Por favor, use este identificador para citar o enlazar este ítem:
https://hdl.handle.net/20.500.12008/46194
Cómo citar
Título: | Fraud detection using event logs with LSTM and gradient boosting. |
Autor: | Acevedo, Emiliano Massaferro Saquieres, Pablo Fernández, Alicia Martins Masner, Alexander Caudullo, Gonzalo |
Tipo: | Ponencia |
Palabras clave: | Energy consumption, Recurrent neural networks, Costs, Time series analysis, Energy resolution, Feature extraction, Particle measurements |
Fecha de publicación: | 2023 |
Resumen: | Automatic non-technical power loss detection methods have advanced significantly as data volume has increased with smart meter installation. Recently, academic works have mainly focused on the impact of the high resolution of the energy consumption time series, leaving aside the integration of event logs within machine learning solutions. Due to the variety of alarms and depending on electrical installation health, millions of alarm events can be generated requiring an automatic analysis of them. In this work, we propose a method that considers the sequential nature of alarm log information using a recurrent neural network and evaluate two strategies for including this information within an existing state-of-the-art NTL classifier. The experiments are reported in actual smart meter data provided by the Uruguayan utility, showing that it is possible to double the precision for on-field applicable operating thresholds. |
EN: | 2023 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT), Washington, DC, USA, 16-19 jan. 2023, pp. 1-5. |
Financiadores: | Los autores agradecen a UTE por financiar el proyecto, así como por proporcionar los conjuntos de datos y compartir su experiencia sobre el problema. |
Citación: | Acevedo, E., Massaferro Saquieres, P., Fernández, A. y otros. Fraud detection using event logs with LSTM and gradient boosting [en línea]. EN: 2023 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT), Washington, DC, USA, 16-19 jan. 2023, pp. 1-5. |
Departamento académico: | Procesamiento de Señales |
Grupo de investigación: | Tratamiento de Imagenes |
Aparece en las colecciones: | Publicaciones académicas y científicas - Instituto de Ingeniería Eléctrica |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | ||
---|---|---|---|---|---|
AMFMC23.pdf | Camera Ready | 822,1 kB | Adobe PDF | Visualizar/Abrir |
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons