english Icono del idioma   español Icono del idioma  

Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/20.500.12008/46194 Cómo citar
Título: Fraud detection using event logs with LSTM and gradient boosting.
Autor: Acevedo, Emiliano
Massaferro Saquieres, Pablo
Fernández, Alicia
Martins Masner, Alexander
Caudullo, Gonzalo
Tipo: Ponencia
Palabras clave: Energy consumption, Recurrent neural networks, Costs, Time series analysis, Energy resolution, Feature extraction, Particle measurements
Fecha de publicación: 2023
Resumen: Automatic non-technical power loss detection methods have advanced significantly as data volume has increased with smart meter installation. Recently, academic works have mainly focused on the impact of the high resolution of the energy consumption time series, leaving aside the integration of event logs within machine learning solutions. Due to the variety of alarms and depending on electrical installation health, millions of alarm events can be generated requiring an automatic analysis of them. In this work, we propose a method that considers the sequential nature of alarm log information using a recurrent neural network and evaluate two strategies for including this information within an existing state-of-the-art NTL classifier. The experiments are reported in actual smart meter data provided by the Uruguayan utility, showing that it is possible to double the precision for on-field applicable operating thresholds.
EN: 2023 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT), Washington, DC, USA, 16-19 jan. 2023, pp. 1-5.
Financiadores: Los autores agradecen a UTE por financiar el proyecto, así como por proporcionar los conjuntos de datos y compartir su experiencia sobre el problema.
Citación: Acevedo, E., Massaferro Saquieres, P., Fernández, A. y otros. Fraud detection using event logs with LSTM and gradient boosting [en línea]. EN: 2023 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT), Washington, DC, USA, 16-19 jan. 2023, pp. 1-5.
Departamento académico: Procesamiento de Señales
Grupo de investigación: Tratamiento de Imagenes
Aparece en las colecciones: Publicaciones académicas y científicas - Instituto de Ingeniería Eléctrica

Ficheros en este ítem:
Fichero Descripción Tamaño Formato   
AMFMC23.pdfCamera Ready822,1 kBAdobe PDFVisualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons