english Icono del idioma   español Icono del idioma  

Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/20.500.12008/44429 Cómo citar
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorMarchesoni-Acland, Franco-
dc.contributor.authorHerrera, Andrés-
dc.contributor.authorMozo, Franco-
dc.contributor.authorCamiruaga, Ignacio-
dc.contributor.authorCastro, Alberto-
dc.contributor.authorAlonso-Suárez, Rodrigo-
dc.date.accessioned2024-06-17T17:16:36Z-
dc.date.available2024-06-17T17:16:36Z-
dc.date.issued2023-
dc.identifier.citationMarchesoni-Acland, F., Herrera, A., Mozo, F. y otros. Deep learning methods for intra-day cloudiness prediction using geostationary 2 satellite images in a solar forecasting framework. [Preprint]. Publicado en: Solar Energy, vol. 262, 2023. DOI: https://doi.org/10.1016/j.solener.2023.111820.es
dc.identifier.urihttps://hdl.handle.net/20.500.12008/44429-
dc.description.abstractAccurate solar resource forecasting remains a challenge. Electricity grid applications require both days-ahead and intra-day prediction. Satellite-based methods are known to be the best option for hourly intra-day solar forecasts up to some hours ahead. An adapted Deep Learning (DL) method has been recently reported to outperform the traditional Cloud Motion Vectors (CMV) strategy. This article analyzes the utilization of a well-documented computer vision DL architecture, the U-Net in various forms, for the satellite Earth albedo forecast problem (cloudiness), a straightforward proxy for solar irradiance forecast. It is shown that the U-Net performs better than advanced and optimized CMV techniques and previous art IrradianceNet, setting it at the state-of-the-art. The tests are done over the Pampa Húmeda region of southeast South America, an area in which challenging cloud conditions are frequent. The data for this study are GOES-16 visible channel images. These images present a finer spatial (km/pixel) and temporal (10 min) resolution than previously explored data sources for solar forecasting. Moreover, the image size used here is bigger (1024 × 1024 pixels) and the predictions reach further into the future (5 h) than in previous works. The analysis includes several ablation studies, involving different architectures, optimization objectives, inputs, and network sizes. The U-Net is optimized for direct and differential image prediction, being the latter a better-performing option. More notably, the U-Net models are shown to be able to predict cloud extinction, something that has been a barrier for CMV methods.es
dc.format.extent30 p.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenes
dc.relation.ispartofSolar Energy, vol. 262, 2023.es
dc.rightsLas obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad de la República.(Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014)es
dc.subjectSolar forecastes
dc.subjectU-Netes
dc.subjectDeep learninges
dc.subjectSatellite imageses
dc.subjectGOES-16 satellitees
dc.titleDeep learning methods for intra-day cloudiness prediction using geostationary 2 satellite images in a solar forecasting framework.es
dc.typePreprintes
dc.contributor.filiacionMarchesoni-Acland Franco, Universidad de la República (Uruguay). Facultad de Ingeniería.-
dc.contributor.filiacionHerrera Andrés, Universidad de la República (Uruguay). Facultad de Ingeniería.-
dc.contributor.filiacionMozo Franco, Universidad de la República (Uruguay). Facultad de Ingeniería.-
dc.contributor.filiacionCamiruaga Ignacio, Universidad de la República (Uruguay). Facultad de Ingeniería.-
dc.contributor.filiacionCastro Alberto, Universidad de la República (Uruguay). Facultad de Ingeniería.-
dc.contributor.filiacionAlonso-Suárez Rodrigo, Universidad de la República (Uruguay). Facultad de Ingeniería.-
dc.rights.licenceLicencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)es
Aparece en las colecciones: Publicaciones académicas y científicas - Laboratorio de Energía Solar (LES)

Ficheros en este ítem:
Fichero Descripción Tamaño Formato   
MHMCCA23.pdfPreprint5,08 MBAdobe PDFVisualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons