improvement in Lasso regression. According 
to the notation used in the glmnet library, Ridge regression is im-
plemented when α=0, Lasso regression when α=1, and Elastic Net 
regression when 0<α<1. Therefore, the proposed method is highly 
attractive to enhance prediction performance in penalized re-
gression models.

Fig. 7. Histograms of the log(lambda) grid values in the glmnet and glmnet-M methods across all folds in the 10-fold cross-validation.
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Additionally, we acknowledge that the proposed method can be 
extended to other types of response variables within the context 
of Ridge regression. With relatively straightforward modifications, 
it can be generalized to penalized binomial, Poisson, and other 
types of response variables in penalized regression model. Also, 
in future works, the proposed method can be compared with the 
method of Pavlou et al. (2024) proposed in the context of logistic re-
gression for binary response variables.

Conclusions
In this article, we propose a more efficient approach for selecting 
the regularization parameter for Ridge regression. Using 14 data-
sets, we show that the proposed method outperformed the conven-
tional method in 13 of them. The gains obtained were 56.09% in 
terms of Cor, with no significant differences observed in terms of 
the NRMSE across the 14 datasets. Therefore, we encourage the 
use of the proposed method to increase empirical evidence of its 
ability to enhance the prediction performance of Ridge regression. 
Although there are many statistical machine learning methods 
currently used for genomic prediction, the improvements obtained 
with our method to efficiently tune the regularization parameter of 
the Ridge regression may help it remain one of the most popular al-
gorithms in the context of genomic prediction.

Data availability
The data and code used in this publication are available at: 
https://github.com/osval78/Refaning_Penalized_Regression. The 
Supplementary Material contains Figs. 1–20 and Tables 1–3.
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Appendix A
Setting each component of lambda λ = σ2/σ2

β as a 
proportion of the total response variable
In Appendix 2 of Chapter 6 of Montesinos-López et al. (2022) express 
the total variance explained by the response variable of model (1) in 
terms of the inputs (markers) and error component as:

Var(yj) = Var(xT
j β) + σ2 (A1) 

Therefore, the average of the variance of the individuals, called to-
tal variance, is equal to

1
ntrn

ntrn

j=1

Var(yj) =
1

ntrn

ntrn

j=1

Var(xT
j β) + σ2 =

1
ntrn

tr(XXT)σ2
β + σ2 = VM

+ Vϵ

.

Then, by setting R2
1 as a proportion of the total variance (s2

y), that is 

explained by inputs a priori, VM = R2
1s2

y , and equating 1
ntrn

tr(XXT)σ2
β to 
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VM = R2
1s2

y

1
ntrn

tr(XXT)σ2
β = R2

1s2
y .

From here, once we rewrite the variance for σ2
β as

σ2
β =

R2
1s2

y

1
ntrn

tr(XXT)
=

R2
1s2

y

1
ntrn

ntrn

i=1
xT

i xi 

Since the expression given in Equation (A1) only has 2 components 

and R2
1 was set as the proportion of the total variance that is ex-

plained by inputs a priori, the corresponding proportion that is ex-

plained by error a priori is R2
2 = 1 − R2

1. Therefore, the variance of the 
error component expressed as a proportion of variance of the total 

variance can be expressed as

σ2 = (1 − R2
1)s2

y 

For this reason, λ can be expressed as:

λ =
σ2

σ2
β

=
(1 − R2

1)s2
y

R2
1s2

y/
1

ntrn

ntrn

i=1
xT

i xi

  =
1 − R2

1

R2
1/

1
ntrn

ntrn

i=1
xT

i xi

 

Appendix B
Figures for datasets EYT_2 (Figure B1), EYT_3 (Figure B2), 
Groundnut (Figure B3), Japonica (Figure B4), and maize 
(Figure B5).

Table A1. Brief data description.

Data No. Lines No. Markers Multi-Environment data BLUEs across environments Experimental design

Indica 327 16,383 YES YES RCBD
Japonica 320 16,383 YES YES RCBD
Groundnut 318 8,268 YES YES Alpha-lattice
Maize 722 54,113 YES YES RCBD
Wheat_1 1,301 78,606 YES YES Alpha-lattice
Wheat_2 1,403 78,606 YES YES Alpha-lattice
Wheat_3 1,403 78,606 YES YES Alpha-lattice
Wheat_4 1,388 78,606 YES YES Alpha-lattice
Wheat_5 1,398 78,606 YES YES Alpha-lattice
Wheat_6 1,277 78,606 YES YES Alpha-lattice
EYT_1 776 2,038 YES YES Alpha-lattice
EYT_2 775 2,038 YES YES Alpha-lattice
EYT_3 964 2,038 YES YES Alpha-lattice
Disease 438 11,617 YES YES RCBD

RCBD denotes randomized complete block design, while alpha-lattice denotes the alpha lattice experimental design.

Fig. B1. Box plots for the EYT_2 dataset with glmnet and gmlnet-M Models (model). a) Box Plot of the performance with Cor between observed and 
predicted values through 10-fold cross-validation for each of the 4 traits (DTHD, DTMT, GY, and Height). b) Box Plot of the performance with the NRMSE 
between observed and predicted values through 10-fold cross-validation for each of the 4 traits (DTHD, DTMT, GY, and Height).
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Fig. B2. Box plots for the EYT_3 dataset with glmnet and gmlnet-M Models (model). a) Box Plot of the performance with Cor between observed and 
predicted values through 10-fold cross-validation for each of the 4 traits (DTHD, DTMT, GY, and Height). b) Box Plot of the performance with the NRMSE 
between observed and predicted values through 10-fold cross-validation for each of the 4 traits (DTHD, DTMT, GY, and Height).

Fig. B3. Box plots for the Groundnut dataset with glmnet and gmlnet-M Models (model). a) Box Plot of the performance with Cor between observed and 
predicted values through 10-fold cross-validation for each of the 4 traits (NPP, PYPP, SYPP, and YPH). b) Box Plot of the performance with the NRMSE 
between observed and predicted values through 10-fold cross-validation for each of the 4 traits (NPP, PYPP, SYPP, and YPH).
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Fig. B4. Box plots for the Japonica dataset with glmnet and gmlnet-M Models (model). a) Box Plot of the performance with Cor between observed and 
predicted values through 10-fold cross-validation for each of the 4 traits (GC, GY, PH, and PHR). b) Box Plot of the performance with the NRMSE between 
observed and predicted values through 10-fold cross-validation for each of the 4 traits (GC, GY, PH, and PHR).

Fig. B5. Box plots for the Maize dataset with glmnet and gmlnet-M Models (model). a) Box Plot of the performance with Cor between observed and 
predicted values through 10-fold cross-validation for the unique trait (GY). b) Box Plot of the performance with the NRMSE between observed and 
predicted values through 10-fold cross-validation for the unique trait (GY).
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