english Icono del idioma   español Icono del idioma  

Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/20.500.12008/43928 Cómo citar
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorBellati Barthés, Alejandro Gustavo-
dc.contributor.authorReiris Ithurralde, Martín-
dc.date.accessioned2024-05-28T17:23:20Z-
dc.date.available2024-05-28T17:23:20Z-
dc.date.issued2023-
dc.identifier.citationBellati Barthés, A y Reiris Ithurralde, M. "Stabiliy of the double-cusp spacetimes and long-time geometrizations". [Preprint]. Publicado en: Mathematics (Differential Geometry). arXiv: 2311.17180, nov 2023, pp 1-30 . DOI: 10.48550/arXiv.2311.17180es
dc.identifier.urihttps://hdl.handle.net/20.500.12008/43928-
dc.descriptionVersión permitida preprint.es
dc.description.abstractSince the early years of General Relativity, understanding the long-time behavior of the cosmological solutions of Einstein's vacuum equations has been a fundamental yet challenging task. Solutions with global symmetries, or perturbations thereof, have been extensively studied and are reasonably understood. On the other hand, thanks to the work of Fischer-Moncrief and M. Anderson, it is known that there is a tight relation between the future evolution of solutions and the Thurston decomposition of the spatial 3-manifold. Consequently, cosmological spacetimes developing a future asymptotic symmetry should represent only a negligible part of a much larger yet unexplored solution landscape. In this work, we revisit a program initiated by the second named author, aimed at constructing a new type of cosmological solution first posed by M. Anderson, where (at the right scale) two hyperbolic manifolds with a cusp separate from each other through a thin torus neck. Specifically, we prove that the so-called double-cusp solution, which models the torus neck, is stable under S1×S1 - symmetry-preserving perturbations. The proof, which has interest on its own, reduces to proving the stability of a geodesic segment as a wave map into the hyperbolic plane and partially relates to the work of Sideris on wave maps and the work of Ringström on the future asymptotics of Gowdy spacetimes.es
dc.format.extent30 p.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenes
dc.publisherarXives
dc.relation.ispartofMathematics (Differential Geometry), arXiv: 2311.17180, nov 2023, pp. 1-30es
dc.rightsLas obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad de la República.(Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014)es
dc.subjectDifferential geometryes
dc.subjectHyperbolic spaceses
dc.titleStabiliy of the double-cusp spacetimes and long-time geometrizationses
dc.typePreprintes
dc.contributor.filiacionBellati Barthés Alejandro Gustavo, Universidad de la República (Uruguay). Facultad de Ciencias. Centro de Matemáticas.-
dc.contributor.filiacionReiris Ithurralde Martín, Universidad de la República (Uruguay). Facultad de Ciencias. Centro de Matemáticas.-
dc.rights.licenceLicencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)es
dc.identifier.doi10.48550/arXiv.2311.17180-
Aparece en las colecciones: Publicaciones académicas y científicas - Facultad de Ciencias

Ficheros en este ítem:
Fichero Descripción Tamaño Formato   
2311.17180v1.pdf720,85 kBAdobe PDFVisualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons