Por favor, use este identificador para citar o enlazar este ítem:
https://hdl.handle.net/20.500.12008/43928
Cómo citar
Registro completo de metadatos
Campo DC | Valor | Lengua/Idioma |
---|---|---|
dc.contributor.author | Bellati Barthés, Alejandro Gustavo | - |
dc.contributor.author | Reiris Ithurralde, Martín | - |
dc.date.accessioned | 2024-05-28T17:23:20Z | - |
dc.date.available | 2024-05-28T17:23:20Z | - |
dc.date.issued | 2023 | - |
dc.identifier.citation | Bellati Barthés, A y Reiris Ithurralde, M. "Stabiliy of the double-cusp spacetimes and long-time geometrizations". [Preprint]. Publicado en: Mathematics (Differential Geometry). arXiv: 2311.17180, nov 2023, pp 1-30 . DOI: 10.48550/arXiv.2311.17180 | es |
dc.identifier.uri | https://hdl.handle.net/20.500.12008/43928 | - |
dc.description | Versión permitida preprint. | es |
dc.description.abstract | Since the early years of General Relativity, understanding the long-time behavior of the cosmological solutions of Einstein's vacuum equations has been a fundamental yet challenging task. Solutions with global symmetries, or perturbations thereof, have been extensively studied and are reasonably understood. On the other hand, thanks to the work of Fischer-Moncrief and M. Anderson, it is known that there is a tight relation between the future evolution of solutions and the Thurston decomposition of the spatial 3-manifold. Consequently, cosmological spacetimes developing a future asymptotic symmetry should represent only a negligible part of a much larger yet unexplored solution landscape. In this work, we revisit a program initiated by the second named author, aimed at constructing a new type of cosmological solution first posed by M. Anderson, where (at the right scale) two hyperbolic manifolds with a cusp separate from each other through a thin torus neck. Specifically, we prove that the so-called double-cusp solution, which models the torus neck, is stable under S1×S1 - symmetry-preserving perturbations. The proof, which has interest on its own, reduces to proving the stability of a geodesic segment as a wave map into the hyperbolic plane and partially relates to the work of Sideris on wave maps and the work of Ringström on the future asymptotics of Gowdy spacetimes. | es |
dc.format.extent | 30 p. | es |
dc.format.mimetype | application/pdf | es |
dc.language.iso | en | es |
dc.publisher | arXiv | es |
dc.relation.ispartof | Mathematics (Differential Geometry), arXiv: 2311.17180, nov 2023, pp. 1-30 | es |
dc.rights | Las obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad de la República.(Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014) | es |
dc.subject | Differential geometry | es |
dc.subject | Hyperbolic spaces | es |
dc.title | Stabiliy of the double-cusp spacetimes and long-time geometrizations | es |
dc.type | Preprint | es |
dc.contributor.filiacion | Bellati Barthés Alejandro Gustavo, Universidad de la República (Uruguay). Facultad de Ciencias. Centro de Matemáticas. | - |
dc.contributor.filiacion | Reiris Ithurralde Martín, Universidad de la República (Uruguay). Facultad de Ciencias. Centro de Matemáticas. | - |
dc.rights.licence | Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0) | es |
dc.identifier.doi | 10.48550/arXiv.2311.17180 | - |
Aparece en las colecciones: | Publicaciones académicas y científicas - Facultad de Ciencias |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | ||
---|---|---|---|---|---|
2311.17180v1.pdf | 720,85 kB | Adobe PDF | Visualizar/Abrir |
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons