english Icono del idioma   español Icono del idioma  

Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/20.500.12008/45254 Cómo citar
Título: Leveraging pre-trained autoencoders for interpretable prototype learning of music audio.
Autor: Alonso-Jiménez, Pablo
Pepino, Leonardo
Batlle-Roca, Roser
Zinemanas, Pablo
Bogdanov, Dmitry
Serra, Xavier
Rocamora, Martín
Tipo: Preprint
Palabras clave: Prototypical learning, Self-supervised learning, Music audio classification, Interpretable AI
Fecha de publicación: 2024
Resumen: We present PECMAE an interpretable model for music audio classification based on prototype learning. Our model is based on a previous method, APNet, which jointly learns an autoencoder and a prototypical network. Instead, we propose to decouple both training processes. This enables us to leverage existing self-supervised autoencoders pre-trained on much larger data (EnCodecMAE), providing representations with better generalization. APNet allows prototypes’ reconstruction to waveforms for interpretability relying on the nearest training data samples. In contrast, we explore using a diffusion decoder that allows reconstruction without such dependency. We evaluate our method on datasets for music instrument classification (Medley-Solos-DB) and genre recognition (GTZAN and a larger in-house dataset), the latter being a more challenging task not addressed with prototypical networks before. We find that the prototype-based models preserve most of the performance achieved with the autoencoder embeddings, while the sonification of prototypes benefits understanding the behavior of the classifier.
Financiadores: Ministerio de Ciencia, Innovación y Universidades (España) y Agencia Estatal de Investigación (AEI).
Citación: Alonso-Jiménez, P., Pepino, L., Batlle-Roca, R. y otros. Leveraging pre-trained autoencoders for interpretable prototype learning of music audio [Preprint] Publicado en : IEEE ICASSP 2024 Workshop on Explainable AI for Speech and Audio (XAI-SA), 15 apr. 2024, pp. 1-5.
Aparece en las colecciones: Publicaciones académicas y científicas - Instituto de Ingeniería Eléctrica

Ficheros en este ítem:
Fichero Descripción Tamaño Formato   
APBZBSR24.pdfPreprint235,33 kBAdobe PDFVisualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons