
Deep learning methods for intra-day cloudiness prediction using geostationary1

satellite images in a solar forecasting framework2

Franco Marchesoni-Aclanda,d,∗, Andrés Herrerab, Franco Mozob, Ignacio Camiruagac, Alberto Castrob,c,3

Rodrigo Alonso-Suáreza,∗
4

aLaboratorio de Energía Solar, Universidad de la República, Av. L. Batlle Berres km 508, Salto, Uruguay5
bInstituto de Ingeniería Eléctrica, Facultad de Ingeniería, UDELAR, J. H. y Reissig 565, Montevideo, Uruguay6

cInstituto de Computación, Facultad de Ingeniería, UDELAR, J. H. y Reissig 565, Montevideo, Uruguay7
dUniversité Paris-Saclay, ENS Paris-Saclay, CNRS, Centre Borelli, 91190, Gif-sur-Yvette, France8

Abstract9

Accurate solar resource forecasting remains a challenge. Electricity grid applications require both days-ahead10

and intra-day prediction. Satellite-based methods are known to be the best option for hourly intra-day solar11

forecasts up to some hours ahead. An adapted Deep Learning (DL) method has been recently reported to12

outperform the traditional Cloud Motion Vectors (CMV) strategy. This article analyzes the utilization of a13

well-documented computer vision DL architecture, the U-Net in various forms, for the satellite Earth albedo14

forecast problem (cloudiness), a straightforward proxy for solar irradiance forecast. It is shown that the U-15

Net performs better than advanced and optimized CMV techniques and previous art IrradianceNet, setting16

it at the state-of-the-art. The tests are done over the Pampa Húmeda region of southeast South America,17

an area in which challenging cloud conditions are frequent. The data for this study are GOES-16 visible18

channel images. These images present a finer spatial (≃ 1 km/pixel) and temporal (10 minutes) resolution19

than previously explored data sources for solar forecasting. Moreover, the image size used here is ×4 bigger20

(1024× 1024 pixels) and the predictions reach further into the future (5 hours) than in previous works. The21

analysis includes several ablation studies, involving different architectures, optimization objectives, inputs,22

and network sizes. The U-Net is optimized for direct and differential image prediction, being the latter a23

better-performing option. More notably, the U-Net models are shown to be able to predict cloud extinction,24

something that has been a barrier for CMV methods.25

Keywords: Solar forecast, U-Net, deep learning, satellite images, GOES-16 satellite.26

1. Introduction27

Solar photovoltaic (PV) is the main technology to convert the renewable power provided by the Sun into28

electricity (REN21, 2021). Due to the systematic cost reduction of this technology, its share in the world’s29
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energy mix is continuously growing (IRENA, 2021). Regardless of its availability, high technology maturity30

level, and low prices, solar energy is still a small portion of the world’s energy mix, partly due to the low31

predictability of the solar resource (Voyant et al., 2017). The optimal operation of an electricity grid that32

includes weather-dependent energy sources, such as solar PV and wind power, requires their forecast in33

several time horizons. Solar forecasting in particular is mainly dependent on cloudiness forecasting, as the34

other atmosphere variable components, for instance, water vapor and aerosol content, have a significantly35

lower variability. The other source of solar variability is related to its well-known intra-day and seasonal36

geometrical trend, governed by the Sun’s apparent movement, which can be effectively removed or modeled37

(Lauret et al., 2022) by using a clear sky model (Lefèvre et al., 2013; Rigollier et al., 2004), leaving cloudiness38

as the main driver of uncertainty in solar energy prediction.39

Clouds undergo various transformations, such as formation, deformation, displacement, and dissipation,40

which make predicting cloud cover a challenging task. Numerical Weather Prediction (NWP) models have41

been historically used to provide solar irradiance forecasts by using their cloudiness prediction at different42

levels in the atmosphere. These models numerically solve the equations that govern the atmosphere dynamic43

and still are the only option to provide quality day(s)-ahead solar forecasts, typically augmented by post-44

processing techniques (Yang et al., 2022). However, for solar irradiance intra-day forecasts, it has been shown45

that pure satellite-based methods can achieve a better performance than regular NWP runs (i.e. not hourly46

updated) for horizons up to 4-5 hours ahead (Kühnert et al., 2013; Perez et al., 2010). These satellite-based47

methods have been mainly based on the two-dimensional cloud motion field estimation (Lorenz et al., 2004;48

Peng et al., 2013; Cros et al., 2014; Urbich et al., 2019) known as Cloud Motion Vectors (CMV), from which49

the clouds’ motion is extrapolated into the future. A detailed comparison between the main variants of50

the CMV approach is presented in Aicardi et al. (2022), including the baseline block-matching technique of51

Lorenz et al. and different types of optical flow methods (Horn and Schunck, 1981; Lucas and Kanade, 1981;52

Farnebäck, 2003; Zach et al., 2007) that are common in the computer vision field. Further, Aicardi et al.53

bridged the gap between cloudiness and solar irradiance forecast performance evaluation, at least for the54

inspected region (which is the same as the present work), showing that the best satellite-based forecasting55

models at the cloudiness level are also typically the best at the solar irradiance level. The cloudiness level56

in this context refers to the Earth’s albedo visible channel images (planetary reflectance), where clouds57

are easily distinguishable. The albedo information is the common input for satellite-based solar irradiance58

estimation methods (Perez et al., 2002; Rigollier et al., 2004; Qu et al., 2017; Laguarda et al., 2020). These59

methods use updated formulations of the well-known satellite cloud index (Cano et al., 1986), calculated,60

mainly, from visible channel images.61

The CMV strategy presents some limitations at the current state of the art, such as the inherent two-62

dimensional modeling of a three-dimensional problem, the motion extrapolation based on a static motion63

field, and the inability to accurately forecast clouds’ formation and extinction, among others. For instance,64
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pure CMV strategies can only reallocate pixels of a satellite image but they are unable to create new values.65

While this area advances, for instance through better ways to physically model the cloudiness evolution from66

satellite images, data-intensive approaches have arisen in the field (Berthomier et al., 2020; Su et al., 2020;67

Nielsen et al., 2021b). This is not surprising: deep learning (DL) methods have been recently introduced in68

many meteorology-related areas (Ren et al., 2021; Ravuri et al., 2021; Espeholt et al., 2021; Schneider et al.,69

2022) and DL methods excel when abundant pairs of inputs and targets are available, especially in the case70

of automatically annotated data. The forecasting problem is inherently self-supervised, i.e. the targets are71

naturally contained in the historical records and no manual annotations are needed. Visible channel satellite72

images also provide large amounts of data, typically of dozens of TBs, from which the daylight cloudiness73

behavior can be observed, modeled, and learned at a high rate (current geostationary meteorological satellite74

scans the same Earth disk at a regular rate of 10-15 minutes). Due to all these, intra-day satellite cloudiness75

forecasting is especially suited for deep learning methods.76

1.1. Related Work77

With the advent of deep learning, some research groups have started its utilization for black-box at-78

mospheric modeling in problems related to cloudiness and solar irradiance forecasting. This subsection79

describes the state-of-the-art work.80

The U-Net architecture (Ronneberger et al., 2015) was used by Berthomier et al. (2020) for intra-day81

cloud cover binary forecast over France up to 90 minutes ahead with a 15-minute time step. Berthomier et al.82

showed that this type of U-Net cloud forecast is better than the forecast provided by the AROME NWP83

model (Seity et al., 2011; Brousseau et al., 2016). Furthermore, it also compared favorably to different types84

of neural networks, such as Recurrent Neural Networks (RNNs) and other Convolutional Neural Networks85

(CNNs). The algorithms’ training and validation were conducted for the binary cloudiness forecasting86

problem (cloud vs. no cloud) using the Meteosat Second Generation (MSG) cloud classification product87

as the input/output data, which is not directly translatable into a solar irradiance forecast. The satellite88

images containing France’s territory were cropped into 256× 256 px patches that were processed separately89

due to computational restrictions. Separated training and testing periods were considered, using one year90

and a half for the former and six months for the latter. Even though the work did not aim to be used91

for solar irradiance forecasting, as the use of binary cloud cover is limited for this task, it represented the92

first deep learning attempt to cloud forecasting. In recent work, Nielsen et al. (2021b) proposed an adapted93

deep learning architecture for solar irradiance forecast based on the MSG satellite information. In this case,94

the European SARAH-2.1 data set (Uwe et al., 2019) of satellite-derived global solar horizontal irradiance95

was used. The architecture is similar to the one proposed by Tan et al. (2018) and was trained and tested96

for a 4-hours ahead forecast with hourly time step. The deep learning algorithm outperformed the optical97

flow TVL1 method (Zach et al., 2007; Sánchez et al., 2013) with the same satellite information, which has98
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been reported to be one of the best optical flow strategies for cloud and solar irradiance forecasting (Urbich99

et al., 2019; Aicardi et al., 2022). The satellite images had European coverage with a 512×512 px resolution100

and a 30-minute refresh rate. As in the work of Berthomier et al., the images were cropped, this time101

into 128 × 128 px patches, and processed separately to avoid a high computational cost. The forecasts102

were validated against the solar irradiance derived from satellite images and against four solar ground103

measurement sites of the Baseline Solar Radiation Network (BSRN, https://bsrn.awi.de/) in Europe. An104

important period was considered, using 5 years of images for training, 1 year for validation, and 2 years for105

testing. The final results correspond to the evaluation across the latter split.106

These works suggest that deep learning is currently the state-of-the-art best option for satellite intra-day107

cloud cover and solar forecast. Furthermore, the two most performing architectures are the U-Net and108

the IrradianceNet, which compare favorably to other architectures (Tan et al., 2018; Su et al., 2020). It is109

not clear from the literature what is the best model for satellite Earth albedo and solar forecast, but it is110

clear that they have outperformed NWP and CMV methods in each analyzed task and for the European111

region. At the same time, well-performing optical flow CMV methods were inspected in Aicardi et al. (2022),112

showing that a simple horizon-dependent spatial blurring of the CMV prediction can enhance performance.113

As this performance booster was not considered in the previous deep learning vs CMV comparisons, it is114

contemplated in the present work as an additional contribution. The present work benchmarks these three115

techniques (U-Net, IrradianceNet, blurred CMV) for a region in South America with several ablation studies116

and a common forecasting objective, showing that the U-Net is an upgrade of the current intra-day solar117

forecasting performance. The U-Net is a performing and still widely used computer vision architecture118

(Baranchuk et al., 2022; Rombach et al., 2022; Croitoru et al., 2023). It uses GOES-16 albedo images as a119

regression target, as opposed to a classification target obtained by quantization (e.g. binarization). Finally,120

it provides a novel scheme for the U-Net utilization in this framework (U-Net Diff), which resulted in the121

best-performing strategy from the ones considered in this work, although closely followed by the traditional122

U-Net.123

In summary, IrradianceNet is the current performance lead on satellite-based solar forecasting using124

deep learning, in fact being the only work providing in-depth evaluations. The present work addresses125

current limitations, namely (i) moderate training and inference speed, (ii) limited image size, (iii) improvable126

benchmarking, and (iv) laborious end-user implementation. These limitations are overcome by the U-Net127

which is faster, extremely well-documented, can handle larger images (Figure 6), and is compared in this work128

against blurred CMV, a tougher benchmark than plain CMV strategies (Figure 3). On top of overcoming129

these limitations, the U-Net outperforms IrradianceNet in this region, setting it at the state-of-the-art and130

providing a framework for future implementations of deep learning methods for this task.131
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1.2. Article’s outline132

This work builds upon previous works and compares past and concurrent research efforts in the field,133

with a common ground in solar forecasting. It considers deep learning methods previously proposed in134

different contexts and one of the best-performing CVM methods, including the important spatial blurring135

step. The analysis is done with one complete year of satellite images over the Pampa Húmeda region of136

South America, an area with challenging clouds’ behavior and intermediate solar irradiance variability. The137

results confirm that, for this region, deep learning methods are currently preferable over CMV methods.138

Additionally, it is shown that the simple and lightweight U-Net architecture yields a strong performance139

that surpasses all other methods. Regardless of its good performance, the main advantage remains practical:140

the U-Net is a battle-tested architecture featured in many tutorials and articles in diverse research areas,141

hence it is simpler to implement, train and deploy than custom architectures. Notwithstanding, there are142

many details about the data processing, the training procedure, and the particular solar forecasting topic143

that still need to be considered. Knowing which well-documented architecture performs well and how to144

adapt it to the specific forecasting problem, makes deep learning solutions much more accessible to other145

research teams and regions. The contributions of this work are as follows:146

1. Illustrating the successful use of deep learning methods for 5-hours ahead albedo forecasting using147

GOES-16 satellite images, being this the first comprehensive work aimed at solar satellite-based fore-148

casting using this new satellite and over a region other than Europe. The only exception, to the best149

of our knowledge, is the preliminary work of Alonso-Suárez et al. (2021), which presents the evaluation150

of the operational CMV solar forecasting system developed and operated by our R&D group using151

GOES-16 satellite images.152

2. Showing that the U-Net deep learning model achieves the best performance for the albedo forecasting153

problem when compared to Persistence, CMV, blurred CMV, and IrradianceNet. This benchmarks154

all these models against the same data set over the same region, periods, and forecast horizons. The155

findings demonstrate that the simpler U-Net architecture achieves the highest reported performance156

in the field. This is also the first application of this algorithm in the specific framework of cloud albedo157

prediction for solar irradiance forecasting.158

3. Providing numerous ablation experiments for the specific problem and the U-Net strategy, regarding159

the inference modality, the objective function, data augmentation, inner architecture, network size,160

and alternative inputs. One of the tested U-Net configurations resulted in the best option.161

4. Training and applying the previously proposed IrradianceNet algorithm over South America, thus162

corroborating that it improves over the CMV and showing that it can handle different geographical163

regions and image types with solid performance.164

5. Displaying qualitative examples illustrating deep learning models being capable of predicting complex165
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phenomena such as cloud extinction, which regular CMV strategies are unable to perform.166

The rest of this article is organized as follows. Section 2 presents the satellite data set, including its167

filtering and pre-processing. The metrics required for the work are introduced in Section 3, and the considered168

models along with their experiments are described in Sections 4 and 5, respectively. This includes training169

details and ablation studies. Section 6 presents the final results over the test set, which is left aside from170

the previous analysis. It also discusses some case studies in which the U-Net deep learning method was able171

to forecast cloud extinction. Finally, Section 7 summarizes the main conclusions of the work and provides172

some ideas on how to further advance in this field, based on our experience and the observed limitations of173

the techniques.174

2. Data175

2.1. Satellite images176

The data set used in this work is managed and stored by the Solar Energy Laboratory (LES) of the177

Universidad de la República (Udelar), Uruguay. It is composed of visible channel images taken from the178

GOES-16 satellite’s C02 channel, which has its central wavelength at 640 nm. This is a meteorological179

satellite administrated by the US’s National Oceanic and Atmospheric Administration (NOAA). It is located180

in the geostationary position known as GOES-East (−75°W over the Earth’s equator) and its images are181

freely available via different download mechanisms. This satellite provides a higher frame rate and resolution182

for South America than the previous generation, with the important added value of schedule regularity. The183

images are available every 10 minutes with a nominal resolution of 500 m at the satellite’s nadir. The visible184

channel is useful for cloud detection as they typically reflect more sunlight than the ground, appearing185

brighter in the images. This assumption does not hold for high albedo terrains, i.e. areas containing snow186

or salt flats, which are not present in the portion of the images used in this work.187

A large orthorectified crop of the satellite full disk images is processed by the LES lab for solar resource188

assessment and forecasting, covering the southeast of South America as shown in the green rectangle of189

Figure 1a. An example of a satellite image from this database is shown in Figure 1b, being of 2501×3001 px190

and ranging 25 degrees in latitude and 30 degrees in longitude. However, due to computational restrictions191

of the deep learning training, a reduced crop of 1024 × 1024 px is used in this work, shown in Figure 1a192

as a red rectangle with a black frame. Note that this region contains at least 4× more pixels than any193

previous work involving DL in this context. All methods will be evaluated inside this region, thus having194

the same space input information. This implies a built-in difference concerning the borders’ effect. In some195

borders, and especially for the larger time horizons, the CMV is unable to provide predictions, as this would196

require pixels from outside the image. Such regions are not considered for the CMV evaluation. The option197

of providing a bigger frame for CMV forecast would result in this method having more spatial information198
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than the others. On the other hand, deep learning methods, by construction, provide a forecast for the whole199

image including these borders. This requires deep learning methods to figure out the most likely forecast200

based on the previous history of those pixels in similar situations. In this way, each method is evaluated in201

the pixels that it can predict and the space information given to all the methods is the same. Figure 1a also202

shows a smaller white-framed crop inside the red rectangle that will be used only for some comprehensive203

experiments on the U-Net architecture and related implementation details (Section 5). The size of this crop204

was 512×512 pixels, representing a region of 5×5 degrees in latitude and longitude. These crops are referred205

to as smaller-crop data set, which should not be assumed unless specified in the text. The images have a206

regular uniformly-spaced grid in the latitude-longitude domain with an average pixel side of ≃ 1 km in all207

these regions. The work was conducted with 10-minute images taken from the whole year 2020.208

(a) Location of the satellite crops. (b) Example image of the LES satellite database.

Figure 1: Satellite area considered in the work. It represents the southeast of South America, known as Pampa Húmeda.

Complementary to the satellite image data, an elevation map of the region is used for some experiments,209

as it is recommended by Nielsen et al. for the IrradianceNet method. Note that the southeast side of the210

South American continent is mostly flat. This region is referred to as Pampa Húmeda and it is considered211

warm, temperate, and humid, with hot summers, being Cfa in the updated Köppen-Geiger climate classifi-212

cation (Peel et al., 2007). The area is characterized by challenging mesoscale convective systems that tend213

to peak during daytime (Salio et al., 2007; Rasmussen et al., 2014) and has no rainy or dry season, being214

the cloudiness distributed throughout the year. In terms of ground-level solar irradiance, the short-term in-215

termittency is intermediate (Alonso-Suárez et al., 2020), meaning that clear-sky, partly cloudy, and overcast216

conditions are all present and frequent.217
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2.2. Filtering and preprocessing218

The original data set comprises 52314 images (daytime and nighttime). These cover almost all the 10-219

minute intervals over the year (only 390 images are missing). The original data set was filtered in two steps:220

(i) images with any pixel with solar elevation lower than 10° are removed, leaving only images with all their221

pixels in the daytime, and (ii) manual inspection over consecutive images with large mean differences, as222

a way to detect images with corrupted pixels (bad acquisition or missing sectors). The first filter removes223

images with any pixel at night but also ensures that the remaining images do not have pixels at sunrise and224

sunset, which are moments of very low solar elevation over the horizon that appear distorted in the images225

after the geometrical normalization with the cosine of the solar zenith angle (θz). The second filter separates226

images for possible reconstruction. The separated images with less than 5% corrupted pixels were corrected227

by inpainting. Specifically, the Navier-Stokes method of Bertalmio et al. (2001) was run. This method was228

found to be the fastest of those in the OpenCV library. The percentage of images affected by the inpainting229

was 1.2%, but only 0.12% had more than 1% of the pixels modified. Since less than 0.02% of the pixels230

were inpainted a negligible impact is expected from the choice of the inpainting algorithm. After filtering231

and reconstruction, the final data set is composed of 20842 valid images.232

The images require a last preprocessing before their utilization. The original images contain reflectance233

factor information (instead of Earth albedo), a dimensionless quantity that scales the measured radiance234

recorder by the satellite’s radiometer by the maximum value that the sensor can detect. This includes the235

correction to account for the variable Sun-Earth distance across the Earth’s orbit. This magnitude has a236

dependence on the incidence angle of the sunlight to Earth, thus having geometrical spatial information.237

Normalization is done by dividing each pixel by its corresponding cos(θz) at each moment. The normalization238

removes the deterministic geometrical variability coming from the apparent movement of the Sun relative to239

the Earth and allows the comparison of images taken at different moments. All pixels exceeding the initial240

range are clamped and the range of values is linearly mapped to [0, 1]. By doing this normalization, albedo241

images are calculated from the original images and the data set is ready for utilization.242

2.3. Data set split243

The data set was divided into two subsets following (Nielsen et al., 2021b; Sønderby et al., 2020; Su244

et al., 2020), one for training (75%) and the other for testing (25%). The random split was done day-wise245

and distributed across the whole year. This resulted in 274 randomly selected days going into the training246

split. The testing data set is then composed of 92 days that are unseen during the architecture definition247

and parameters’ training. The validation data set, used for architecture decisions, included 40 random days248

(15%) from the training set. The K-fold cross-validation methodology was not implemented due to its high249

computational cost, being unfeasible for this type of satellite data set given the training times.250
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3. Metrics251

The metrics used in this article are the usual ones in solar forecasting (Yang et al., 2020) and machine252

learning literature. These metrics can be used either for performance evaluation or as optimization targets.253

A short discussion of this topic will be presented in Subsection 5.1.3 for the U-Net architecture. For254

performance evaluation, the usual metrics in the solar forecasting field are favored, as they are directly255

related to the satellite albedo forecasting problem and were used in Aicardi et al. to bridge the gap between256

the forecast evaluation of both quantities. The basic common metrics are:257

Mean Bias Error MBE =
1

N

H∑
i=1

W∑
j=1

(ŷij − yij),

Mean Absolute Error MAE =
1

N

H∑
i=1

W∑
j=1

|ŷij − yij |,

Mean Squared Error MSE =
1

N

H∑
i=1

W∑
j=1

(ŷij − yij)
2,

Root Mean Square Error RMSE =

√√√√ 1

N

H∑
i=1

W∑
j=1

(ŷij − yij)2,

where ŷ and y are the predicted and ground truth images, respectively. Each image is of dimensions (H,W )258

and N denotes the number of valid pixels in the summation (which may be lower than H × W ). These259

metrics are calculated image-wise for each forecast horizon and can be expressed as a percentage of the260

image’s average value. These normalized metrics will be denoted with a % symbol. The performance261

evaluation is done by computing the average for each one of these metrics across all images in the test set,262

both for the normalized and not normalized cases. Note that RMSE is more sensitive to outliers than MAE263

(as it weighs more large variances) and that minimizing MAE or RMSE does not necessarily imply taking264

the MBE to zero.265

An extended performance metric for solar irradiance (and meteorological) deterministic forecast is the266

forecasting skill, defined as:267

Forecasting Skill (%) FS = 100×
(
1− RMSEfcs

RMSEper

)
,

where fcs refers to the forecast being evaluated and per refers to the persistence. This metric measures the268

gain, in terms of RMSE, of the forecast being evaluated relative to a baseline performance reference given269

by the persistence naive procedure. A positive (negative) metric means that the forecast is better (worse)270

than the baseline. The persistence procedure used in this work for the albedo satellite images is described271
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in Subsection 4.1. All of the metrics are evaluated for each forecast horizon independently.272

Finally, another metric that is used in this work is the Structural Similarity Index Measure (SSIM),273

introduced by Wang et al. (2004). It measures the structural degradation between a distorted image and a274

reference, thus it can quantify textures and perceptual similarity of an image relative to the reference. This is275

a widely-adopted metric in the image processing community (Fan et al., 2019). However, it combines texture276

and alignment in a single score, which was ultimately uninformative in most of the forecasting tests. Its fur-277

ther utilization for this forecasting problem requires specific studies. This metric is introduced here because278

it is used for an interesting study regarding the training metrics, which is presented in Subsection 5.1.3.279

4. Models280

This section briefly describes the baseline models and the deep learning architectures considered in the281

work. For more detailed information on the methods, the reader is referred to the original articles. The282

experiments on the U-Net and IrradianceNet architectures are discussed in Section 5. The CMV description,283

implementation, and optimization are fully presented in this section.284

4.1. Persistence285

Regular persistence procedures use the last observation as the prediction. In this work, persistence is286

implemented by simply maintaining the time t albedo image constant across all forecast horizons, providing287

a simple baseline performance reference. Note that the aim of the work is not to assess to which extent288

the models outperform a given reference, but to compare different models that are known to have a better289

performance than naive forecasting procedures. In this sense, persistence provides a general reference and a290

common ground to calculate the forecasting skill metric.291

4.2. U-Net architecture292

The U-Net (Long et al., 2015; Ronneberger et al., 2015) is a well-known deep learning architecture for293

semantic segmentation and pixel-wise prediction. It involves two stages, an encoder and a decoder in a294

U-shaped scheme, both with several convolutional layers and skip connections between them. Through the295

encoder, the network learns features and patterns in the image sequence. In the decoder, the prediction is296

built by extracting and upsampling the features learned at different levels of the encoder’s convolutional lay-297

ers. The skip connections help the decoder reconstruct the output by providing additional information, and298

make the learning more stable by reducing the risk of vanishing gradients. The number of trainable param-299

eters in this architecture is normally several million, whose adjustment can be done in modern computing300

facilities equipped with Graphics Processing Units (GPUs). It has to be noted that the computationally301

expensive part of the process is the training stage, both in terms of processing time and memory allocation,302

but once the architecture is trained, its utilization can be performed in a few seconds without the need for303
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high computational resources. As this is an image-to-image deep learning technique, readers are referred to304

the specific bibliography of the field for further details, which includes convolutional neural networks and305

autoencoders. The architecture has been used on a plethora of problems (Falk et al., 2019; Wei et al., 2019;306

Du et al., 2020; Smith et al., 2020; Kang et al., 2022) and has yielded a solid performance across a wide307

variety of domains, from medical imaging to remote sensing.308

The basic architecture has led to different variants of the U-Net. Three of them are here revisited,309

namely, the Attention U-Net (Oktay et al., 2018), the Nested U-Net (Zhou et al., 2020), and the Recurrent310

Residual U-Net (R2U-Net) (Alom et al., 2018). In the Attention U-Net, the main modification is to add the311

so-called soft-attention layers, which allow the detection of the most relevant regions in the input images312

to assign more importance to those while processing. The Nested U-Net modifies the skip connections by313

adding more convolutional layers between the encoder and decoder, referred to as dense skip connections,314

which are expected to reduce the semantic gap between the feature maps and the predictions. Finally,315

the R2U-Net uses recurrent convolutional layers to feedback residuals in the training process instead of the316

original convolutional layers. Further details on these variants can be found in their corresponding articles.317

The use of these architectures is tested in Subsection 5.1.1.318

4.3. IrradianceNet319

IrradianceNet is a custom convolutional long short-term memory (ConvLSTM) neural network-based320

prediction model with a two-stage separated encoder-decoder scheme designed by Nielsen et al. (2021b) for321

solar irradiance forecasting using geostationary satellite information. This method is reportedly the best-322

performing of this family of forecasting techniques. It uses three ConvLSTM layers in both the encoder323

and the decoder networks and employs a patch-based approach similar to Sønderby et al. (2020) due to324

computational restrictions. The proposal uses four previous images as input to generate a prediction. Apart325

from the satellite images, the authors introduced other sources of information as input: temporal information326

as the hour, day, and month, and spatial information as the longitude, latitude, and elevation. A different327

model is trained for each forecast horizon from 1 to 4 hours ahead. For the implementation of IrradianceNet328

in this work, two versions of the model are considered, one with only satellite images and the other with329

satellite images and geographic information, i.e. the longitude, latitude, and elevation. Full details on this330

architecture are given in the article by Nielsen et al..331

4.4. CMV332

Cloud Motion Vectors (CMV) methods estimate the cloudiness velocity field from the last two consecutive333

satellite images and then use it to generate future images, i.e. pixels are projected to their future position334

by using the velocity field and the time t image. Several techniques have been applied to estimate the cloud335

motion field, being the optical flow methods the most recent and best performing, as discussed in Section 1.336
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In this work, due to ease of implementation and performance, the Farnebäck optical flow method is used337

with its OpenCV 3.x implementation (calcOpticalFlowFarneback function). This method requires some input338

parameters that were locally optimized over the training set. Some parameters refer to the mathematical339

formulation of the method, like the window size in which the polynomial expansion of this method is done.340

Other parameters refer to its computational implementation, like the down-scaling levels that are used to341

obtain the dense motion estimation from lower to higher resolution images, with a multi-level pyramid342

strategy. This method’s parameters and their optimized values are presented in Table 1 with their library343

names. More information about this method can be found in Farnebäck (2003); Aicardi et al. (2022) and344

in its OpenCV documentation. It shall be noticed that the values of the parameters winsize and levels are345

similar to those found in Aicardi et al. for the same region, but with 2016-2017 GOES-13 albedo images, that346

have a different spatial resolution and time rate. This previous work only optimizes these two parameters,347

leaving the others as default.348

Table 1: Optimized parameters for the Farnebäck optical flow method.

parameter pyr_scale levels winsize iterations poly_n poly_sigma

value 0.3987 4 22 3 5 0.8480

The projection algorithm being used is the common backward search, in which the predicted image is349

constructed by using the opposite vector flow at each given pixel and scaled by the time interval. Note350

that the scaling is required as the CMV is estimated with a 10-minutes difference between images and the351

forecast horizons are hourly. The scaled and inverted CMV is used to obtain the value to assign to each352

pixel in the predicted image from the previous image via a bi-linear interpolation. This procedure is iterated353

for all forecast horizons by taking the basis in the previous predicted image at each stage, starting with the354

time t real image. In Aicardi et al. it is shown that this iterative procedure is the best option to obtain the355

predicted images for these kinds of CMV algorithms.356

Aicardi et al. also showed that running a spatial blurring on the predicted images improves the forecasting357

performance. Further, it showed that the blur window size should be horizon-dependent, as this provides358

better performance than a fixed spatial blur across all forecast horizons. The blurring implemented here359

is based on an isotropic Gaussian kernel. The size of this kernel was optimized over the training data to360

minimize the RMSE% between the predicted images and the corresponding ground truth for each forecast361

horizon. The analysis is shown in Figure 2. As can be seen, there is a flat optimum value of kernel size for362

each forecast horizon that increases and flattens with increasing lead time. The behavior of this plot is the363

same as that of Aicardi et al., which uses a simple average value in a square spatial window of variable side364

length. This blurred model is the best-performing CMV strategy and is called here Blurred CMV.365
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Figure 2: Kernel size optimization for the Blurred CMV strategy.

5. Ablation366

This section describes several implementations of DL models, some of which yield promising results over367

the validation set. These preliminary best-performing architectures were selected for the final assessment368

with the test data set. The experiments presented in this section were obtained with the validation data369

set and a forecast horizon of 1 hour, favoring the metrics that are closer to the machine learning field. The370

red region of Figure 1a was used for most experiments, with the only exception of the variations of the371

U-Net architecture experiment (Subsection 5.1.1) that was performed on the smaller white bounding box372

of Figure 1a due to computational restrictions. All the experiments and runs required for this work were373

done in the ClusterUY center (Nesmachnow and Iturriaga, 2019), a national supercomputing infrastructure374

in Uruguay.375

5.1. U-Net376

Our proposed U-Net architecture uses 16 filters in the first layer (that will be simply referred to in377

the following as “filters”) and MAE as the training loss. Several variations were tested before arriving at378

this configuration. Experiments were done regarding the network capacity, the training loss function, and379

the architecture itself. The batch size was set as the maximum possible in each case. These experiments380

are described in different subsections in the following. This section also presents results regarding data381

augmentation and the inclusion of extra input information. Although not all of the experiments yielded382

positive improvements, they are briefly described here as they may be of interest to other researchers in the383

field. The baseline input information for the networks are the last three available images, this is, the images384

at times (t− k) with k = {0, 1, 2}.385
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5.1.1. U-Net variations386

The original U-Net and its variants, Attention U-Net, Nested U-Net, and R2U-Net, were compared to387

each other. These architectures were tested in the smaller-crop data set with 64 filters, the larger amount388

that was computationally possible. The variants (other than the original U-Net) have around 36 million389

trainable parameters, approximately twice the number of the largest U-Net considered in this work. This390

limits the maximum image size, directly related to the training time and required memory allocation.391

The results of these tests are presented in Table 2. It shows the training and validation MAE and the392

validation MSE (a proxy for the RMSE), and it is sorted by validation performance. It is observed that the393

performance of the variants at their maximum capacity does not improve the performance of the original394

U-Net, neither in training nor validation. It also shows that the U-Net variants tend to overfit more, as they395

have a poorer generalization performance relative to their training performance. This may suggest that the396

data set information is small relative to the networks’ capacity. In light of the previous analysis and the397

added complexity of the U-Net variants, only the original U-Net architecture was considered in the following398

tests of this section.399

Table 2: Validation metrics for the different architecture variations of the original U-Net model with 64 filters. The test was

done for 1h ahead forecast over the smaller-crop data set and MAE as training loss.

architecture training MAE validation MAE validation MSE

original U-Net 0.0555 0.0780 0.0182

attention U-Net 0.0597 0.0870 0.0198

nested U-Net 0.0746 0.0931 0.0221

R2U-Net 0.0614 0.1053 0.0283

5.1.2. Number of parameters400

In the original U-Net architecture the number of parameters is directly proportional to the number of401

filters. Three networks with different numbers of filters (16, 32, and 64) were trained for a prediction horizon402

of one hour. The first two rows of Table 3 show the configurations that were tested, in which the relation403

between the number of filters and parameters can be observed. From these tests, it can be concluded that404

the U-Net with 16 filters achieves better training and validation performance than the U-Nets with 32 and405

64 filters. Note that the metrics of Table 2 and Table 3 do not match exactly due to different images’ sizes406

and coverage, although their behavior and order of magnitude are the same. The U-Net configuration with407

16 filters is the baseline U-Net used in the next experiments.408
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Table 3: Validation metrics for the U-Net model with different number of filters and 1h ahead forecast.

filters parameters training MAE validation MAE validation MSE

16 1080929 0.0532 0.0631 0.0119

32 4318401 0.0591 0.0766 0.0171

64 17262977 0.0587 0.0920 0.0238

5.1.3. Impact of the training metric409

When training a machine learning model, an optimization objective must be chosen, also known as loss410

function. Naturally, a model trained to minimize a specific metric can perform sub-optimally under another411

metric (Zhao et al., 2017). Which one of the metrics is the most adequate for the solar forecasting problem412

is still an open question, as the value of the forecast is directly related to its ability to influence the decision-413

making processes (Yang et al., 2022). However, there is agreement that a set of independent metrics can414

assess different aspects of the quality of a forecast (Yang et al., 2020) if chosen carefully. A related question is415

which should be the training metric for models aimed at cloudiness and solar deterministic forecast, with the416

added complexity of spatial representation, which is different from the single-location time-series analysis.417

An analysis in this sense is provided in this subsection, inspecting mainly the MAE and MSE as training418

metrics, to understand the effect of the loss function choice.419

Three U-Net architectures with 16 filters were trained with the only difference of its training loss function,420

being respectively, the MAE, MSE, and SSIM. The test was done in the same conditions as the previous421

subsection (for one hour ahead forecast with the 1024× 1024 px images). MAE and MSE were selected as422

they represent classic metrics in the solar forecast field that are typically used for the adjustment of machine423

learning methods. These metrics weigh the forecast errors differently and quantify different aspects of the424

forecast quality. SSIM metric was also included as an image quality metric, mainly as an exploratory option.425

This metric has a quite different conception and objective than the MAE and MSE. The performance of426

the three models was assessed over the validation set with the same three metrics, obtaining the double-427

entrance 3× 3 matrices of Table 4. The left-hand side of this table presents the three validation metrics (in428

absolute terms) when each of them is used as a loss function for training. The right-hand side shows the429

same information but centered by subtracting the optimum value of each metric across the three tests (the430

minimum for MAE and MSE, and the maximum for SSIM) and expressed as a percentage of it. Please note431

that MAE and MSE are negative-oriented metrics while SSIM is positive-oriented. As expected, each model432

performs better when evaluated with the same metric used for training. It is observed that both MAE and433

MSE can be used as loss functions without much loss in the other metrics. MAE as the optimization target434

has slightly less impact on the SSIM than the MSE. On the other hand, using MAE as the loss function435

degrades the MSE more (8.2%) than the reverse situation, in which using MSE degrades MAE by 4.1%.436
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The use of the SSIM as the loss function increases importantly the MSE validation metric and has less437

impact on the MAE validation metric. This is consistent with the sharper visual results of the MAE in438

comparison to the MSE, as this latter tends to generate predicted images with higher blur. All in all, as the439

choice of MAE or MSE as the loss function has a different relative impact (higher or lower) in the other two440

metrics, the analysis is not conclusive. The MAE metric was then favored as it is common ground in the441

machine learning field. If the RMSE is chosen as the evaluation metric, one may expect an improvement of442

≃ 4%1 from the results presented in this article (Section 6) by using instead the MSE as loss function for443

the U-Nets’ training.444

Table 4: Validation metrics for the U-Net model and 1h ahead forecast when trained using three different loss functions.

validation cost function percentage cost function

metric MAE MSE SSIM difference MAE MSE SSIM

MAE (abs.) 0.0631 0.0657 0.0669 MAE (∆%) 0.0% 4.1% 6.0%

MSE (abs.) 0.0132 0.0122 0.0153 MSE (∆%) 8.2% 0.0% 25.4%

SSIM (abs.) 0.5905 0.5838 0.5979 SSIM (∆%) -1.2% -2.4% 0.0%

The previous analysis provides a first study on the relationship between the training loss function and445

the target performance metrics, an issue that has not been extensively addressed in the field so far. Of446

course, if one particular metric is of interest for whatever problem-specific reason, then it should be used as447

the optimization target for the training stage. An interesting discussion of one part of this problem can be448

found in Section 2.1 of Yang et al. (2020).449

5.1.4. U-Net Diff450

The U-Net Diff model consists of changing the target to be the difference between the last image (time451

t) of the input sequence and the desired objective for the given time horizon. In this way, the U-Net Diff452

is trained to predict the changes between the actual and the future image, and not the future image itself.453

This can be seen as a naive way to remove the image’s background. To allow for negative values in the454

output, the last activation function was changed to a hyperbolic tangent instead of a sigmoid. To test this455

modification, the baseline U-Net and the U-Net Diff were trained for prediction horizons from 1 to 5 hours456

ahead with the 1024× 1024 px images using MAE as the loss function. The validation results show similar457

performance for the two networks, with the U-Net Diff achieving marginally better results in four of the five458

forecast horizons. As the results over the validation set are very similar to the results over the final test set,459

only the latter are presented in Section 6.460

1This was assessed from Table 4 by calculating RMSE =
√

MSE.
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5.1.5. Extra ablations461

This subsection summarizes some other tests that caused no improvement but might be of interest. The462

preliminary studies about the optimal input data pipeline showed that no performance improvement came463

from (i) using rotations as a data augmentation strategy (a strategy that is used in some contexts), (ii)464

adding the date and time as input information for the network, or (iii) using the CMV method as extra465

input information. The CMV information was included in the form of forecasts or vector fields, either466

as additional channels or at a later network stage, and none of them produced improvements. Another467

experiment regarding implementation showed that recursively using a 10-min single-horizon U-Net resulted468

in worse performance than using the horizon-specific models. This was the expected behavior, as the U-Net469

with a 10-min horizon was not trained to deal recursively with its blurry outputs as inputs or to minimize470

the recursive error on larger horizons, but was tested for completeness.471

5.2. IrradianceNet472

Two types of IrradianceNet models were trained. One only uses images as input and the other the images473

with added spatial (latitude and longitude) and topographic data (elevation map). The elevation map was474

normalized by its absolute maximum inside the corresponding crop. The other spatial inputs (coordinates)475

were mapped to the [0, 1] interval. The network using these extra inputs is called IrradianceNet GEO and was476

recommended by Nielsen et al. (2021b). As it is trained over patches of the images due to its computational477

cost, the spatial information may provide the network with knowledge from where the patch is taken. A478

10-minute prediction step was too computationally expensive, so a 30-minute time step was used instead,479

following the original article by Nielsen et al.. Also, to be consistent with the original article, both models480

use four previous images as input to generate the prediction (times (t − k) with k = {0, 1, 2, 3}), although481

in this case, they are separated by 10-minute steps. Note that, in this way, this algorithm uses one more482

previous image than the U-Nets. A related issue is that, operationally, the algorithm needs to wait for one483

daylight image more than the versions with three inputs, delaying 10 minutes (in this case) its first forecast484

of the day. This is not an important cost when using 10-minute images, but it certainly would be an issue485

with 30-minute images.486

The training configuration for IrradianceNet and IrradianceNet GEO is similar to the ones used for the487

U-Net: 100 epochs, Xavier initialization (Glorot and Bengio, 2010) for the weights, and Adam optimizer488

(Kingma and Ba, 2015) with a variable learning rate scheduled to be reduced in half if validation perfor-489

mance does not improve for 15 epochs. However, there are two changes to be consistent with the training490

configuration used in the original article. These are the initial learning rate equal to 2 × 10−3 and the491

selection of MSE as the training loss. The location of the patches taken during training is random for each492

batch. During validation, the patches are fixed to cover the whole image without overlapping.493

The results from running the trained models on the validation data set showed that the IrradianceNet494
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GEO was not able to exploit the additional input data, as it performed very similarly to the basic Irradi-495

anceNet. These results could be explained by the low value that the geographic information adds for the496

South American Pampa Húmeda (which is mostly flat grassland) in comparison to the region of the original497

article (Europe). IrradianceNet GEO is included in the final results for completeness.498

6. Results499

This section contains the final results of the performance evaluation and the method’s behavior over500

the test data set, considering the proposed and selected models. This test data set has been unseen in all501

previous analyses and optimization. Subsection 6.1 presents the final performance assessment and metrics,502

while Subsection 6.2 shows some selected predicted sequences with interesting insights. For clarity, some of503

the quantitative information is presented in Appendix B.504

6.1. Quantitative results505

Figure 3 shows the MAE, RMSE, and FS metrics across the hourly forecast horizons up to 5h ahead. The506

evaluation includes three reference algorithms: the Persistence and the CMV in its two versions, pixel-wise507

and with optimized spatial blurring. The two pairs of DL models being evaluated are included, the U-Net508

and U-Net Diff, and the IrradianceNet with and without spatial information. As explained in Section 1, the509

CMV algorithm is evaluated only over its valid pixels. For the rest of the models, the evaluation is conducted510

over the entire 1024 × 1024 px images. Please note that the metrics’ values do not need to match those511

of Section 5 as the data sets are not the same (validation vs test data set). However, it is a sanity check512

to observe that the orders of magnitudes are the same. A direct qualitative comparison with the results of513

Nielsen et al. (2021a) or Nielsen et al. (2021b) over Europe is not feasible due to different reasons. In Nielsen514

et al. (2021a) the algorithm is run with a satellite cloud classification product, so the reported metrics at the515

image level are in accordance with the objectives of the study, being different from the ones here. In Nielsen516

et al. (2021b) the evaluation is performed for the hourly predicted irradiation, not at image level (which517

would be in that case for the effective cloud albedo, a satellite cloud index used for satellite-to-irradiance518

conversion), and, apart from MAE, the metrics are different. In any case, IrradianceNet is included in this519

article and evaluated with the same data set along with the other methods, thus providing a fair comparison520

in the target region. The performance differences that may arise due to different regions and climates should521

be addressed in future benchmark studies.522

The largest difference between performances in Figure 3 is seen when evaluating with MAE, where the523

U-Net and U-Net Diff significantly outperform all the other models. This is expected as these are the only524

two models trained to optimize this metric. It can be seen that the two IrradianceNet versions have almost525

the same performance in this metric and outperform the persistence and pixel-wise CMV. In comparison526
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Figure 3: Main performance metrics vs forecast horizon for the reference methods and DL models.
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with the blurred CMV, the IrradianceNet performance is similar for 3 and 4 hours ahead, being better in527

the 1h and 2h forecast horizons and worse in the last one. It shall be recalled at this point that both the528

Blurred CMV and IrradianceNet networks were optimized to minimize the training MSE.529

Observing the RMSE performance plot of Figure 3 the differences are smaller than in the MAE analysis,530

and they are better observed in the Forecasting Skill plot. The IrradianceNet variations perform better531

than the blurred CMV for all forecast horizons under this metric. The best-performing architectures are the532

U-Nets, being the U-Net Diff the one with the highest FS% for all forecast horizons. The fact that the U-Net533

is still superior in RMSE when using a different training loss is remarkable, as per Table 4 this performance534

could be further improved in about 4% if MSE were to be used as a loss function. The Forecasting Skill535

plot also allows seeing the important improvement that is gained with a simple spatial blurring in the CMV536

output, coinciding with the results of Aicardi et al. (2022) with the former GOES-East satellite images. The537

work of Aicardi et al. also obtained a decreasing trend in the forecasting skill with the forecast horizon with538

a higher drop in the transition between the first and the second hour, and with similar values. The MBE%539

and RMSE% plots are shown and discussed in Appendix B, and also have similar values to that of Aicardi540

et al..541

6.2. Qualitative results542

It is interesting to explore some differences between the U-Nets, IrradianceNet, and CMV predictions.543

Two comparisons are made: (i) the U-Net vs CMV, showing some selected cases in which the U-Net was544

able to predict cloud extinction, a feature that current baseline CMV strategies are unable to perform, and545

(ii) the spatial distribution of the errors of the U-Net and IrradianceNet networks, specifically addressing546

the artifacts observed by using the patch processing strategy. Point (i) also includes a visualization of the547

border’s effect of the CMV methods. The U-Net Diff is selected for the following discussion.548

6.2.1. Cloud extinction case studies549

Figures 4 and 5 show two examples in which the U-Net was able to correctly forecast cloud extinction,550

while the CMV, as expected, was not. The first row shows the three lagged images used for the U-Net551

forecast, and the one on the right is the time t image. Note that the CMV only uses the last two of these552

three images. The second and third rows show the predictions of the U-Net and the CMV along with the553

corresponding ground truth image on the left side. In the first sequence of Figure 4 (August 4th, 2020,554

time t being 14:40 UTC-0) the clouds in 4C-4D, 1A-2A, and 1E cells disappear after 2 hours, as can be555

seen in the ground truth. The U-Net forecasts these extinctions accurately in the three cases, including the556

intermediate stage at one hour ahead, being a remarkable feature of this method. The CMV, in change,557

maintains these clouds in its prediction. The second sequence of Figure 5 (October 14th, 2020, time t being558

12:40 UTC-0) shows a similar behavior but in a more complex situation. In this case, the extinction of the559
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clouds located in cells 2D-2E and 4D occurs after three hours. The U-Net, again, manages to predict its560

reduction and later disappearance, but in this case in a moving context. In particular, the U-Net detects the561

drift of the 2D-2E clouds and it is capable of predicting that these clouds will detach from the main system562

in the top-left corner, and gradually vanish for larger horizons. Similar behavior and accurate prediction563

by the U-Net are observed for the cloud in the 4D cell. Of course, the CMV is unable to predict any of564

these phenomena, and these identified clouds wrongly remain in all its predictions. This second sequence565

also allows seeing the border’s effect of the CMV prediction, as this sequence includes important movement566

in the scene. This effect increases with the time horizon, being a drawback of the CMV strategy that can567

be mitigated by using larger images, with the corresponding computational cost.568

The previous features of the U-Net do not come along without any cost. As can be seen in both569

sequences the U-Net predictions tend to be blurred, a trick that is learned by the network to reduce the cost570

of high errors. As in any deterministic forecasting problem, there is a trade-off between having an overall571

good performance and taking risks in the prediction. There is then important room for further studies572

to understand the separation between image blurring and predicting clouds’ movement, deformation, and573

formation/extinction, some of which are part of our current work.574

6.2.2. Spatial dependence of the error575

It is expected that the models perform better close to the center of the image, as there is less uncertainty576

about the clouds that could move into or out of that area. In change, the prediction of incoming clouds577

through the image borders is a much harder task. However, this may not be true, if clouds are more difficult578

to predict in a given sub-region. Also, predicting the borders of the image is not a symmetric problem in579

average terms, as the atmosphere circulation makes clouds’ phenomena have preferred directions in different580

parts of a given territory. This analysis was done with three models: the Persistence, the U-Net Diff, and581

IrradianceNet methods. Figure 6 presents the spatial per-pixel distribution of the RMSE over the test data582

set for each of the 5 hourly time horizons. These error maps show that all models make, on average, the583

largest errors in the top right corner (northeast) of the region under study, being the Persistence procedure584

the most disadvantaged. This analysis reveals that the climate and geographical characteristics of a region585

can be an important driver of errors’ spatial distribution. For this region, in particular, the clouds in586

the northeast region are harder to predict, being associated with the typical circulation and behavior of587

cloudiness in that area. These areas with the highest errors are consistent through the 5-time horizons, with588

the difference of a natural error increase in the whole map as the prediction horizon grows. When visualizing589

the error maps of IrradianceNet, the patch-based prediction is observed as a grid-like layout throughout the590

region. Apart from the grid-like effect, the underlying error maps of the IrradianceNet predictions are similar591

to the ones of the U-Net Diff.592
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Figure 4: Image sequence captured on August 4th, 2020. Current time: 14:40 UTC0 (top-right image).
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Figure 5: Image sequence captured on October 14th, 2020. Current time: 12:40 UTC0 (top-right image).

7. Conclusions593

This article analyzed Deep Learning (DL) techniques applied to satellite-based cloudiness prediction594

(Earth’s albedo) up to 5 hours ahead. This is the first stage of satellite intra-day solar irradiance forecasting.595
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The work used the 10-minute GOES-16 visible channel satellite images for the southeast part of South596

America, an area known as Pampa Húmeda. This is a region in which the convective systems’ evolution597

is challenging and the solar irradiance variability is at an intermediate level, as clear sky, overcast, and598

partly cloudy conditions alternate. The utilization of the original U-Net DL network was proposed and599

tested for this purpose along with the up-to-date IrradianceNet DL algorithm. Two baseline methods were600

also included, namely, the satellite cloudiness persistence and an advanced Cloud Motion Vectors (CMV)601

strategy with optimized spatial blurring. The U-Net optimization was analyzed in detail, providing for it602

different ablation studies. Two U-Nets with 16 filters were implemented; the regular U-Net that aims to603

predict the next image and the U-Net Diff that aims to predict the difference with the last available image604

(time t). A different network was trained for each time horizon. This is a common practice in the field,605

however, it was confirmed in this work as best practice, in opposition to the recurrent utilization of a single606

one-lead-time DL network. None of the U-Net variants (Attention U-Net, Nested U-Net, and R2U-Net)607

were found to outperform the original U-Net. Both final U-Nets showed the remarkable feature of predicting608

cloud extinction, which is one of the harder issues in satellite-based solar forecasting.609

The DL methodologies presented better performance than the baseline methods, including the blurred610

CMV, which sets a very exigent performance bound. The preexisting architecture, IrradianceNet, as pro-611

posed by Nielsen et al., was adapted successfully when retrained and evaluated on a different geographical612
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region and larger images. In this study, at least for this region, both U-Net architectures outperformed Ir-613

radianceNet, and the U-Net Diff was the best performing. One of the strengths of the U-Net architecture is614

its wide utilization and ease of implementation, as it is considered a light, robust, and extensively tested DL615

method. This work illustrated the U-Net utilization over images with a larger size and a higher resolution616

than in previous works dealing with DL methods for this purpose. Regarding training time, the Irradi-617

anceNet had higher requirements than the U-Nets. However, once the DL networks are trained, prediction618

times are low, making any of them suitable for real-time operation. In particular, none of the final U-Net619

models are computationally expensive to use, being possible to generate a prediction in less than a second620

using a single GPU.621

A. Limitations622

There is plenty of room for improvement and this work is far from comprehensive. For instance, data623

augmentation via random cropping was not considered for the U-Net. This method was used to train624

IrradianceNet and can help escalate the models to larger regions (Espeholt et al., 2021). In addition, the625

optimization objective remains arbitrarily defined, for there is not a single metric of interest. This introduces626

optimization compromises, e.g. when the optimization is done with the MSE loss function, the predictions627

appear with higher blur than when using MAE. There is still an unsolved (and not yet fully understood)628

trade-off between overall accuracy and risky variability prediction, that the networks learn to mitigate by629

blurring. Moreover, the preprocessing could also be enhanced by including image background removal in630

sophisticated ways. This could be especially impactful for salty/snowy regions of land, not present in our631

images. The impact of such a transformation on performance is yet unknown and it was not specifically632

addressed in this work, being part of our current work. Lastly, the results suggested no improvement when633

adding the GEO information to the IrradianceNet. Although this can be explained by the low variability in634

altitude in the studied area compared to Europe, the question of what information can be effectively fed to635

the neural network is raised. Another way to include meaningful information would be to directly provide636

the neural network with relevant regional data, such as typical cloudiness variability or mean wind direction.637

B. Complementary assessment information638

For completeness and clarity of presentation in the main text, the MBE% and RMSE% plots are provided639

here. Figure B.7 shows these two metrics for the assessment of Section 6. The MBE% are between ≃ ±10%,640

similar to Aicardi et al. (2022), in which all tested CMV strategies and the persistence tend to decrease (with641

its sign) with the forecast horizons. In particular, persistence shows very similar behavior. The differences642

here are observed with the IrradianceNet variations, whose MBE% increases with the forecast horizons,643

being positive for 3 to 5 hours ahead. The RMSE% plot contains the same information as the RMSE plot644
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of Figure 3 but is normalized by each image’s mean value before averaging the metric across all images in645

the test set. It is interesting to note that the order of magnitude in this plot is similar to that of Aicardi646

et al..647
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Figure B.7: Complementary performance metrics (%) vs forecast horizon for the reference methods and DL models.
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