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ABSTRACT

We present PECMAE an interpretable model for music au-
dio classification based on prototype learning. Our model
is based on a previous method, APNet, which jointly learns
an autoencoder and a prototypical network. Instead, we pro-
pose to decouple both training processes. This enables us to
leverage existing self-supervised autoencoders pre-trained on
much larger data (EnCodecMAE), providing representations
with better generalization. APNet allows prototypes’ recon-
struction to waveforms for interpretability relying on the near-
est training data samples. In contrast, we explore using a
diffusion decoder that allows reconstruction without such de-
pendency. We evaluate our method on datasets for music in-
strument classification (Medley-Solos-DB) and genre recog-
nition (GTZAN and a larger in-house dataset), the latter being
a more challenging task not addressed with prototypical net-
works before. We find that the prototype-based models pre-
serve most of the performance achieved with the autoencoder
embeddings, while the sonification of prototypes benefits un-
derstanding the behavior of the classifier.

Index Terms— Prototypical learning, self-supervised
learning, music audio classification, interpretable AI

1. INTRODUCTION
After achieving significant breakthroughs in computer vision,
speech recognition, and natural language processing, deep-
learning models have become state-of-the-art in music infor-
mation retrieval (MIR) [1]. Yet, understanding the reasons be-
hind the predictions of deep neural networks (DNNs) remains
a challenging endeavor, motivating the increased interest in
developing explanation methods and interpretable predictive
models [2]. We understand interpretability as the capability
of an algorithm or model to be comprehensible, explainable,
and understandable, which allows an external observer to de-
cipher its behavior and discern its decisions [3].

In the context of sound and music-related applications
(such as sound engineering, music production, and music
recommendation), faithful human-understandable explana-
tions of model predictions can increase trustworthiness and

enhance user experience [4]. From a developer’s perspective,
an interpretable model could better reveal potential issues
of its data or inner workings, allowing the detection of bi-
ases, malfunctions, or possible adversarial attacks [5, 6].
Ultimately, interpretability can also provide insights into the
target problem, thus helping researchers learn more about it.

In this paper, we introduce PECMAE,1 a method inspired
by APNet (Audio Prototype Network) [7]—an interpretable
prototype-based audio classification model originally applied
to voice commands, environmental sounds, and music instru-
ment recognition tasks. Prototype-based models allow in-
terpretability by measuring similarity between model inputs
and the prototypes in the encoder latent space [8]. Addition-
ally, APNet features an autoencoder architecture that allows
to sonify the prototypes for further insights. The key differ-
ences of our proposal are that we rely on a pre-trained au-
toencoder (EnCodecMAE [9]) instead of jointly optimizing
it for the classification task and that we use a diffusion de-
coder to sonify the prototypes instead of using information
from specific samples of the training set. While the original
APNet model was evaluated only on short consistent mono-
phonic sounds, we consider music genre in addition to instru-
ment recognition. Music genre recognition is a more chal-
lenging task as there is no universal genre taxonomy [10, 11]
and judgments on genre encompass high-level concepts from
music theory, sociohistorical context, and subjectivity [12, 13,
14, 15]. Still, there is a lack of experimental designs for eval-
uation of music genre recognition systems beyond classifica-
tion accuracies, manual inspection and interpretation of fea-
tures used for classification [16].

In summary, the main contributions of our work are (i)
showing that it is possible to decouple the training of the au-
toencoder and the prototype system, which unlocks the possi-
bility of using self-supervised autoencoders trained on larger
datasets, (ii) relying on a generative model to eliminate the
need to transfer information from specific training samples to
reconstruct the prototypes, and (iii) extending the technique
of prototype-based audio classification to the task of music
genre classification for the first time.

1Prototype EnCodecMAE.



2. RELATED WORK

2.1. Audio Prototype Network
Interpretability strategies in the audio domain remain scarcely
explored, especially in music [17]. Among the existing meth-
ods for sound and music classification [18, 19, 20, 21], only
few are interpretable by design. In particular, APNet [7] is
an interpretable DNN for sound classification based on pro-
totypes that are learned during training along with the latent
space encoder and decoder. The decoder is devised to recon-
struct the prototypes back to the input representation (mel-
spectrogram) that can be sonified. The model shows com-
pelling results illustrating that a system can be both inter-
pretable and accurate. However, this model presents scala-
bility issues regarding the number of prototypes and classes,
given that the latent space is of high dimension and the pro-
totypes are learned in this space and stored in the model. Ad-
ditionally, APNet’s reconstruction process transfers informa-
tion on which indices were kept in the pooling layers from
the encoder into the un-pooling layers of the decoder to im-
prove the reconstruction quality. Assuming that the proto-
types are similar to data instances, the pooling indices are
extracted from the closest instance of the training set to re-
construct them, which provides interpretability suitable for
end users. However, the prototype reconstruction is strongly
biased towards a training sample instead of what drives the
classification decision, which would be more interesting from
a developer’s perspective. Both limitations are addressed by
our proposed model.

2.2. EnCodecMAE
Neural codecs have recently emerged as a way to efficiently
compress audio [22, 23, 24]. They usually comprise a con-
volutional autoencoder with a Residual Vector Quantization
(RVQ) layer in the bottleneck. The neural codes at the out-
put of the RVQ layer have a low bitrate because of the low
time resolution (75 Hz /∼13 ms frames for EnCodec) and the
quantization. The high reconstruction quality of these neu-
ral codes for generic audio, together with the low frame rate,
make them suitable as features for music-related tasks. How-
ever, because of the reconstruction objective, these features
might not contain high-level and context information span-
ning multiple frames of the signal.

Recently, self-supervised learning (SSL) techniques have
been applied to learn higher-level and more contextualized
features. EnCodecMAE [9] learns to reconstruct masked seg-
ments from the 128 dimensions of non-quantized EnCodec
features using a transformer architecture. The authors showed
that the resulting features, after mean-pooling over time, have
a strong performance in a diverse set of audio-related tasks,
including music genre classification (GTZAN) and pitch de-
tection (NSynth), outperforming EnCodec and other audio
embeddings. Moreover, the original waveform can be recov-
ered from the sequence of EnCodecMAE features.
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Fig. 1. Diagram of the proposed PECMAE model. The col-
ored boxes indicate trainable modules.

3. METHOD

The main components of our system are depicted in Fig. 1.
The generative autoencoder operates through the embeddings
z. The prototype network solves a classification task by learn-
ing prototypes p in the embedding space of z so that they can
be decoded to audio.

3.1. Generative autoencoder
While EnCodecMAE already provides a reconstructable la-
tent space, we observed poor prototype sonification after ini-
tial experimentation. We hypothesized that this is because the
temporal resolution is excessive and that the system would
benefit from summarizing this dimension so that the proto-
types were learned in a more abstract space. To this end, we
train an autoencoder on top of EnCodecMAE features, con-
sisting of a transformer encoder that summarizes T = 4 sec-
onds of audio (a sequence of 300 768-dimensional EnCodec-
MAE features) into a single vector z ∈ RD with D = 768,
and a decoder based on a latent diffusion model conditioned
with z to generate the EnCodec features corresponding to
the original audio. We prepend a CLS token to the input
of the transformer encoder and use the corresponding output
element as z. The conditioning of the diffusion decoder is
implemented by prepending z to the noisy EnCodec inputs.
With this approach, our compression rate is 28 times higher
than that of APNet, facilitating scalability both in terms of the
number of prototypes and the input duration.



3.2. Prototypical network

The prototypical network works by measuring the similarity,
S, between the embeddings of a batch of input audio instances
zx ∈ RN×D and the set of prototypes zp ∈ RM×D, where
N is the batch size, M is the number of prototypes, zp is the
projection of each prototype p using an optional 1-layer trans-
former adaptor,2 and S = exp−||zx−zp||22 . Given C classes,
each one is assigned the same number of prototypes, M/C.
The prototypes corresponding to each class are initialized to
centroids obtained by applying k-means clustering over the
embeddings zx of the class samples. Finally, we use a linear
layer to map S into class logits. This layer is initialized so that
the connection of each prototype with its respective class is 1
but 0 with the others. During training, the prototypes, the pro-
totype transformer adaptor, and the linear layer are optimized
while the autoencoder is kept frozen.

PECMAE employs two loss functions. We use binary
cross-entropy to optimize the classification task, Lc. In ad-
dition, we define a prototype loss that minimizes the L2 dis-
tance between each prototype and the closest sample among
the instances of the same class in the batch, zxc,

Lp =
1

M

M∑
j=1

min
i

||zxc,ij − zp,ij ||22. (1)

The goal of this term is to prevent prototypes from diverg-
ing too much from real samples to favor interpretable recon-
structions. Note that we avoid using an additional loss term
minimizing distances between samples and prototypes as in
previous works [7, 8] since, in our case, the sample represen-
tations are not trainable. Finally, the losses are aggregated
using a weighting factor λ, L = λLc + (1 − λ)Lp. After
training, the decoder can be used to sonify the prototypes.

4. EXPERIMENTS AND RESULTS

We compare the classification accuracy of the proposed
model with the SOTA and baseline systems and study the
characteristics of learned prototypes on one music instrument
and two genre classification datasets (Table 1).

4.1. Datasets

Medley-Solos-DB [25] is an instrument recognition dataset
consisting of 3-second recordings for eight instruments: clar-
inet, distorted electric guitar, female singer, flute, piano, tenor
saxophone, trumpet, and violin. While our main interest is in
genre recognition, we considered evaluating our model in one
dataset used in previous works for comparison purposes.

GTZAN is a popular genre recognition dataset consisting
of 30-second excerpts across 10 broad musical genres. We
consider a filtered version of the dataset discarding duplicated

2We also report results without this adaptation layer (PECMAE-NA-5).

Datasets Classes Samples Duration (h)

Medley-solos-DB 8 21,571 17.2
GTZAN 10 919 7.6
XAI-Genre 24 18,634 155.2

Table 1. Considered datasets in terms of number of classes,
samples, and total duration in hours.

and corrupted tracks identified by Sturm [26]. To achieve a
genre-balanced split, we use track IDs ending in 8 for valida-
tion (e.g., blues.00008) and in 9 for testing.

XAI-Genre is an in-house dataset of 30-second audio
previews annotated by 24 genre classes, retrieved from the
Spotify API,3 built for the purpose of this study and our
planned future work on evaluation methodologies for inter-
pretable genre recognition. This dataset is 20 times larger
than GTZAN in terms of music tracks and includes more
than twice the number of classes, adding complexity and
diversity to the classification task.

4.2. Implementation details

We train the diffusion autoencoder in the Free Music Archive
dataset [27], composed of 106,574 30-second music tracks
using batches of 128 4-second segments. The autoencoder
consists of a transformer with a 2-layer encoder and an 8-
layer decoder, which is then trained for 330,000 steps using
the AdamW optimizer with a weight decay of 0.05 and a fixed
learning rate of 1e−4. We apply classifier-free guidance, set-
ting the unconditional probability to 0.1 during training, and
use the V-Diffusion objective [28]. Our experiments use the
EnCodecMAE base model, which has 10 transformer layers
and 12 attention heads and is trained in a mixture of Audioset,
Librilight Medium, and Free Music Archive.

We train PECMAE models in the GTZAN, Medley-
Solos-DB, and XAI-Genre datasets featuring 1 to 40 proto-
types per class. In all cases, we use z-score normalization
and a batch size of 256 samples. We prefer a rather larger
batch size, considering that a larger pool of tracks to ap-
proximate our embeddings will lead to a better embedding
reconstruction. All the models are trained for 150,000 steps
using the Adam optimizer with a weight decay of 1e−5 us-
ing the OnceCycleLR learning rate scheduler with a peak
value of 1e−3. The hyperparameter λ controls the weight
of the classification and prototype loss components. After
preliminary experiments, we set λ to 0.25 to favor prototype
reconstruction. In all cases, we use fixed training, validation,
and testing splits, and test the models using the checkpoint
of the step achieving the lowest validation loss. Since our
autoencoder operates on 4-second segments, in testing we
average the class logits for non-overlapping segments in the
track and compute the class-normalized accuracy.

3https://developer.spotify.com/documentation/
web-api

https://developer.spotify.com/documentation/web-api
https://developer.spotify.com/documentation/web-api


Params. GTZAN Medley XAI-Genre

State of the Art
Literature 82.1 [31] 78.0 [30] -
MLP MAEST 300K 95.6 - 62.9

Baseline
APNet-5 2.7-4.2M 87.4 65.8 48.0

Ceiling
MLP ECMAE 100K 85.7 75.7 58.0
MLP ECMAE-S 100K 85.9 72.1 56.1

Ours
PECMAE-NA-5 31-90K 81.8 66.8 44.0
PECMAE-1 5.5M 80.8 63.9 44.0
PECMAE-3 5.6M 82.8 67.6 48.6
PECMAE-5 5.6M 83.8 70.2 50.1
PECMAE-10 5.6M 86.9 71.1 51.8
PECMAE-20 5.6M 85.9 69.2 52.8
PECMAE-40 5.8M 85.7 71.3 53.6

Table 2. Normalized classification accuracies.

4.3. Classification Results

Table 2 presents the metrics for all compared methods on each
of the considered datasets using the same splits. We report
SOTA from literature together with a Multi-Layer Perceptron
(MLP) trained on SOTA audio embeddings for genre classifi-
cation (MAEST) [29] and the original APNet model featuring
5 prototypes per class. Additionally, we train MLPs with En-
codecMAE (ECMAE) embeddings and its summarized ver-
sion (ECMAE-S), referred to as z in Fig. 1. Since our proto-
types are learned in the ECMAE-S space, these serve as our
reference for the performance ceiling. For PECMAE we con-
sider 1, 3, 5, 10, 20, and 40 prototypes per class, plus a version
without the transformer adaptation layer (NA).

The results show that ECMAE achieves lower perfor-
mance compared to methods based on large supervised
datasets [29] in XAI-Genre, or careful feature design [30]
in Medley-Solos-DB. ECMAE-S has slightly lower accura-
cies than ECMAE due to information loss associated with
the higher compression rate but produces better sonification
results.4 As a general trend, PECMAE performance increases
with the number of prototypes and is comparable to or slightly
below ECMAE-S. Finally, we find that our method achieves
higher classification performance than APNet in XAI-Genre
and Medley-Solos-DB, even when fewer prototypes per class
are used. We hypothesize that this is due to the powerful
representations of EncodecMAE, which had been trained
in a much larger data collection and already showed good
performance in music-related tasks [9].

4Operating in ECMAE’s higher-dimensional space resulted in poor soni-
fication of the prototypes.

4.4. Effect of the decoder
Since our autoencoder relies on a generative model, its de-
coder is constrained to synthesize audio close to its training
distribution, which can result in reconstruction biases. Af-
ter preliminary tests, we found that a decoder based on V-
diffusion was providing more faithful reconstructions than an
alternative based on a conditional language model over En-
Codec tokens decoder using a GPT2 architecture. We verified
that the important class information was not altered in the de-
coding process by measuring the class predictions for the syn-
thesized prototypes (above 99% accuracy for PECMAE-20).

4.5. Sonifying the prototypes
As part of developing the proposed models, we conducted it-
erative listening examinations of the synthesized prototypes.5

We observe that the sonification of the prototypes results in
sounds that are far from resembling real class instances and
instead have a sonic texture quality. However, we can iden-
tify many of the classes both in the case of instruments and
music genres from blind listening to the prototypes. Clearly,
the sonification of instrument prototypes is more convincing
than genre sonification due to lower sound complexity (mono-
phonic notes vs complete full-mix music tracks). Increasing
the number of prototypes tends to provide similar-sounding
prototypes, even though we can identify differences in some
cases (e.g., pitches or types of timbre). Notably, the autoen-
coder was able to reconstruct instances from all classes in our
datasets with much better quality than the prototypes, which
suggests that the bottleneck is in the statistical averaging pro-
cess when learning the prototypes and not in the decoder it-
self. Overall, the sonification would not be appropriate for
end users but is insightful for model developers [5], especially
revealing how adversarial attacks can be devised [6].

5. CONCLUSIONS AND FUTURE WORK
We propose an interpretable classification system that learns
prototypes in the embedding space of an autoencoder and en-
ables their sonification. Our results show that it is possible to
achieve prototype-based models that do not notably degrade
classification performance while providing a certain level of
interpretability, which proves helpful in developing classifi-
cation models. Through sonification, we observe that the
models learn sonic textures instead of more complex tempo-
ral structures as the basis of their classification decisions for
most of the classes. The proposed approach motivates new
directions for interpretable music audio models. We will con-
sider replacing the self-supervised embeddings with represen-
tations optimized for the classification tasks and investigate
auto-encoding techniques that handle longer input sequences
and increase the diversity of the learned prototypes.6

5Prototype sonifications and complementary results available at
https://palonso.github.io/pecmae/

6This work has been supported by the Musical AI project - PID2019-
111403GB-I00/AEI/10.13039/501100011033, funded by the Spanish Minis-
terio de Ciencia e Innovación and the Agencia Estatal de Investigación.

https://palonso.github.io/pecmae/


6. REFERENCES

[1] Geoffroy Peeters, “The deep learning revolution in MIR: The
pros and cons, the needs and the challenges,” in Perception,
Representations, Image, Sound, Music, 2021.

[2] Christoph Molnar, Interpretable Machine Learning, 2022.

[3] AI HLEG, “Ethics Guidelines for Trustworthy AI,” 2019.

[4] Alejandro Barredo Arrieta, Natalia Dı́az-Rodrı́guez, Javier Del
Ser, Adrien Bennetot, Siham Tabik, Alberto Barbado, Salvador
Garcia, Sergio Gil-Lopez, Daniel Molina, Richard Benjamins,
Raja Chatila, and Francisco Herrera, “Explainable artificial
intelligence (XAI): Concepts, taxonomies, opportunities and
challenges toward responsible AI,” Information Fusion, vol.
58, 2020.

[5] Bob L. Sturm, “The “horse” inside: Seeking causes behind
the behaviors of music content analysis systems,” Comput.
Entertain., vol. 14, no. 2, jan 2017.

[6] Katharina Prinz, Arthur Flexer, and Gerhard Widmer, “On end-
to-end white-box adversarial attacks in music information re-
trieval,” Transactions of the International Society for Music
Information Retrieval, vol. 4, no. 1, 2021.

[7] Pablo Zinemanas, Martı́n Rocamora, Marius Miron, Frederic
Font, and Xavier Serra, “An interpretable deep learning model
for automatic sound classification,” Electronics, vol. 10, no. 7,
2021.

[8] Oscar Li, Hao Liu, Chaofan Chen, and Cynthia Rudin, “Deep
learning for case-based reasoning through prototypes: A neural
network that explains its predictions,” in The 32nd AAAI Conf.
on Artificial Intelligence, 2018.

[9] Leonardo Pepino, Pablo Riera, and Luciana Ferrer, “EnCodec-
MAE: Leveraging neural codecs for universal audio represen-
tation learning,” preprint arXiv:2309.07391, 2023.

[10] Dmitry Bogdanov, Alastair Porter, Hendrik Schreiber, Julián
Urbano, and Sergio Oramas, “The acousticbrainz genre
dataset: Multi-source, multi-level, multi-label, and large-
scale,” in Intl. Society for Music Information Retrieval (IS-
MIR), 2019.

[11] Elena V Epure, Anis Khlif, and Romain Hennequin, “Leverag-
ing knowledge bases and parallel annotations for music genre
translation,” in Intl. Society for Music Information Retrieval
Conf. (ISMIR), 2019.

[12] Jean-Julien Aucouturier and Francois Pachet, “Representing
musical genre: A state of the art,” Journal of new music re-
search, vol. 32, no. 1, 2003.

[13] Cory McKay and Ichiro Fujinaga, “Musical genre classifica-
tion: Is it worth pursuing and how can it be improved?,” in Intl.
Society for Music Information Retrieval (ISMIR), 2006.

[14] Alastair J. D. Craft, Geraint A. Wiggins, and Tim Crawford,
“How many beans make five? the consensus problem in music-
genre classification and a new evaluation method for single-
genre categorisation sysytems,” in Intl. Conf. on Music Infor-
mation Retrieval (ISMIR), 2007.

[15] Mohamed Sordo, Oscar Celma, Martin Blech, and Enric
Guaus, “The quest for musical genres: Do the experts and the
wisdom of crowds agree?,” in Intl. Conf. on Music Information
Retrieval (ISMIR), 2008.

[16] Bob L. Sturm, “A survey of evaluation in music genre recog-
nition,” in Intl. Workshop on Adaptive Multimedia Retrieval,
2012.

[17] Roser Batlle-Roca, Emila Gómez, WeiHsiang Liao, Xavier
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