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Abstract—Automatic non-technical power loss detection methods
have advanced significantly as data volume has increased with smart
meter installation. Recently, academic works have mainly focused on
the impact of the high resolution of the energy consumption time
series, leaving aside the integration of event logs within machine
learning solutions. Due to the variety of alarms and depending
on electrical installation health, millions of alarm events can be
generated requiring an automatic analysis of them. In this work,
we propose a method that considers the sequential nature of alarm
log information using a recurrent neural network and evaluate two
strategies for including this information within an existing state-
of-the-art NTL classifier. The experiments are reported in actual
smart meter data provided by the Uruguayan utility, showing that
it is possible to double the precision for on-field applicable operating
thresholds.

I. INTRODUCTION

Automatic fraud detection and prevention have been very active
research topics in recent years, both at academic and business
levels [1], [2]. In particular, in the detection of irregularities with
the consumption of electrical energy, numerous proposals have
been made, from combinatorial optimization approaches and the
use of AMI network topologies to complex deep learning systems
that combine numerous data sources [3], [4], [5], [6], [7]. How-
ever, very little has been written about the use of alarms events
generated by smart meters. This may be due to the assumption that
an alarm of tampering or leakage of current in a device necessarily
configures fraud. The devices used for telemetering by energy
distribution companies, known as Smart Meters (SMs), have a
series of protections designed to limit or detect their manipulation.
Contact sensors within the protection systems are included to

detect the opening of the terminal board cover or the meter casing
itself. In addition, they include current measurement in all power
phases (single-phase or three-phase), which allows measuring the
differential current. Setting a threshold for said leakage current
can detect problems in the installation or even some types of
fraud. Since the beginning of the massive installation of SMs in
Uruguay by UTE in 2019, a huge volume of alarm data began
to be generated. In particular, the differential current recording
generated millions of events in a short time.

In practice, there can be many reasons why an alarm is gener-
ated, and this can lead to false positives, generating unnecessary
on-site inspections and cost overruns for the utility. Until now,
we have not found academic work that studies the data patterns
of the alarms generated by smart meters. In [8], the occurrence
of alarms is included within the NTL detection system. The
consumption measurement is taken on a daily basis, each with
a binary vector of alarms. The authors use the encoding of the
IEC 870-5-102 standard, where an 8-bit code defines the quality
of each measurement. Two characteristics are extracted from these
alarms at different time intervals, the number of occurrences and
the time since the last occurrence. These features are inputs to
train an XGB (extreme gradient boosting) ensemble. Decision tree
ensembles have recently been widely used algorithms to address
the NTL detection problem, either trained directly on the [9],
[10] data or combined with deep learning algorithms to extract
features [5], [11]. For example, [9] combines the use of XGB,
LigthGB and CatBoost for simulated fraud detection based on
CER [12]. Buzau et al. [8] work with a database of 57k clients
with real data and integrate different sources of information to
train classification models. Although [8] uses information about
some alarms generated by SMs, it does not consider this data’s978-1-6654-4421-7/21/$31.00 ©2021 IEEE



sequential nature. On the other hand, LSTM-based deep learning
architectures have also been used to address the NTL problem. In
[13], they propose using a two-input architecture. In the first input,
an LSTM network is fed with weekly data vectors containing
the daily consumption, the number of null measurements, and
the missing data for that week. The second input consists of
normalized categorical variables that feed an MLP.

The main contributions of this work are: (i) The proposal of
two ways of extracting relevant characteristics from the alarm
logs and evaluating their discrimination capacity. (ii) Analysis of
performance variation with the amount of historical information.
(iii) Two strategies for including the features related to alarm
records in an existing deep learning NTL detection system. (iv)
Experiments in real smart meter data provided by a utility.

II. SMART METER ALARM LOG

In addition to performing remote measurements of active and
reactive energy, smart meters are equipped with sensors that allow
the detection of tampering. As it was previously mentioned, these
equipment includes sensors capable of detecting the opening and
closing at the connection terminal cover (Terminal cover) and a
sensor for opening and closing of the main cover (Top cover).
Unlike other previous systems, the SM measures energy in all
power phases by detecting differential currents. The differential
current (current reverse) may be due to problems within the
customer’s facilities (eg, current leakage to earth in electrical
appliances) or a bypass on the meter’s terminal board. The types
of alarms vary depending on the SM model used. The data for this
work was acquired within the framework of a collaborative effort
between our department and UTE, the Uruguayan State power
generation and distribution company. The company currently has
nearly 700,000 meters installed throughout the country, mostly
KAIFA model MA110PU . For more information about the
meter, visit the site http://kaifametering.com/. Table I presents
the complete list of alarms used in this work with their identifier
code.

A differential current event begins when the current difference
between phases module exceeds a threshold. In the case of UTE,
the equipment was configured to generate an alarm when the
differential current module exceeds 15% of the phase current
from a total consumption of at least 500mA. Figure 1 shows
the normalized histogram of alarms. It is seen that the differential
current is the event with the highest number of occurrences, while
the disappearance of the magnetic field is the least frequent. Most
detected events correspond to the occurrence of a phenomenon
and its restoration, for example, differential current start and end
or the opening and closing of a cover. Unlike the fifteen-minute
period energy consumption measurements, alarm data does not
have a defined cadence, as they are events generated in response
to a certain condition. These events can be generated by scheduled
operating activities of the company itself, measurement errors

(bad contact of switches), problems in the customer’s electrical
installations (leaks in appliances) or improper manipulation of the
meters by the customers or third parties.

Fig. 1: Event distribution according to alarm type.

III. RELEVANT FEATURE EXTRACTION

The occurrence of alarms holds relevant information regarding
the NTL problem. Figure 2 shows the distribution of the number
of differential current alarms according to the class. In order for
the distributions to be comparable, they were normalized so that
the area under the histogram integrates to 1. It is shown that the
more alarms the client has, the greater the probability of being
a fraud. This fact also occurs with the other alarms. As a result,
the number of occurrences of each alarm will be used as an input
characteristic. Unlike in [8] where the number of days with events
are counted, in this work we will make the total count of events.

Fig. 2: Distribution of differential current events by class
Most of the detected events correspond to the occurrence of

a phenomenon and its restoration as can be seen in Table I,

http://kaifametering.com/


for example, start and end of differential current or opening
and closing of a protection cover. These pairs of events have
almost total correlation, and the differences that may exist are
due to the problem of missing data. Since these events encode
activation intervals, we define a new feature that represents the
total activation time for each alarm. In order to calculate this
feature, it is necessary to define a time window and accumulate
the total activation time. In other words, given a time window, we
integrate the number of minutes from the beginning of the alarm
pair to its respective end.

Given the occurrence and the total activation time of the alarms,
two approaches are proposed in this work to include them into a
ML algorithm:

A. Classic Approach - SM Logs

The SM Logs consists of a vector that includes the accumulated
number of event occurrences for all the events in the Table I
and the total activation time for the events of differential current,
magnetic field and connection cover opening. These features are
computed using the latest year (50 weeks) of reported data.

B. Time Sequence Based Approach - SM SeqLog

The SM SeqLog are computed from a two-step process. First,
using a weekly time window we calculate the accumulated
number of event occurrence for all the events in the Table I and the
total activation time for the events of differential current, magnetic
field and connection cover opening. This can be seen as the
calculation of SM Logs by week. Unlike the previous approach,
we obtain a variable sequence length vector for each feature.
Secondly, we fed a two-layer 32-unit LSTM model preceded by
a BatchNormalization layer with the features computed in the
first step. This model generates a feature vector of lenght 32
that we call SM SeqLog (See Figure 3). This approach allows to
characterize the variable length alarm sequences of each client in
fixed length vectors. Figure 3 corresponds to a schematic diagram
of the feature extraction process. As mentioned, if the weekly
vectors of the number of occurrences by events and the total
activation time are accumulated, a vector is obtained that we call
SM Logs, while if we use the weekly vectors as inputs of a two-
layer 32-unit LSTM model, we obtain the SM SeqLog.

IV. EXPERIMENTS

In this section we compare the proposed approaches and as-
sesses the effect of adding these features to a detection classifier:
DAICE (see section IV-E) [14]. In addition, the effect of varying
the number of weeks on calculating features in the SM SeqLog
approach is analyzed.

A. Database

We use labeled data of 20,695 service points (SP). This
database includes information on all the inspections carried out
by UTE at customer facilities with SM between January 2019

Fig. 3: Feature Extraction Diagram

and March 2022. The irregularity rate is 8% and 94% of SPs
have the registration of at least one alarm event. The start date of
the alarms log sequence is considered from the first occurrence
of an event. The data length available for each client is variable
since the SMs have been installed at different dates. We noted that
in our dataset, only a few clients have more than 100 weeks of
alarm logs. The database also has the active energy consumption
history and a set of additional information previously used by the
DAICE system. For example, Contracted Power represents the
maximum power contracted by the client; (latitude, longitude)
the the geographical location of the meter; Late Payment the
accumulated days of delay of bills payment; and Fraud History
the number of previous irregularities detected, among others [7].

B. Performance Metrics

The choice of performance metrics when dealing with unbal-
anced class problems is not obvious. In NTL detection problems
it is common to use AUC PR and AUC ROC as metrics [7],
[13], [14]. The AUC PR represents the area under the precision
recall curve while the AUC ROC the area under the true positive
rate (TPR) and false positive rate (FPR) curve.

We also report metrics such as Recall, Precision and F-measure
at a given operation point. This is noted as P@β which mean the
precision obtained when performing inspections by labeling β%
of the samples as positive. This is analogous for recall metric.

C. SM Logs versus SM SeqLog

Taking the earliest 50 weeks of SM alarm logs, the features
SM Logs and SM SeqLog are computed. With them, we train an
XGB algorithm to compare the performance of each approach.
Using the weekly time sequences, the two-layer LSTM model to
extract the SM SeqLog features was trained with 100 epochs. A
neuron was added to the output in training to perform the clas-
sification. The results obtained on a test basis of three thousand
PS are reported in Table II. Superior performance is achieved
when using the SM SeqLog approach, obtaining an increase of
five percentage points in the AUC PR metric and the precision



at 10% of the base compared to SM Logs approach. Given the
advantages of the SM SeqLog approach, it was chosen as the
base algorithm for the inclusion of alarms in the DAICE fraud
detection pipeline.

Model P@10 R@10 FMeasure AUC PR AUC ROC
SM Logs 0,24 0,36 0,29 0,23 0,68

SM SeqLog 0,29 0,45 0,35 0,28 0,73

TABLE II: Performance of a XGB classifier with the proposed
features: SM Logs or SM SeqLog.

D. Effect of sequence length

Before including SM SeqLog features within the DAICE clas-
sification model we first analyzed the impact of alarm sequence
length in this approach. Figure 4 shows the precision-recall (PR)
curves obtained using SM SeqLog with different numbers of
weeks. Specifically, the training set uses from 10 to 100 weeks
evenly spaced every 10 weeks. This Figure shows an increase in
the area under the PR curve when the number of weeks increases.
However, it is seen that after about 50 weeks the improvement is
marginal. Table III shows the performances obtained by training
with different lengths of sequences. It is observed that using 50
weeks compared to 10 increases the PR AUC metric by eleven
percentage points and the precision at 10% of the base by twelve
percentage points. The results shown in Table III reinforces that
after 50 weeks the performance improvement is marginal. Even
though PR AUC continues to rise with the number of weeks, the
rest of the metrics do not significantly increase except for P@1.
Particularly, it can be noted that P@1 actually increases with the
number of weeks.

Fig. 4: Performance of the XGB classifier versus the number of
weeks considered in the calculation of SM SeqLog

E. DAICE system

The DAICE system refers to an XGB model that uses as input
the consumption of the last 36 months and a set of ten additional

Model P@1 R@1 P@10 R@10 PR AUC ROC AUC
10 weeks 0.47 0.07 0.17 0.27 0.17 0.62
20 weeks 0.45 0.07 0.20 0.31 0.18 0.62
30 weeks 0.57 0.09 0.24 0.36 0.22 0.66
40 weeks 0.53 0.08 0.26 0.40 0.24 0.68
50 weeks 0.62 0.09 0.29 0.45 0.28 0.73
60 weeks 0.57 0.09 0.30 0.46 0.28 0.72
70 weeks 0.57 0.09 0.28 0.43 0.27 0.74
80 weeks 0.65 0.10 0.28 0.43 0.29 0.70
90 weeks 0.68 0.10 0.29 0.44 0.31 0.71

100 weeks 0.65 0.10 0.29 0.45 0.31 0.73

TABLE III: Performance of the XGB classifier versus the
number of weeks considered in the calculation of SM SeqLog

characteristics of the SP, which are: latitude, longitude, days since
the last inspection, number of previous irregularities, maximum
power contracted, number of current reads made, the status of
agreement at the time of inspection, payment delay and days
since the start and renewal of service contract. The operation
of the DAICE system and the contribution of the additional
characteristics can be seen in greater detail in [14] where Table
II shows that this model obtains the best performance in terms of
AUC PR and AUC ROC.

F. Integration of SM SeqLog features to DAICE system

We propose and compare two architectures capable of integrat-
ing the SM SeqLog features extracted from the alarms with other
relevant information. The performance of these architectures is
compared to the results obtained by the detection system without
the use of alarm data (DAICE). The proposed architectures
consist of two different classification strategies, first an MLP
(DeepDAICE SL) and then an XGB (ExtendedDAICE). In both
cases, the coded information of the alarms was used, along with
the rest of the information used by DAICE. Figure 5 shows a
flowchart of the whole process for the case of ExtendedDAICE
since the clasifier is an XGB.

Fig. 5: Flowchart of ExtendedDAICE whole process of Fraud
Detection.

Figure 6 shows the precision-recall curves for the two ap-
proaches and their comparison with the performance of the
DAICE system without including alarm data. Clearly the perfor-
mance of the system increases significantly when this information
is included.



Fig. 6: Precision - Recall curve when integrating alarm
information in the DAICE system

Table IV presents the performance metrics of the classification
algorithms, the global performance metrics show better results
when using ExtendedDAICE (see AUC PR and AUC ROC).

Model P@10 R@10 FMeasure AUC PR AUC ROC
DAICE 0,20 0,30 0,24 0,18 0,72

DeepDAICE SL 0,33 0,51 0,40 0,32 0,81
ExtendedDAICE 0,34 0,52 0,41 0,40 0,83

TABLE IV: Performance comparison of two architectures for
integrating the alarm information in the DAICE system

Table V, presents precision and recall at different operating
points. It is observed a substantial increase in precision with the
use of ExtendedDaice both when inspecting 1% and 5% of the
base, almost doubling the performance of the DAICE system.

Model P@1 R@1 P@5 R@5
DAICE 0,35 0,05 0,25 0,20

DeepDAICE SL 0.48 0,07 0,41 0,31
ExtendedDAICE 0,75 0,11 0,49 0,37

TABLE V: Performance comparison of two architectures
integrating the alarm information in the DAICE system at

different operating points

V. CONCLUSIONS

This paper shows that performing feature engineering based
on the information provided by the smart meter alarm logs
contributes to improving the performance of anomaly detection
algorithms. The article proposes a set of novel features derived
from alarm events, considering the temporal dependency. In
addition, we proved that the inclusion of these features achieves
a substantial improvement over state-of-the-art algorithms that
base their detection on information derived from consumption
measurements and do not consider information from alarm logs.
In particular, a considerable improvement in precision has been

seen when operating at low operating points, doubling the per-
formance compared to the DAICE system. The improvement in
detecting true positives without the cost of higher false positives
is especially noteworthy, which also translates into a significant
increase in AUC PR and AUC ROC.
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