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Abstract. Since the early years of General Relativity, understanding the

long-time behavior of the cosmological solutions of Einstein’s vacuum equa-

tions has been a fundamental yet challenging task. Solutions with global

symmetries, or perturbations thereof, have been extensively studied and are

reasonably understood. On the other hand, thanks to the work of Fischer-

Moncrief and M. Anderson, it is known that there is a tight relation between

the future evolution of solutions and the Thurston decomposition of the spa-

tial 3-manifold. Consequently, cosmological spacetimes developing a future

asymptotic symmetry should represent only a negligible part of a much larger

yet unexplored solution landscape. In this work, we revisit a program initiated

by the second named author, aimed at constructing a new type of cosmological

solution first posed by M. Anderson, where (at the right scale) two hyperbolic

manifolds with a cusp separate from each other through a thin torus neck.

Specifically, we prove that the so-called double-cusp solution, which models

the torus neck, is stable under S1 × S1 - symmetry-preserving perturbations.

The proof, which has interest on its own, reduces to proving the stability of a

geodesic segment as a wave map into the hyperbolic plane and partially relates

to the work of Sideris on wave maps and the work of Ringström on the future

asymptotics of Gowdy spacetimes.

1. Introduction

Since the early years of General Relativity, understanding the long-time behav-

ior of the cosmological solutions of Einstein’s equations has been a fundamental

yet quite challenging task. Solutions with spatial symmetries, like the spatially

homogeneous Bianchi models or the Gowdy T2-symmetric spacetimes, have been

extensively studied over the decades and are reasonably well understood [8], [5], [9].

All these models are very valuable and provide explicit examples of future dynamics

but fall short when the goal is to describe the full set of possible future behaviors.

In this work, we revisit a program initiated by the second named author, aimed at

constructing a new type of cosmological solution first posed by M. Anderson with

a qualitative behavior that is pretty different from any other model known. As

we will explain below, such a solution would provide strong support to some ideas
1

ar
X

iv
:2

31
1.

17
18

0v
1 

 [
m

at
h.

D
G

] 
 2

8 
N

ov
 2

02
3



2 STABILITY OF DOUBLE-CUSP SPACETIMES AND LONG-TIME GEOMETRIZATIONS

developed by Fischer-Moncrief and Anderson relating fundamentally the topology

of the Cauchy 3-hypersurfaces to the dynamics of the cosmological solutions [3],

[4], [1], [2].

Motivated by certain considerations on the Thurston geometrization conjecture,

Anderson posed in [2] (see paper’s bottom) the problem of finding a cosmological

solution where coarsely speaking, two hyperbolic 3-manifolds with a cusp1 separate

from each other through a thin torus neck. In Anderson’s picture, hypersurfaces

Σk of mean curvature k ∈ (−∞, 0) evolve in the expanding direction k ↑ 0, but the

geometry at each time k is scaled so that the mean curvature of Σk is −3. Under this

scaling, the two hyperbolic pieces with their corresponding cusp should emerge over

time, separating from each other along an increasingly thin torus neck that develops

asymptotically a T2-symmetry. Figure 1 schematizes that behavior. This spacetime

would comprise a new and non-trivial example of a cosmological solution of the

vacuum Einstein equations whose spatial geometry (at the mentioned scale) evolves

towards the Thurston decomposition of its Cauchy hypersurface. Furthermore,

for this solution, the Fischer-Moncrief’s reduced volume would decay towards its

topological lower bound given by (−σ/6)3/2, where σ is the Yamabe invariant of

the Σ’s.

The double-cusps solutions were introduced in [6] and are explicit T2 = S1 × S1-
symmetric solutions on R × R × T2 tailored to model the evolution of the torus

neck. As we will see, they enjoy all the required global and asymptotic properties

and are therefore a crucial piece. But before attempting to study the combined

evolution of the torus neck and the two hyperbolic manifolds with a cusp, it be-

comes necessary to prove that the double cusps are future-stable and provide sharp

decaying estimates. In this article, we do that but for perturbations preserving the

T2-symmetry. Quite interestingly, this problem reduces to proving the stability of a

parametrized geodesic segment (that models the double-cusp) as a wave map from

a (flat) 3-dimensional spacetime into the hyperbolic plane. The stability problem

of geodesics as wave maps was studied by Sideris in [10], but the problem consid-

ered in that work is different from ours. Also, the future evolution of T3-Gowdy

spacetimes was studied by Ringström in [7], through a wave map that, of course,

has the same origin as ours. In that case, any solution defines a loop in hyperbolic

space, while here, it defines a curve with the same ends as the geodesic segment.

In section 2 we introduce the double cusp spacetimes and describe their global

properties. This analysis is not relevant for the technical part of the paper, sections

4 to 6, but helps to understand the geometric motivation of the article and to point

out certain subtleties that appear when we discuss, in section 3, the statements of

the main results and the stability of the double cusp as spacetimes.

1A cusp is a 3-manifold (−∞, 0]×T2 with a hyperbolic metric of the form gH = dx2 + e2xgT ,

with gT flat x−independent on T2. Cusps are discussed later in the article.
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Torus neck

Hyperbolic piece Hyperbolic piece

Figure 1. Expected behavior of the type of solution posed in [2].

2. Double-cusps and their global properties

The double cusp spacetimes have metrics of the form [6],

g = e2a(−dt2 + dx2) +R(e2W + q2e−2W )dθ21 − 2Rqe−2W dθ1dθ2 +Re−2W dθ22, (1)

over the manifold Rt × Rx × S1θ1 × S1θ2 , where a, R, and q depend only on t and

x. Cauchy hypersurfaces, for instance, those with t constant, are diffeomorphic to

R × T2 and are thus “torus necks”. Metrics of this form are similar to the T3-

Gowdy’s metric, [5], but differ from them in that R is not taken as a coordinate

and that x is not periodic. The double-cusps are non-stationary spacetimes. We

will explicitly present the forms of a,R, and q later below. We will analyze their

global geometry, explaining how their geometry behaves along the CMC foliation

(hypersurfaces with t constant are not CMC). However, before doing that and to

motivate how these solutions arise, we first present the equations for R, W , q, and

a. These equations, derived from the Einstein equations, are,

Rxx −Rtt = 0, (2)

Wtt −Wxx +
Rt
R
Wt −

Rx
R
Wx +

(q2t − q2x)

2
e−4W = 0, (3)

qtt − qxx +
Rt
R
qt −

Rx
R
qx − 4qtWt + 4qxWx = 0, (4)

att − axx +
R2

x−R
2
t

4R2 +W 2
t −W 2

x + 1
4 (q

2
t − q2x)e

−4W = 0, (5)

and,

at
Rt
R

+ ax
Rx
R

+
1

4

(
R2
x

R2
+
R2
t

R2

)
− Rxx

R
− (W 2

x +W 2
t )−

1

4
e−4W (q2x + q2t ) = 0, (6)

ax
Rt
R

+ at
Rx
R

− Rtx
R

+
RxRt
2R2

+ 2WtWx −
1

2
e−4W qxqt = 0. (7)

The equations (2), (3), (4) and (5) are the dynamical equations for R, W , q and

a, and (6) and (7) are the constraint equations. The dynamical equation for R

decouples from all the others, and the dynamical equations for W and q decouple

from that of a. In certain cases, one can solve globally for ax and at from (6)-(7)
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and then simply perform line integrals to find a. In this case, a is determined from

R,W , and q up to an integration constant.

It is crucial but also well known that the equations (3) and (4) are wave map

equations into the hyperbolic plane. This is seen as follows. Think of the hyperbolic

plane H as R2 = Rx × Ry endowed with the metric h = 4dy2 + e4ydx2. On the

other hand consider the manifold Rt × Rx × S1ϕ endowed with the metric k =

4e4t(−dt2 + dx2) + R2(t, x)dϕ2 and denote this Riemannian manifold as K. Then

W and q satisfy equations (3) and (4) if and only if the map χ : K −→ H given by,

χ(t, x, ϕ) = (q(t, x),−W (t, x)), (8)

is a wave map between the two manifolds. Another way of expressing this is that

equations (3) and (4) are the Euler-Lagrange equations of the action,

S =

∫
∂lχ

i∂mχ
jhijk

lm dVk = 2π

∫
R(4(W 2

x +W 2
t ) + (q2x + q2t )e

−4W )dtdx. (9)

Let us now see the explicit form of the double cusps. First, for all the double-cusp

solutions, one takes R(t, x) = R0e
2t cosh 2x with R0 a constant, which of course

solves (2). Second, one requires W and q to be t-independent, i.e. W =W (x) and

q = q(x). The Euler-Lagrange equations for such particular data are equivalent to

the Euler-Lagrange equations of the action,

F =

∫
R
|γ′|2 cosh(2x)dx (10)

where γ(x) = χ(x), and whose solutions are well known to be parametrized geodesic

segments of the hyperbolic plane. When the geodesic segment is vertical and thus

has q constant, we say that the double cusp is polarized. Their explicit form is,

R = R0e
2t cosh(2x), (11)

W =W1 +W0 arctan(e
2x), (12)

q = q0, (13)

a = a0 −
(
1

2
+
W 2

0

2

)
1

2
ln(cosh(2x)) +

(
3

2
+
W 2

0

2

)
t, (14)

with R0 > 0,W0 ̸= 0,W1, q0 and a0 constants. The non-polarized double-cusps are

created by transforming polarized ones by an isometry of the hyperbolic plane (see

Figure 2), and the explicit expression won’t be particularly relevant. From now on,

double cusp solutions will be denoted by Rb,Wb, qb and ab, where ‘b’ stands for

‘background’.

Formally speaking, the stability problem that we face amounts to the stability of

Rb,Wb, qb and ab as particular solutions of a system of partial differential equations,

and in fact this is pretty much the viewpoint that we take. We will study first the

wave equation for R, then the wave map equation for (W, q), and finally, we will

study a, which will be determined entirely from them. As it turns out, to control

the perturbations of R and of (W, q), we will use some natural norms that may seem

very suitable and standard from a PDE point of view but that may not guarantee

the stability of a, and thus of the spacetime, even for perturbations of R, W and

q arbitrarily small with respect to them. In the next section, we will see that
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this apparently conflicting point can be solved using finer norms to measure the

smallness of the initial data for R,W , and q over the Cauchy surface t = 0. The

double cusp spacetimes are stable for small perturbations in the sense of these finer

norms, even though the evolution of R,W , and q is controlled with more coarse

ones. All these subtleties have their origin in the very nature of the coordinates

(t, x) and the nature of the Cauchy hypersurface {t = 0}, (where we are perturbing
the initial data). In the rest of this section, we review the global properties of

the double cusps. As said, this information will not play a role when studying the

stability of R and of (W, q), which will be treated as a standard PDE problem, but

it will help to understand the discussion about the stability of a and therefore of

the double cusp as a spacetime.

q

e2W
Polarized

Double Cusp

Non-polarized

Double Cusp

φ ∈ Isom(H2)

Perturbation

Perturbation

Figure 2. In blue, two double cusps are represented. A perturbation
is represented in red, as the curve x 7→ χ(t, x) for a fixed t. As time
evolves, this curve will move. The figure also illustrates how an arbitrary
double cusp can be seen as a polarized double cusp.

A main property of the double cusps is that at each of their two ends, one can

define spacetime coordinates (t′, x′) and (t′′, x′′) where one can observe the spatial

scaled metrics converge towards hyperbolic cusps. This is one of the main properties

making double cusps adequate to model the necks of the solutions posed in [2]. To

explain all that, we begin recalling certain notions on hyperbolic manifolds and flat

cone spacetimes. If (M, gH) is a hyperbolic manifold, then Rτ ×M endowed with

the metric g = −dτ2 + τ2gH is a flat spacetime (hence a solution of the Einstein

equations) called a flat cone. The mean curvature of the hypersurface τ = τ0

is k0 = −3/τ0. Therefore, when the spacetime metric g is scaled as (k0/3)
2g =

τ−2
0 g = d(τ/τ0)

2 + (τ/τ0)
2gH , then the mean curvature of the hypersurface τ = τ0

becomes −3 and the induced 3-metric gH . This is called CMC scaling and can

be made at any CMC hypersurface Σk of mean curvature k inside a spacetime.

Hyperbolic manifolds of finite volume can be non-compact. When this is so, the

manifold has a finite number of truncated “cusps” of the form C = (−∞, x0]x×T2

with gH = dx2 + e2xgT , where gT is an x−independent flat metric on T2. A

cusp spacetime is a flat cone with M = Rx × T2 and gH = dx2 + e2xgT , with gT

x−independent and flat. As mentioned a few lines above, the two ends of double

cusps are asymptotic to cusp spacetimes as t → ∞. This behavior is not observed

in the coordinates t, x but rather in new coordinates linearly related to them. On
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a double cusp solution, consider the new coordinates,

t′ = −
(
1

2
+
W 2

0

2

)
x+

(
3

2
+
W 2

0

2

)
t, (15)

x′ = −
(
1

2
+
W 2

0

2

)
t+

(
3

2
+
W 2

0

2

)
x. (16)

These coordinates are plotted in Figure 3. When we fix x′ and increase t′, or when

we fix t′ and increase x′, both x and t increase. In this sense, these new coordinates

are adapted to the ‘right’ end. It is on these coordinates that the double-cusp

metric approaches a cusp spacetime metric (τ = et
′
). This is easy to show and has

been done in [6] in detail. On the ‘left’ end, one can also define coordinates x′′, t′′

where the evolution displays a similar behavior. The whole picture is represented

in Figure 3. This phenomenon is best observed globally along the CMC foliation.

Indeed, double cusps admit a global CMC foliation of Cauchy hypersurfaces Σk

covering the whole spacetime, where the mean curvature k ranges on (−∞, 0), [6].

More specifically, there is a Cauchy hypersurface Σ−3 of mean curvature −3 defined

by a graph t = s(x) and any other leaf of the CMC foliation is obtained translating

in t the graph of s(x). Furthermore, the graph of s(x) approaches a t′ = const and

t′′ = const line as x goes to ∞ and −∞ respectively. Hence, one can simultaneously

observe the convergence to the flat cones on the right and left ends by following the

CMC foliation Σk, k ↑ 0. If one performs CMC scalings so that the mean curvature

of each leaf Σk becomes −3, then a convergence-collapse picture emerges. Roughly

speaking, the scaled metric over the Σk converges to a hyperbolic cusp metric on

each of the two ends (one must follow the x′ = const and x′′ = const directions),

while the central part collapses its volume while keeping its curvature bounded so

that the narrow necks appear to look like thin and long lines. Figure 3 depicts this

phenomenon.

t′t′′

t = s(x)

cus
p cusp

x

t

x′x′′

Figure 3. Double cusp’s behavior over the CMC foliation after CMC
scalings.

There is a relevant but standard change of variables (t, x) → (R, V ) given by,

R = R0e
2t cosh(2x), V = R0e

2t sinh(2x), (17)
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where one can better observe certain important global facts. The spatial coordinate

V is the conjugate of R and satisfies the wave equation too. With this change, we

have,

−dt2 + dx2 = 4R−2(−dR2 + dV 2) (18)

so light rays in the plane (t, x) are mapped into light rays in the (R, V ) plane. The

spacetime region is the region R > |V | and the slice t = 0 maps into the hyperbola

R2−V 2 = R2
0, R > 0. This is displayed in Figure 4. The whole picture proves that

t = 0 is a Cauchy surface for the double cusp spacetime. It can be seen that the

spacetime cannot be smoothly extended to the past boundary R = |V |, which is

singular. The CMC curve t = s(x) is mapped into a curve that is also asymptotic

to the lines R = V, V > 0 and R = −V, V < 0 but is not a hyperbola, of course.

Though these two Cauchy hypersurfaces look similar, there is a clear distinction

between them: the former approaches the past boundary faster than the latter and

in such a way that the Lorentzian distance to the past boundary tends to zero for

the former but remains bounded away from zero for the latter. The significant

consequence of this is that when considering the Cauchy problem for the Einstein

equations (2)-(7) over the hypersurface t = 0, perturbations of the initial data that

do not fall to zero sufficiently fast as x → ∞ may cause large distortions of the

spacetime. This point will reappear when discussing the double cusp’s stability

statement as a spacetime.

Based on the discussion above, it may seem that making the analysis on the

coordinates (t, x) is inconvenient. However, the great advantage of it is that it

displays (Wb, qb) as a time-independent parametrized geodesic segment in the hy-

perbolic plane. This proves to be very useful. Given the motivation of the stability

problem we have discussed, the natural gauge to work would be the CMC gauge.

This choice, however, entangles a number of difficulties, for instance, finding and

dealing with the right shift, which makes it more complex. We plan to do that

analysis elsewhere.

R

V

CMC

t = const

Figure 4. Different Cauchy surfaces seen in the R− V coordinates.

3. Statements of the main results

To state the main results, we must first introduce a few norms and spaces. Let,

m0(t) := ∥R−Rb∥C0 + ∥Rt −Rbt∥C0 , (19)

mk(t) := ∥R−Rb∥Ck + ∥Rt −Rbt∥Ck−1 , for k ≥ 1, (20)
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where R,Rb, Rt and Rbt are considered at time t. The quantity m0(t) measures the

C0 norm between R and Rb and between Rt and Rbt. The quantity mk(t) instead

measures, at time t, the Ck norm between R and Rb and the Ck−1 norm between

Rt and Rbt. We also define for k ≥ 1,

M̃k(t) := ∥W −Wb∥H̃k
+ ∥∂t(W −Wb)∥H̃k−1

+ ∥q∥H̃k
+ ∥∂tq∥H̃k−1

, (21)

where again, the functions inside the norms are considered at time t. Here H̃k is

the completion of the space of smooth and compactly supported functions, C∞
c (R),

with respect to the norm,

∥f∥2
H̃k

:=

k∑
i=0

∫
R
(f (k)(x))2 cosh(2x) dx. (22)

This is a weighted Sobolev space with weight cosh(2x). Lastly, let Ck0 (R) be the

space of Ck functions f such that for every i ≤ k, f (i)(x) → 0 when |x| → +∞.

We will first discuss some basic statements about the perturbations of R. Re-

garding (W, q), we will state only the stability results for the polarized double cusp

(qb = 0) as an isometry of the hyperbolic plane relates polarized and non-polarized

double cusps. We will present two separate stability statements, one for polarized

perturbations (i.e. with q = 0) and one for general non-polarized perturbations.

The former is stronger than the latter. After stating these results, we will discuss

what they imply for the stability of a and double cusp spacetimes.

Lemma 3.1. For every solution R to equation ( 2), if m0(0) < 2R0/3, then

R(t, x) > 0 when t ≥ 0. Moreover,

∥R−Rb∥∞(t) ≤ (t+ 1)m0(0) for t ≥ 0,

and for all multi-index α ̸= (0, 0), there is a constant C such that, for t ≥ 0,

∥∂α(R−Rb)∥∞(t) ≤ mα(0),

and ∥∥∥∥∂α(RtR − Rbt
Rb

)∥∥∥∥
∞
,

∥∥∥∥∂α(RxR − Rbx
Rb

)∥∥∥∥
∞
(t) ≤ C

t+ 1

e2t cosh(2x)
m|α|+1(0).

The first statement below is for polarized perturbations, i.e., q = 0. It shows the

exponential decay of M̃k.

Theorem 6.3. Let k ≥ 3. Let (R,W ) be a C2 solution of the system eqs. (2)

and (3) with q = 0. Suppose also that (R−Rb(0, ·), ∂t(R−Rb)(0, ·)) ∈ Ck0 ×Ck−1
0 ,

m0(0) < 2R0/3 and ((W −Wb)(0, ·), ∂t(W −Wb)(0, ·)) ∈ H̃k × H̃k−1. Then, the

solution is defined for every t ≥ 0 and

M̃k(t) ≤ Ce−t(t+ 1)
(
M̃k(0) +mk(0)

)
. (23)

Moreover, the constant C depends only on an upper bound on mk(0) and k.
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Observe that except for the condition m0(0) ≤ 2R0/3, which is somehow un-

avoidable, no particular smallness condition is required. In this sense, this proves

that the double cusp is somehow a global attractor among polarized data.

For non-polarized perturbations (q ̸= 0) a similar estimate is obtained but for

M̃3(t). A smallness hypothesis must also be provided.

Theorem 6.4. There is a number δ > 0 such that, any C2 solution of the system

eqs. (2) to (4), (R,W, q), with initial data satisfying (R−Rb(0, ·), ∂t(R−Rb)(0, ·)) ∈
Ck0 × Ck−1

0 , m0(0) < 2R0/3, ((W − Wb)(0, ·), ∂t(W − Wb)(0, ·)) ∈ H̃k × H̃k−1,

(q(0, ·), ∂tq(0, ·)) ∈ H̃k × H̃k−1, and m3(0) < δ, M̃3(0) < δ, is defined for all t ≥ 0

and

M̃3(t) ≤ Ce−t(t+ 1)(M̃3(0) +m3(0)). (24)

Moreover, the constant C depends only on an upper bound on m3(0) and on M̃3(0).

This last theorem implies that the red curve in Figure 2 approaches the blue one

exponentially fast as t→ +∞.

We now discuss the consequences of the last two results on a and the stability

of the double cusp spacetimes.

A basic consequence of the previous results is that if the initial data for (R,W, q)

satisfies the hypotheses of either Theorem 6.3 or Theorem 6.4, and (R,W, q, a)

satisfies eqs. (2) to (5), then a is defined for all t ≥ 0. This happens because the

equation (5) is a wave equation with a source defined for all t ≥ 0. Furthermore, if

the constraint equations are satisfied at t = 0, then, by standard arguments, they

are satisfied for every t ≥ 0. This, in turn, proves that the system, eqs. (2) to (7),

gives a Cauchy development of the perturbed initial data on [0,+∞)×R×T2. The

argument is standard as the system (2)-(7) is equivalent to the Einstein equations,

and hence we omit it.

Corollary 3.2. Consider initial data to the Einstein’s equations on R×T2, induced

by eq. (1) on t = 0. Suppose that R,Rt,W,Wt, qt and qt, at t = 0, satisfy the

hypotheses of either Theorem 6.3 or Theorem 6.4. Then, the solutions of the system

given by eqs. (2) to (5) are defined for all t ≥ 0, and the metric, eq. (1), given by

these functions on [0,+∞)× R× T2 gives a Cauchy development of the data.

Regarding the stability of a, note that the equation (5) implies

(a− ab)tt − (a− ab)xx = F (R,W, q)− F (Rb,Wb, qb). (25)

where the source F (R,W, q)−F (Rb,Wb, qb) is controlled by eq. (24). Using this and

D’Alembert, we deduce that the contribution of the source to ∥a(t, ·) − ab(t, ·)∥C0

is controlled by M̃2(0) +m2(0). The contribution of the homogeneous solution is

controlled by the initial data norm ∥a(0, ·)−ab(0, ·)∥C0 +∥at(0, ·)−ab(0, ·)∥L1 . This

immediately leads to the following result.

Theorem 3.3. For any ϵ > 0 there exist δ > 0 such that if the initial data for

(R,W, q, a) satisfies M̃3(0) + m3(0) ≤ δ and ∥a(0, ·) − ab(0, ·)∥C0 + ∥at(0, ·) −
abt(0, ·)∥L1 < δ, then ∥a(t, ·)− ab(t, ·)∥C0 ≤ ϵ ∀t ≥ 0.
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The spacetime perturbations of the previous theorem are future geodesically

complete. Once again, the functional space for the perturbations of a is chosen

from the point of view of the PDEs. The natural question is if there is a non-trivial

perturbation on these spaces subjected to the constraint equations. Indeed, this is

the case, for instance, if we require stricter norms for (R,W, q) at t = 0. By doing

this, a − ab naturally belongs to the above spaces for each t ≥ 0. An example of

these norms could be ∥f∥2
H̃p,k

:=
∑k
i=0

∫
R(f

(k)(x))2 coshp(2x) dx for W an q, and

ml,k(f) := mk(cosh
l(2x)f(x)) for R. With these norms, using p = 2 instead of

p = 1, and l = 1 instead of l = 0, one can see that small perturbations in this new

sense imply that at and ax can be solved out in eqs. (6) and (7). Furthermore,

∥a(t, ·) − ab(t, ·)∥C0 + ∥at(t, ·) − abt(t, ·)∥L1 is finite for each t ≥ 0, and arbitrarily

small by reducing the values of ml,1(R−Rb)(0) and M̃2,3(0), where

M̃p,k(t) := ∥W −Wb∥H̃p,k
+ ∥∂t(W −Wb)∥H̃p,k−1

+ ∥q∥H̃p,k
+ ∥∂tq∥H̃p,k−1

.

The proof of the Theorems 6.3, 6.4, are done first for compactly supported per-

turbations, i.e., solutions with initial data differing only on a compact set from that

of the background. This is done in section 4 and 5. The latter section is the central

part of the paper. Finally, in section 6, we give a rather general argument to extend

this simplified versions to larger functional spaces, proving theorem 6.3 and 6.4.

4. Compactly supported polarized perturbations

In this section, we shall address compactly supported perturbations with q = 0,

namely, a solution (R,W ) of the system given by eqs. (2) and (3) whose initial

data differs from that of the background only on a compact set. Although we

will not use the results found in this section explicitly in the non-polarized case,

the computations used in the non-polarized case rely on the ones developed here.

Furthermore, here the computations are more clear and yield stronger results.

At first, the solutions are not defined for all t ≥ 0. All the estimates concerning

will be for t ≥ 0 in the interval of existence. Furthermore, we also assume m0(0) <

2R0/3 to ensure R > 0 for t ≥ 0. Throughout the work, depending on the kind of

computations, we will use ∂xf or fx. Also ∂αf with α a multi-index. We say that

a function f(t, x) is of locally x-compact support if for any interval [T1, T2] there is

a compact subset K ⊂ R such that f(t, x) = 0 if t ∈ [T1, T2] and x /∈ K. Recall the

notation mk. We summarize some elementary properties in the following lemma.

Lemma 4.1. If (R,W ) is a solution such that R − Rb and W −Wb at t = 0 are

compactly supported and m0(0) <
2
3R0 then, for t ≥ 0, and where defined, R > 0

and (R−Rb,W −Wb) is of locally x-compact support.

Proof. The use of D’Alembert’s formula gives R ≥ Rb −m0(0)(t+ 1), t ≥ 0. With

this, it can be seen that both claims about R are true. For W , use a finite speed

propagation argument. □
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4.1. The basic energy inequality. In order to obtain the asymptotic stability

of our solution, we need some useful energy. Consider the change of variable z =

R1/2(W −Wb). In this new variable, the equation for W becomes

ztt − zxx + zG = g with G =
R2
t −R2

x

4R2
and g = R1/2

(
Rx
R

− Rbx
Rb

)
Wbx. (26)

Now z is of locally x-compact support, then it makes sense to define the energy

E :=
1

2

∫
R
z2t + z2x + z2Gb dx,

where Gb = 1
cosh2(2x)

. We need some estimates involving R − Rb so that we can

control E. These properties are given in the following lemma.

Lemma 4.2 (Coefficients estimates). For all t ≥ 0, we have the following estimates:

∥R−Rb∥∞(t) ≤ (t+ 1)m0(0), (27)

∥Rx −Rbx∥∞(t), ∥Rt −Rbt∥∞(t) ≤ m1(0). (28)

Furthermore, as we are assuming m0(0) ≤ 2
3R0 we also have that R ∼ Rb, i.e,

there is a constant d > 0 such that

1

d
≤

∥∥∥∥RbR
∥∥∥∥
∞
(t) ≤ d, (29)

and this, in turn, implies the existence of a constant C > 0 such that∥∥∥∥RtR − Rbt
R

∥∥∥∥
∞
(t),

∥∥∥∥RxR − Rbx
Rb

∥∥∥∥
∞
(t) ≤ C(t+ 1)

e2t cosh(2x)
m1(0), (30)

∥Gb −G∥∞(t) ≤ C(t+ 1)

e2t cosh(2x)
m1(0), (31)

∥g∥∞(t) ≤ C(t+ 1)

et cosh3/2(2x)
m1(0). (32)

Proof. Use D’Alembert to derive the first estimates. The other follows from direct

computation using these. □

Proposition 4.3 (The basic energy inequality). Let (R, z) be a solution such that

R − Rb, z and zt are compactly supported at t = 0, with m0(0) < 2R0/3. Then

there is a constant C such that, where defined,

E1/2(t) ≤ C(E1/2(0) +m1(0)), with t ≥ 0. (33)

Furthermore, the constant C depends only on a bound on m1(0).

Proof. The function z is of locally x-compact support asW−Wb is. For this reason,

we can derive under the integral and use integration by parts. Then, we use the

equation to obtain
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Ė =

∫
R
ztztt + zxzxt + zztGb dx =

∫
R
zt(ztt − zxx + zGb) dx

=

∫
R
ztz(Gb −G) dx+

∫
R
ztg dx

≤

√∫
R
z2t dx

√∫
R
z2(Gb −G)2 dx︸ ︷︷ ︸

First term

+

√∫
R
z2t dx

√∫
R
g2 dx︸ ︷︷ ︸

Second term

.

In the first term, the first integral is bounded by E1/2. For the second integral, use

the estimate (31) to find out that this term is less or equal to

C(t+ 1)m1(0)e
−2tE1/2

√∫
R

z2

cosh2(2x)
dx,

but the integrand in the last integral is just 4z2Gb, so in the end, our first term is

less or equal to

C(t+ 1)e−2tm1(0)E,

where we have adjusted the constant C. Let us control the second term. This term

is a product of two integrals. The first one is less or equal to E1/2. For the second

integral, the use of the estimate (32) yields∫
R
g2 dx ≤ C(t+ 1)e−tm1(0).

Using all these observations, we get

Ė ≤ C(t+ 1)e−2tm1(0)E + C(t+ 1)e−tm1(0)E
1/2

≤ C(t+ 1)e−2tm1(0)E + C(t+ 1)e−tE + C(t+ 1)e−tm2
1(0)

≤ C(t+ 1)e−tE + C(t+ 1)e−tm2
1(0),

(34)

where in the last inequality, the constant depends onm1(0). This inequality implies

the thesis. □

Note that since R ∼ Rb = R0e
2t cosh(2x), this implies exponential decay in our

original variables plus decay as x goes to infinity. However, we do not have future

existence for all t ≥ 0. This matter is the objective of the following subsection.

4.2. Higher order energies. Let α be a multi-index α = (m,n). The first letter

will refer to time derivatives, and the second will refer to spatial derivatives. Let

us denote

Eα(t) :=
1

2

∫
R
(∂αz)2t + (∂αz)2x + (∂αz)2Gb dx.

The most important of these energies are the ones with α = (0,m) because they

are related to Hk norms of z and ∂tz. This fact is important since, at t = 0, they

involve only the initial data. One could be tempted to do an argument similar to

the one made in the derivation of eq. (33), but using E(0,m). If we do this, we

will discover that the growth of E(0,m) is bounded by a polynomial of degree m.

This result is not bad, but we found another, longer way to obtain better estimates.

First, we derive estimates for E(n,0), and then we pass our estimates to E(0,m) using
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the equations satisfied by z and its derivatives. Now, more coefficient estimates are

needed.

Lemma 4.4. Suppose m0(0) < 2R0/3, then:

a) For all multi-index α ̸= (0, 0) we have

∥∂α(R−Rb)∥∞(t) ≤ mα(0) t ≥ 0. (35)

b) For every multi-index α, ∂αR/R and ∂αR1/2/R1/2 are bounded to the future.

Moreover, the bound depends only on a bound on m|α|(0).

c) For every multi-index α, ∂αRt/R, ∂
αRx/R, ∂

α(Rt/R) and ∂
α(Rx/R) are bounded

to the future. Moreover, the bound depends only on a bound on m|α|+1(0).

d) For all multi-index α there is a constant C such that∥∥∥∥∂α(RtR − Rbt
Rb

)∥∥∥∥
∞
,

∥∥∥∥∂α(RxR − Rbx
Rb

)∥∥∥∥
∞
(t) ≤ C

t+ 1

e2t cosh(2x)
m|α|+1(0). (36)

e) Estimates for Gb −G: for every multi-index α there is a constant C such that

∥∂α(G−Gb)∥∞(t) ≤ C
(t+ 1)

e2t cosh(2x)
m|α|+1(0). (37)

Moreover, the constant depends only on a bound on m|α|+1(0).

f) For every multi-index α there is a constant C such that

|∂αG| ≤ C

cosh 2x
= 2C

√
Gb. (38)

Furthermore, the constant C depends on α and on a bound on m|α|+1(0).

g) For every multi-index α there is a constant C such that |∂αWbx| ≤ C/ cosh(2x).

In addition, if α is not purely spatial then ∂αWbx = 0.

h) Estimates for g: For every multi-index α there is a constant C such that

∥∂αg∥∞ ≤ C
t+ 1

e2t cosh3/2(2x)
m|α|+1(0). (39)

Additionally, the constant C just depends on a bound on m|α|+1(0).

Proof. Item a) is a direct consequence of D’Alembert’s Formula. Item b) and c)

are just computations using a) and the fact that R ∼ Rb. For these computations,

it is often helpful to use recursion formulas, such as

∂α
(
Rt
R

)
=
∂αRt
R

−
∑

0≤β<α

(
α

β

)
∂α−βR∂β(Rt

R )

R
,

or ∣∣∣∣∂α(R1/2)

R1/2

∣∣∣∣ ≤ ∣∣∣∣∂αR2R

∣∣∣∣+ ∑
0<α<β

(
α

β

) ∣∣∣∣∂α−βR1/2∂β(R1/2)

2R

∣∣∣∣ .
Item d) is proved similarly, and item e) is a consequence of a)-d). Item f) fol-

lows from item e). Item g) follows from direct computation, and finally, g) is a

consequence of d), g), and b). □
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Proposition 4.5 (Energy estimates for time derivatives). Let (R, z) be a solution

such that R−Rb, z and zt are compactly supported at t = 0, with m0(0) < 2R0/3,

and let α = (m, 0). Then, there is a constant C such that, where defined,√
E(m,0)(t) ≤ C(

√
E(m,0)(0) + . . .+

√
E(1,0)(0) +

√
E(0) +m|α|+1(0)), for t ≥ 0.

Furthermore, the constant C just depends on m and on a bound on m|α|+1(0).

Proof. We have already proved the case α = 0 in the Proposition 4.3. Let us

proceed by induction. Deriving the equation with respect to m > 0 yields:

(∂mt z)tt − (∂mt z)xx + (∂mt z)G+

m−1∑
i=0

(
α

β

)
∂itz︸︷︷︸

in E(i,0)

already controlled

∂m−i
t (G−Gb)︸ ︷︷ ︸

eq. (37)

= ∂mt g︸︷︷︸
eq. (39)

.

Here, we have used that ∂itGb = 0 in the last term before the equal sign. Now, as

we did in the proof of Proposition 4.3), we can derive E(m,0) with respect to time,

integrate by parts, use the equation and control each of the terms appearing. The

new terms are the ones that have a curly bracket in the above equation. Below

these brackets, it is specified how to control these terms. □

The following lemma goes in the direction of proving the desired estimates for

E(0,n). Here we use the notation |α| = m+ n for α = (m,n).

Lemma 4.6. In the above assumptions, suppose n ≥ 1 and m ≥ 0, then there is a

constant C such that, where defined,√
E(m,n)(t) ≤ C

√
E(m+1,n−1)(t) + C

∑
0≤β≤(m,n−1)

√
Eβ(t) + Cm|α|(0) for t ≥ 0,

where α = (m,n). Now if m ≥ 1 and n ≥ 0 then there is a constant C such that,

where defined,√
E(m,n)(t) ≤ C

√
E(m−1,n+1)(t) + C

∑
0≤β≤(m−1,n)

√
Eβ(t) + Cm|α|(0) for t ≥ 0.

The constants just depend on a bound on m|α|+1(0), and on m and n.

Proof.

E(m,n)(t) =
1

2

∫
R

[(∂mt ∂
n
x z)t]

2︸ ︷︷ ︸
It is in E(m+1,n−1)

+[(∂mt ∂
n
x z)x]

2 + (∂mt ∂
n
x z)

2︸ ︷︷ ︸
It is in E(m,n−1)

Gb︸︷︷︸
≤1

dx

≤ E(m+1,n−1)(t) + E(m,n−1)(t) +
1

2

∫
R
[(∂mt ∂

x
nz)x]

2 dx.

To bound the last term, derive the eq. (26) m−times with respect to time and

n−1−times with respect to x. The derived equation gives us the following estimate,∫
R
(∂mt ∂

n+1
x z)2 ≤ C

∫
R
(∂m+2
t ∂n−1

x z)2︸ ︷︷ ︸
It is in E(m+1,n−1)

+C

(m,n−1)∑
β=(0,0)

∫
R
(∂βz∂α−βG)2︸ ︷︷ ︸

≤CEβ

+

∫
R
(∂mt ∂

n−1
x g)2︸ ︷︷ ︸

≤Cm2
|α|(0)

.

Using this and putting a square root, we arrive at the first claim stated in the lemma.

Keeping track of the constant, we see that the assertion about its dependence is

true. For the second inequality stated in the lemma, the same reasoning works. □
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Corollary 4.7. In the above assumptions, given n, there is a constant C such that,

where defined,√
E(0,n)(t) ≤ C(

√
E(n,0)(t) + . . .+

√
E(1,0)(t) +

√
E(t)) + Cmn(0), (40)

and √
E(n,0)(t) ≤ C(

√
E(0,n)(t) + . . .+

√
E(0,1)(t) +

√
E(t)) + Cmn(0). (41)

The constant depends only on a bound on mn+1(0) and on n,m.

Proof. Use the previous lemma and induction. □

Proposition 4.8 (Energy estimates for spatial derivatives). Let (R, z) be a solution

such that R−Rb, z and zt are compactly supported at t = 0, with m0(0) < 2R0/3.

Then there is a constant C such that, where defined,√
E(0,n)(t) ≤ C(

√
E(0,n)(0) + . . .+

√
E(0,1)(0) +

√
E(0)) + Cmn+1(0). (42)

The constant C just depends on n and on a bound on mn+1(0).

Proof. First, note that we have already proved the corresponding theorem for E(n,0)

in the Proposition 4.5. We first use the eq. (40), then the Proposition 4.5, and finally

the eq. (41), this time evaluated at t = 0. □

4.3. Relation with Hk-norms and returning to our original variables. Let

us define

Mk[z](t) := ∥z∥Hk(t) + ∥∂tz∥Hk−1(t), A(t) :=
1

2

∫
R
z2 dx.

Note that Ȧ ≤ E1/2A1/2 ≤ C(E1/2(0) +m1(0))A1/2. Therefore

A1/2(t) ≤ A1/2(0) + C(E1/2(0) +m1(0))t.

Theorem 4.9 (Hk-evolution). Let (R, z) be a solution such that R−Rb, z and zt

are compactly supported at t = 0, with m0(0) < 2R0/3, and let k > 0. Then there

is a constant C such that

Mk(t) ≤ C (Mk(0) +mk(0)) (t+ 1), for t ≥ 0. (43)

The constant C here depends on a bound on mk(0) and on k. Furthermore, the

solution (R, z) is defined for all t ≥ 0.

Proof. Just note that Mk involves (∂ixz)
2 with i = 0, ..., k and (∂jx∂tz)

2 with j =

0, ..., k−1, and that all of these terms appear in the t-derivative or the x-derivative

term of one of the followings quantities: A, E,E(0,1), . . . , E(0,k−1). Using this, with

the above computation for A and eq. (42) yields eq. (43). Lastly, if we call T+

the supreme of times T such that the solution is defined on [0, T ], then Mk(t) is

bounded on [0, T+]. By a continuity lemma, it follows that T+ = +∞. □

This result allows us to prove the existence of solutions with certain decay in our

original variables.
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Lemma 4.10 (Passage lemma). Given R a solution of eq. (2) with m0(0) < 2R0/3,

and let k > 0. Then for every solution z to eq. (26), of locally x-compact support,

we have that W −Wb is of locally x-compact support and

1

C
e−t∥z∥Hk(t) ≤ ∥W −Wb∥H̃k

(t) ≤ Ce−t∥z∥Hk(t)

where H̃k is the weighted Sobolev space, with cosh(2x) dx as the weight. Here C is

a constant that depends on a bound on mk(0) and k.

Proof. The proof is just computations and the use of the estimates derived in

Lemma 4.4. □

In the following corollary, we summarize what we have obtained so far. Recall

the notation

M̃k(t) := ∥W −Wb∥H̃k
(t) + ∥∂t(W −Wb)∥H̃k−1

(t). (44)

Corollary 4.11. Given (R,W ) a smooth solution of the system eqs. (2) and (3)

with q = 0. Suppose also that the initial data R,Rt,W,Wt differs from that of the

background in a compact set and that m0(0) < 2R0/3. Then, the solution is defined

for every t ≥ 0 and

M̃k(t) ≤ Ce−t(t+ 1)
(
M̃k(0) +mk(0)

)
.

Moreover, the constant C depends only on a bound on mk(0) and k.

5. Compactly supported non-polarized perturbations

The objective of this section is to study non-polarized perturbations, i.e., we al-

low our perturbations to have q ̸= 0. As before, we first study compactly supported

perturbations.

5.1. Bounded distance from the background. Again, let us consider a solution

to the system eqs. (2) to (4). We ask this solution to be smooth and to differ initially

from the background only on a compact set. Due to a finite speed propagation

argument, R − Rb, W −Wb, and q − qb, where defined, are of locally x-compact

support. These properties allow us to integrate by parts and derive under the

integral.

In what follows, we will use a special connection. First of all, recall χ : K → H.

Note that its differential, Dχ, can be regarded as a section of the fiber-bundle K →
T ∗K⊗χ−1TH, where χ−1TH is the pullback bundle over K. In χ−1TH, we have the

pullback connection and the pullback metric, and in the bundle T ∗K we have the

metric k and its connection. The product connection on T ∗K ⊗ χ−1TH preserves

the product metric. Using this connection the equations eqs. (3) and (4) are just

∇a∂aχ
i = 0, i.e, tr(∇Dχ) = 0. Consider the energy-momentum tensor given

by Tab := ∂aχ
i∂bχ

jhij − 1
2gabg

αβhij∂αχ
i∂βχ

j . A direct computation shows that

∇aTab = ∂bχ
ihij∇a∂aχ

j . The last term, with j = 1, 2, are exactly the equations

eq. (3) and eq. (4). Accordingly, the solutions to these equations have divergence

null energy-momentum tensor. Recall the metric k = 4e4t(−dt2+dx2)+R2(t, x)dψ2,

and consider the the vector field N = ∂t/2e
2t, the slice St = {t} × R× S1 and the
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vector field given by Y a = T abX
b. This vector field is the dual vector to the one

form T (·, X). Using Stokes2 we have:∫
[0,t0]×R×S1

∇a(TabX
b) dV ol = −

∫
S0

XaTabX
b dS0 +

∫
St

XaTabX
b dSt

Now ∇a(TabX
b) = Tab∇aXb. A computation shows that

∇aXb =
1

4e6t
(∂x)

a(∂x)
b +R−2Rt

R

1

2e2t
(∂ψ)

a(∂ψ)
b,

T00 = T11 =
1

2
(∥∂tχ∥2h + ∥∂xχ∥2h),

T22 =
R2

2

∥∂tχ∥2h − ∥∂xχ∥2h
4e4t

.

Using this

∂t

∫
R

1

2
(∥∂tχ∥2h + ∥∂xχ∥2h)

R

e2t
dx = −2

∫
R

∥∂tχ∥2h
2

(
1 +

Rt
2R

)
R

e2t
dx

− 2

∫
R

∥∂xχ∥2h
2

(
1− Rt

2R

)
R

e2t
dx.

Let us momentarily call the left integral E (without ∂t). Sincem0(0) <
2
3R0, eq. (36)

holds. Using this estimate yields ∂tE ≤ C(t + 1)(m1(0) + 2)e−2tE . Integrating we

obtain E(t) ≤ exp(C(m1(0) + 2))E(0) for the future. Now

|W −Wb| ≤
∫ x

−∞
|(W −Wb)x| dx ≤ C

√∫
R
(W −Wb)2x cosh(2x) dx

≤ CE1/2(t) ≤ C exp(C(m1(0) + 2))E1/2(0),

and analogously for q − qb = q. This result allows us to conclude that the dis-

tance between the background solution and a solution (W, q), whose initial data is

a compactly supported perturbation of that of the background, is bounded. Geo-

metrically, this means that if we start with a solution that is a compactly supported

perturbation of a geodesic, then this perturbation evolves at a bounded distance.

Moreover, this distance depends on a bound on m1(0) and on M̃1(0), where now

M̃1[W −Wb, q](t) = (∥W −Wb∥H̃1 + ∥(W −Wb)t∥H̃0 + ∥q∥H̃1 + ∥qt∥H̃0)(t).

We define M̃k[·, ·] in the same manner but using k and k−1 norms. Again, whenever

we say M̃k without explicit mention of the functions, the reader should interpret

M̃k[W −Wb, q].

5.2. The basic energy inequality. In this section, we derive the basic energy

inequality from which exponential decay will follow. We will consider a smooth

solution to the system formed by eqs. (2) to (4), whose initial data differs only on

a compact set from the data of the background, eqs. (11) to (14), and such that

m0(0) < 2R0/3. These requirements are imposed throughout all the section 5, and,

for the sake of concreteness, will be referred to as the assumptions. Consider the

2As the solutions we are treating now differ from the background only on a compact set, we

only have these two terms contributing to the flux.



18 STABILITY OF DOUBLE-CUSP SPACETIMES AND LONG-TIME GEOMETRIZATIONS

change of variable z = R1/2(W −Wb) and v = R̃1/2q, where R̃ = Re−4W . This

change yields the following system of PDEs for z and v:

ztt − zxx + zG+B = g, (45)

vtt − vxx + v(G+ 4Wb
2
x) +D = 0, (46)

where

D = 4v(W̃ 2
x − W̃ 2

t ) + 8vW̃xWbx,

+ 2v(q2x − q2t )e
−4W

B = R1/2
(

q2t−q2x
2

)
e−4W ,

qt = R̃−1/2

(
vt −

Rt

2R
v + 2R−1/2(zt −

Rt

2R
v)

)
, G =

R2
t−R2

x
4R

,

qx = R̃−1/2

(
vx − Rt

2R
v + 2R−1/2(zx − Rx

2R
z) + 2Wbxv

)
, Wbx = W0

cosh(2x)
,

W̃ = W −Wb, W̃t = R−1/2

(
zt −

Rt

2R
z

)
,

W̃x = R−1/2

(
zx − Rx

2R
z

)
, g = R1/2

(
Rx
R

− Rbx
Rb

)
Wbx.

The system displayed is exactly the system of the polarized case plus powers of first

and zeroth derivatives. Our objective of finding exponential decay is translated,

under this change of variable, to prove that z and v grow at most polynomially. In

order to achieve this, we define the following energies:

A :=
1

2

∫
R
z2 + v2 dx, (47)

E0 := E[z, v] :=
1

2

∫
R
z2x + z2t + z2Gb dx+

1

2

∫
R
v2x + v2t + v2(Gb + 4Wb

2
x) dx, (48)

E1 := E[zt, vt] + E[z, v], E1 := E[zx, vx] + E[z, v]. (49)

Recall that Gb =
1

cosh2(2x)
andWb

2
x =

W 2
0

cosh2(2x)
, so all the energies defined above are

positive definite. Our first objective is to control E1. This control will be achieved

by a series of lemmas (Lemma 5.1, Lemma 5.2 and Lemma 5.3), which culminate

in the Theorem 5.4. The outline here is similar to that of the polarized case. As

before, we need to use the estimates for time derivatives to get control of E1. The

reader should think of Lemma 5.1 as Proposition 4.5, the difference being that, due

to the factor E1 in the right-hand of Equation (51), Lemma 5.1 almost controls E1.

In the same way, the reader should think of Lemmas 5.2 and 5.3 as Lemma 4.6,

serving as a passage between time and spatial energies, this time being more subtle

than before.

Lemma 5.1. There are numbers ni,mi such that, for every solution to the system

given by eqs. (2), (45) and (46), satisfying the assumptions, there is a constant

C > 0, depending only on a bound on m2(0) and on E0(0) +A(0), such that

∂tA ≤ A1/2E1/2
0 , (50)

Ė1 ≤ C(t+ 1)e−2tE1 + C(t+ 1)e−tm2(0)E
1/2
1

+
∑
i

Ce−tE1Eni/2
1 Ami/2.

(51)
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Proof. Since we are working with compactly supported solutions, we can derive

inside the integral. Doing this with A and using Cauchy-Schwarz yields

∂tA =

∫
R
zzt dx ≤ A1/2E1/2

0 .

Now let’s compute ∂tE0. Deriving under the integral and using parts

Ė0 =

∫
R
zt(ztt − zxx + zGb) + vt(vtt − vxx + v(Gb + 4Wb

2
x)) dx

=

∫
R
zt[z(Gb −G) + g]︸ ︷︷ ︸

A

−ztB + vt[v(Gb −G)]︸ ︷︷ ︸
C

−vtD dx.

The terms A and C are controlled as in the polarized case:∫
R
A+ C dx ≤ C(t+ 1)e−2tE0 + C(t+ 1)e−tm1(0)E1/2

0 .

The new thing here is to control the terms involving B and D. A careful inspection

of B and D, using the equations below the eqs. (45) and (46), shows that they can

be written as a linear combination of the terms displayed below

B



R−1/2e−4W̃α1,where α1 = v2t ,
Rt
R
vvt,

Rx
R
vvx, v

2G,Wb
2
xv

2,

Rx
R
Wbxv

2,Wbxvxv, v
2
x

R−1e−4W̃α2,where α2 = vtvzt,
Rt
R
zvtv,

Rt
R
v2zt, Gv

2z, vxvzx,

Rx
R
zvxv,

Rx
R
v2zx,Wbxv

2zx,Wbxv
2z
Rx
2R

R−3/2e−4W̃α3,where α3 = v2z2t , v
2z2G,

Rt
R
ztzv

2, v2z2x,
Rx
R
zxzv

2

(52)

and

D


R−1/2−i/2e−4W̃α4,where α4 = vαi, for i = 1, 2, 3.

R−1α5,where α5 = vz2x, Gz
2v,

Rx
2R

zxzv, vz
2
t ,

R

2Rt
ztzv,

Rx
R
Wbxvz

R−1/2α6,where α6 =Wbxvzx

(53)

Because of this, to bound
∫
R ztB + vtD dx, it suffices to deal with a sum of terms

of the form∫
R
R−m/2e−4W̃ jztα dx or

∫
R
R−m/2e−4W̃ jvtα dx where m ≥ 1, j = 0, 1

α = αi for i = 1, .., 6

.

Let us call the term zt (or vt) next to α the main derivative. The strategy is as

follows:

1. If α has at least one derivative, apply Cauchy-Schwarz to this derivative

and the main derivative and use ∥·∥∞ for the remaining terms inside α.

The use of Cauchy-Schwarz gives a bound E0. For R−me−4W̃ just use that

W̃ is bounded and that R−m ≤ CR−m
b ≤ Ce−t. Regarding the use of ∥·∥∞,

note that by Sobolev embedding

∥v∥∞, ∥z∥∞ ≤ C(A1/2 + E1/2
0 ), ∥vt∥∞, ∥vx∥∞, ∥zt∥∞, ∥zx∥∞ ≤ CE1/2

1 .
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Proceeding in this way, we produce bounds of the form:

Ce−tE0En/21 Am/2 for some n,m ≥ 0. (54)

where we have used that E0 ≤ E1.
2. If α comprises only zero derivative terms, then looking at the terms that

constitute D and B, and recalling that G ≤ C
cosh(2x) , we see that all these

terms are multiplied by 1
cosh(2x) . Apply Cauchy-Schwarz between the main

derivative and v
cosh(2x) (or w

cosh(2x) ), and ∥·∥∞ and Sobolev embedding for

the other terms. The use of Cauchy-Schwarz gives the bound E0. Finally,

again we bound R−me−4W̃ ≤ Ce−t. This procedure yields bounds of the

form

Ce−tE0En/20 Am/2 for some n,m ≥ 0. (55)

Using the bounds (54),(55) with the fact that E0 ≤ E1, and the control for A and

C we obtain

Ė0 ≤ C(t+ 1)e−2tm1(0)E1 + C(t+ 1)e−tm1(0)E
1/2
1

+
∑
i

Ce−tE1Eni/2
1 Ami/2, where ni,mi ≥ 0.

(56)

Now in order to obtain an estimate for Ė1 we will bound Ė[zt, qt]. Deriving under

the integral and using parts

Ė[zt, qt] =

∫
R
ztt((zt)tt − (zt)xx + (zt)Gb) + vtt((vt)tt − (vt)xx + vt(Gb + 4Wb

2
x)) dx

Now deriving the system, eqs. (45) and (46), respect to t we find that

(zt)tt − (zt)xx + ztG+Gtz +B′ = gt,

(vt)tt − (vt)xx + vt(G+ 4Wb
2
x) + vGt +D′ = 0.

Therefore

Ė[zt, qt] =

∫
R
ztt[zt(Gb −G) +Gtz + gt]︸ ︷︷ ︸

F

−zttB′ + vtt[vt(Gb −G) +Gtv]︸ ︷︷ ︸
G

−vttD′ dx.

Again, the terms F and G are controlled as in the polarized case:∫
R
F +G dx ≤ C(t+ 1)e−2tE1 + C(t+ 1)e−tm2(0)E

1/2
1 .

Now when we derive B and D, we find (see eqs. (52) and (53))

(R−m/2)te
−4W̃α+R−m/2(−4W̃t)e

−4W̃α+R−m/2e−4W̃αt

= (R−m/2)te
−4W̃β +R−m/2β,

where β could be αt, α or −4W̃tα, with α = αi, i = 1, .., 6. Here
∣∣(R−m/2)t

∣∣ =∣∣−mRt

R R
−m/2

∣∣ ≤ CR−m/2, so it suffices to bound terms of the form∫
R
R−m/2e−4W̃ zttβ dx or

∫
R
R−m/2e−4W̃ vttβ dx β = α, αt,−4W̃tα.

The fundamental fact about the products inside β is that they have, at most, a

second derivative since α is a product of one or zero derivatives of v and q. In other

words, if a product inside β has a second derivative, this derivative is raised to the

power of 1. In addition, this second derivative could be ztt, vtt, zxt or vxt. Let us
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call the term ztt (or vtt) next to β the main derivative. The strategy is similar to

the previous one:

1. If β has a second derivative, apply Cauchy-Schwarz to this derivative and

the main derivative and use ∥·∥∞ for the remaining terms of β. If it does

not have a second derivative but has at least one derivative, apply Cauchy-

Schwarz to this derivative and the main derivative. The use of Cauchy-

Schwarz gives a term E1. None of the remaining terms of β will be a

second derivative so, using Sobolev embedding, these ∥·∥∞ will be bounded

precisely as before:

∥v∥∞, ∥z∥∞ ≤ C(A1/2 + E1/2
0 ), ∥vt∥∞, ∥vx∥∞, ∥zt∥∞, ∥zx∥∞ ≤ CE1/2

1 .

Once more, R−m/2e−4W̃ ≤ Ce−t. With this procedure, we obtain bounds

of the form

≤ Ce−tE1En/21 Am/2 for some n,m ≥ 0. (57)

2. If β comprises only zero-derivative terms then, looking at the terms that

constitute D′ and B′, and recalling that G ≤ C
cosh(2x) and ∂tG ≤ C

cosh(2x) ,

we see that all these terms are multiplied by 1
cosh(2x) . Then apply Cauchy-

Schwarz between the main derivative and v
cosh(2x) (or w

cosh(2x) ). For the

remaining terms inside β, use ∥·∥∞ and Sobolev embedding as above. The

use of Cauchy Schwarz will give a term bounded by CE1. Finally, again,

we bound R−me−4W̃ ≤ Ce−et. This procedure yields bounds of the form

≤ Ce−tE1En/20 Am/2 for some n,m ≥ 0. (58)

Now Ė1 = Ė0+Ė[zt, qt]. Using eqs. (57) and (58), the control of F+G and eq. (56),

we obtain:

Ė1 ≤ C(t+ 1)e−2tm2(0)E1 + C(t+ 1)e−tm2(0)E
1/2
1

+
∑
i

Ce−tE1Eni/2
1 Ami/2, where ni,mi ≥ 0.

□

Lemma 5.2. There are some numbers ni,mi such that, if during an interval of

time [0, T ] we have a solution satisfying the assumptions with |zx| , |vx| < 1, then,

there is a constant C > 0, depending only on a bound on m1(0) and on E0(0), such
that

E1 ≤ CE1 + C(t+ 1)2e−2tm1(0)
2 +

∑
i

Ce−tE
1+ni/2
1 Ami/2 for t ∈ [0, T ]. (59)

Proof. We know that E1 = E[z, v]+E[zx, vx] ≤ E1+E[zx, vx] so in order to bound

E1 with E1 we need to control E[zx, vx] by E1. Note that

E[zx, vx] =

∫
z2xx + z2xt + z2xGb + v2xx + v2xt + v2x(Gb + 4Wb

2
x) dx

≤
∫
R
z2xx + v2xx + CE1.
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Now, using the equation,

z2xx ≤ C(z2tt + z2G2 + g2 +B2),

w2
xx ≤ C(w2

tt + w2G2 +D2),

so ∫
R
z2xx + w2

xx ≤ CE1 +

∫
R
g2 dx+

∫
R
B2 +D2 dx

≤ CE1 + C(t+ 1)2e−2tm1(0)
2 +

∫
R
B2 +D2 dx.

So now we need to control the last integral by E1. In order to do this, we will use

the hypothesis that |zx| , |vx| < 1. Now, remember the general form of B and D

(eqs. (52) and (53)). It follows that we need to bound∫
R−kα2e−8W̃ j dx where k ≥ 1, j = 0, 1 and α = αi for i = 1, ..., 6.

Here, we have used that 2ab ≤ a2 + b2 many times. The strategy is as follows:

1. If α is composed only by zeroth derivative terms, then α2 always has
1

cosh2(2x)
as one of its factors and always has at least four terms (pow-

ers of z and v). Choose two of these, for example, v and w, and use ∥·∥∞
with the remaining terms and Cauchy-Schwarz with these two terms to-

gether with 1
cosh2(2x)

. Using Cauchy-Schwarz gives us a term E0. Again,

use Sobolev embedding to bound the infinite norms of the remaining terms

and R−ke−8W̃ ≤ Ce−2t. This procedure yields bounds of the form

Ce−tE1+n/2
0 Am/2 (⇒≤ Ce−tE

1+n/2
1 Am/2) for some n,m ≥ 0.

2. If α2 has at least one derivative then α has at least one derivative then

α2 has at least two derivatives. Bound the remaining terms by the infi-

nite norms and apply Cauchy-Schwarz to these two derivatives. The use

of Cauchy-Schwarz will give a term bounded by CE0 < E1. For the in-

finite norms, if we have ∥z∥∞, ∥zt∥∞, ∥v∥∞ and ∥vt∥∞ then use Sobolev

embedding to bound these terms by

C(A1/2 + E1/2
0 ) or E

1/2
1 .

Regarding terms like ∥zx∥∞ and ∥vx∥∞ just use the hypothesis that they

are less than 1. Lastly, R−ke−8W̃ ≤ Ce−t. This procedure gives a bound

of the form

Ce−tE
1+n/2
1 Am/2 for some n,m ≥ 0.

Putting it all together, we find

E[zx, vx] ≤ CE1 + C(t+ 1)2e−2tm1(0)
2 +

∑
i

Ce−tE
1+ni/2
1 Ami/2,

which is the desired conclusion. □
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Lemma 5.3. There are some numbers ni,mi such that, for every solution satisfying

the assumptions, there is a constant C > 0, depending only on a bound on m1(0)

and E0(0), such that

E1 ≤ CE1 + C(t+ 1)2e−2tm1(0)
2 +

∑
i

Ce−tE1+ni/2
1 Ami/2, (60)

in particular, evaluating at t = 0,

E1(0) ≤ C(E1(0) +m2
1(0)), (61)

and now the constant also depends on a bound on A(0) + E1(0).

Proof. Notice that this is the inequality of the previous lemma but with E1 and E1
reversed. Following the same argument leads to the need to control

∫
B2 +D2 dx

by E1. This control is more straightforward than before. The strategy used in

the previous lemma works with minor modifications. The first step already led

to bounds of the form Ce−tE1+n/2
0 Am/2, which is less than Ce−tE1+n/2

1 Am/2. In

the second step, the use of Cauchy-Schwarz gave E0, which is fine. Regarding the

infinite norms:

∥z∥∞, ∥v∥∞, ∥zt∥∞, ∥zx∥∞, ∥vt∥∞, ∥vx∥∞ ≤ A1/2 + E1/2
1 ,

which is also fine. □

Theorem 5.4. There is some δ > 0 such that, for every solution to the system

satisfying the assumptions and E1/2
1 (0),m2(0) < δ, there is a constant C, such that

E
1/2
1 < C(E

1/2
1 (0) +m2(0)) ∀t ∈ [0, T ), (62)

and

E1/2
1 < C(E1/2

1 (0) +m2(0)) ∀t ∈ [0, T ), (63)

where T is the supremum of times T ′ such that the solution is defined on [0, T ′].

Furthermore, the constant just depends on a bound on m2(0), E1(0) and on A1/2(0).

Proof. Let δ′ > 0 be such that δ′ < 1 and such that if E1/2
1 < δ′ then |zx| , |vx| <

1. The existence of δ′ is justified by Sobolev embedding. Now suppose that

E1/2
1 (0),m2(0) < δ << δ′. The value of δ will be specified in a moment. The

only property that we will use now is that since δ < δ′ and E1/2
1 (0) < δ, then

E1/2
1 (t) < δ′ for at least an interval of time. Consider

T̃ = sup{s : s ≤ T and E1/2
1 (t) < δ′ for t ∈ [0, T̃ )}.

For t ∈ [0, T̃ ), we have |zx| , |vx| < 1, and therefore we are allowed to apply

Lemma 5.2. This lemma asserts that

E1 ≤ CE1 + C(t+ 1)2e−2tm1(0)
2 +

∑
i

Ce−tE
1+ni/2
1 Ami/2 ∀t ∈ [0, T̃ ).

Now by the evolution equation for A, eq. (50), we know that

A1/2 ≤ A1/2(0) +

∫ t

0

E1/2
1 (s) ds ≤ A1/2(0) + t ∀t ∈ [0, T̃ ),

so e−tAmi is bounded, in [0, T̃ ), by a constant that just depends on a bound on

A1/2(0). Hence |E1,m1| < 1 and e−tAmi is bounded for t ∈ [0, T̃ ). Using these
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bounds and the previous lemma, we see that E1 is bounded in [0, T̃ ), and the

bound depends on a bound on m1(0), E1/2
1 (0) and on A1/2(0). As a consequence,

E
1+ni/2
1 < CE1 ∀t ∈ [0, T̃ ), where again, C depends on a bound on m1(0), E1/2

1 (0)

and on A1/2(0). Using this fact, we specialize the conclusion of the Lemma 5.2,

obtaining

E1 ≤ CE1 + C(t+ 1)2e−2tm2
1(0) ∀t ∈ [0, T̃ ). (64)

Here the constant C depends on a bound on m1(0), E1/2
1 (0) and on A1/2(0). Now,

we proceed to control our energies. First, by the Equation (51) and the fact that

E1 < 1 in [0, T̃ ) we know that

Ė1 ≤ C(t+ 1)e−2tE1 + C(t+ 1)e−tm2(0)E
1/2
1

+ CE1

∑
i

e−tAmi/2 ∀t ∈ [0, T̃ ).

Now, use that (t+1)e−t, (t+1)e−2t < Ce−t/2 and e−tAmi < Ce−t/2 ∀i, ∀ t ∈ [0, T̃ ).

This yields

Ė1 ≤ Ce−t/2(E1 +m2(0)E
1/2
1 ).

Using Gronwall

E
1/2
1 ≤ C(E

1/2
1 (0) +m2(0)) ∀t ∈ [0, T̃ ). (65)

The constant here depends on a bound on m2(0), E1/2
1 (0) and on A1/2(0). Now,

using eq. (64) and eq. (65) we get

E1/2
1 ≤ CE

1/2
1 + Cm1(0) ≤ C(E

1/2
1 (0) +m2(0))

≤ C(E1/2
1 (0) +m2(0)) ∀t ∈ [0, T̃ ),

where in the last inequality, we have used eq. (61). Summarizing

E1/2
1 ≤ C(E1/2

1 (0) +m2(0)) ∀t ∈ [0, T̃ ). (66)

As we are asking E1/2
1 (0),m2(0) to be less than δ, we have E1/2

1 ≤ C2δ ∀t ∈ [0, T̃ ).

Now, if we require δ < δ′

4C then E1/2
1 (t) < δ′/2 < δ′ ∀t ∈ [0, T̃ ) and hence T̃ = T .

To sum up, if m2(0), E1/2
1 (0) < δ then

E
1/2
1 ≤ C(E

1/2
1 (0) +m2(0)) ∀t ∈ [0, T ),

and since we have (66), then we also have

E1/2
1 ≤ C(E1/2

1 (0) +m2(0)) ∀t ∈ [0, T ).

□

5.2.1. Gaining one more derivative. In order to obtain existence for all t ≥ 0, what

we have to do is to extend Theorem 5.4 to E2 := E1 + E[ztt, vtt] and E2 := E1 +
E[zxx, vxx]. In this way, we control one more derivative, and then by a continuity

lemma, existence for all time to the future is guaranteed . The arguments here are

essentially the same as above. For this reason, we only state the results.
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Lemma 5.5. There are numbers ni,mi, ri such that, for every solution to the sys-

tem given by eqs. (2), (45) and (46), satisfying the assumptions, there is a constant

C > 0, depending only on a bound on m3(0) and on E0(0) +A(0), such that

Ė2 ≤ C(t+ 1)e−2tE2 + C(t+ 1)e−tm2(0)E
1/2
2

+
∑
i

Ce−tE
1+ri/2
2 Eni/2

2 Ami/2.
(67)

Lemma 5.6. There are some numbers ni,mi such that, if during an interval of time

[0, T ] we have a solution satisfying the assumptions with |zx| , |vx| , |zxx| , |vxx| < 1,

then there is a constant C > 0, depending only on a bound on m2(0) and on

E0(0) +A(0), such that

E2 ≤ CE2 + C(t+ 1)2e−2tm2(0)
2 +

∑
i

Ce−tE
1+ni/2
2 Ami/2 for t ∈ [0, T ]. (68)

Lemma 5.7. There are some numbers ni,mi, ri such that, for every solution sat-

isfying the assumptions, there is a constant C > 0, depending only on a bound on

m2(0) and E0(0), such that

E2 ≤ CE2+C(t+1)2e−2tm2(0)
2+

∑
i

Ce−tE1+ni/2
2 Ami/2+

∑
i

Ce−tAli/2Eri/21 m2
2(0),

(69)

in particular, evaluating at t = 0

E2(0) ≤ C(E2(0) +m2
2(0)), (70)

and now the constant also depends on a bound on A(0) + E1(0).

Theorem 5.8. There is some δ > 0 such that, for every solution to the system

satisfying the assumptions and E1/2
2 (0),m3(0) < δ, the solution is defined for every

t ≥ 0. Furthermore,

E
1/2
2 < C(E

1/2
2 (0) +m3(0)) ∀t ≥ 0, (71)

and

E1/2
2 < C(E1/2

2 (0) +m3(0)) ∀t ≥ 0, (72)

for some constant C that just depends on a bound on m3(0), E2(0) and on A1/2(0).

Proof. Having the three previous lemmas, we can repeat the proof of the The-

orem 5.4, which will give the desired conclusions for t ∈ [0, T ), where T is the

supremum of times T ′ such that the solution is defined on [0, T ′]. As a con-

sequence, A1/2(t) + E1/2
2 (t) + E

1/2
2 (t) is bounded in [0, T ). By Sobolev embed-

ding, the C2−norm of the solution is bounded in [0, T ). By the continuity lemma

T = +∞. □

Corollary 5.9. There is a number δ > 0, such that for any smooth solution of

the system eqs. (2) to (4), (R,W, q), with initial data that differs from that of the

background only on a compact set, the following holds. If m3(0) and M̃3(0) are

both less than δ, then the solution is defined for all t ≥ 0 and

M̃3(t) ≤ Ce−t(t+ 1)(M̃3(0) +m3(0)).

Moreover, the constant C just depends on a bound on m3(0) and on M̃3(0).
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Proof. The previous theorem, together with the estimate for A, gives a bound for

M2. Furthermore, A(0) + E2(0) is bounded by M2(0). Now applying the passage

lemma, lemma 4.10 (which also works in this non-polarized case), we have the result

for W −Wb, q. □

6. General perturbations

So far, we have proved results concerning compactly supported perturbations.

In this section, we provide an argument to generalize these results for solutions

in a larger functional space. To do this, we approximate the initial data given

by a sequence of initial data which, as before, differ from that of the background

only on a compact set. We will see that the sequence of solutions converges to the

solution with the given initial data in a suitable sense. Consider (R1,W1, q1) and

(R2,W2, q2), two solutions with initial data that differs from that of the background

only on a compact set. Define z1 = R
1/2
1 (W1 −Wb), v1 = R1/2e−2W q and similarly

z2 and v2. Then, for each i, we have

(zi)tt − (zi)xx + f(Gi, R
−1/2
i , Rit

Ri
, Rix

Ri
, vi, vix, vit, zi, zit, zix,Wbx) = gi,

(vi)tt − (vi)xx + h(Gi, R
−1/2
i , Rit

Ri
, Rix

Ri
, vi, vix, vit, zi, zit, zix,Wbx) = 0,

where f and h are polynomials on these variables. For instance, in the polarized

case, h ≡ 0 and f = zG. For short, let us simply put f(Ai, Bi, C) where Ai =

(Gi, R
−1/2
i , Rit

Ri
, Rix

Ri
), Bi = (vi, vix, vit, zi, zit, zix) and C = Wbx. In addition, put

∆z = z2 − z1 and analogously, also define ∆v, ∆A, ∆B, ∆f , ∆g and ∆R. Taking

the difference of the equations for i = 1 and i = 2 yields

(∆z)tt − (∆z)xx +∆f = ∆g, (73)

(∆v)tt − (∆v)xx +∆h = 0. (74)

In order to control the sequence, we need to introduce the following energy

Hn=
1

2

n∑
i=0

∫
R
[(∂ix∆z)x]

2+[(∂ix∆z)t]
2+(∂ix∆z)

2+[(∂ix∆v)x]
2+[(∂ix∆v)t]

2+(∂ix∆v)
2dx.

Again, some estimates are required to bound Hn. For convenience, we introduce

the notation

mk[f ](t) := ∥f∥Ck(t) + ∥∂tf∥Ck(t), mk(t) := sup
i
mk[Ri](t).

Also note that we now have two definitions for En, namely, one for (z1, v1) and one

for (z2, v2). Now, we will call En to the maximum of these two.

Lemma 6.1. For every α multi-index, there is a constant C such that

|∂α∆g| ≤ C
m|α|+1[∆R](0)(t+ 1)

cosh(2x)3/2et
, (75)

and also

∥∂α∆A∥ ≤ C
m|α|+1[∆R](0)

et cosh(2x)
(t+ 1). (76)

Moreover, the constant C just depends on α, and on a bound on m|α|+1(0).
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Proof. The same kind of computations shown in the proof of the Lemma 4.4 works.

□

Proposition 6.2 (Control of Hn). Let n ≥ 1 and suppose that for all t ≥ 0

En(t) ≤ K(En(0) +mn+1(0)),

for some constant K. Then, there is a polynomial P (t) and a constant C such that

Ḣn ≤ CP (t)(Hn +m2
n+1[∆R](0)).

Moreover, the constant C, and P (t), just depends on a bound on K, A(0), En(0)
and on mn+1(0).

Proof. Deriving inside the integral, applying parts, using the equation, Cauchy-

Schwarz and the eq. (75), we obtain

Ḣn ≤ CHn + CH1/2
n mn+1[∆R](0) + C

n∑
i=0

∫
R
(∂ix∆z)t∂

i
x(∆f) + (∂ix∆v)t∂

i
x(∆h) dx.

so we need to bound the last two terms. Since these terms are completely sim-

ilar, we only show how to control the first term. To do that, let us call ζ(λ) =

(∆A,∆B, 0)λ+ (A1, B1, C), and observe that

|∆f | = |f(A1, B1, C)− f(A2, B2, C)| ≤ sup
λ∈[0,1]

∥∇f(ζ(λ))∥(∥∆A∥+ ∥∆B∥).

Now, ∇f is a polynomial which is evaluated in a point between (A1, B1, C) and

(A2, B2, C). Each of the components in this vectors are bounded by C(t + 1)

where C is a constant that depends on a bound on E1(0), A(0), m2(0) and K.

As a consequence, the term involving ∇f grows polynomially. Using this and the

eq. (76) we get

|∆f | ≤ P (t)(C
m1[∆R](0)(t+ 1)e−t

cosh(2x)
+ ∥∆B∥),

and hence ∫
R
(∆z)t |∆f | dx ≤ CP (t)(H1/2

n mn+1[∆R](0) +Hn).

For the other terms, a slightly different argument is needed. Given i ≥ 1 we are

going to control the term involving (∂ix∆z)t∂
i
x(∆f), only using that mi+1 and Ei

are bounded. In this way, we can apply this up to i = n without needing more

hypotheses. Consider

∂ix(∆f) = ∂ix(f(A1, B1, C)− f(A2, B2, C)) = ∂x∂
i−1
x (f(A1, B1, C)− f(A2, B2, C))

= ∂x(f̂(Â1, B̂1, Ĉ)− f̂(Â2, B̂2, Ĉ)),

here Â1 is a vector formed by the elements of A1 and their i − 1 derivatives with

respect to x, and similarly for Â2, B̂1, B̂2 and Ĉ. Now f̂ is a polynomial on these

variables. Hence

∂ix(∆f) = ∇f̂(Â2, B̂2, Ĉ) · (∂xÂ2, ∂xB̂2, ∂xĈ)−∇f̂(Â1, B̂1, Ĉ) · (∂xÂ1, ∂xB̂1, ∂xĈ)

= (I) + (II), where

(I) = ∇f̂(Â2, B̂2, Ĉ) · (∂x∆Â, ∂x∆B̂, 0)

(II) = [∇f̂(Â2, B̂2, Ĉ)−∇f̂(Â1, B̂1, Ĉ)] · (∂xÂ1, ∂xB̂1, ∂xĈ).
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For (II), observe that

(II) ≤ C sup
i,j,t∈[0,1]

∣∣∣∂i∂j f̂(ζ̂(t))∣∣∣ ∥(∆Â,∆B̂, 0)∥∥(∂xÂ1, ∂xB̂1, ∂xĈ)∥,

where C is a constant that does not depend on anything. The first term in this

product is a polynomial which is evaluated in a point between (Â1, B̂1, Ĉ) and

(Â2, B̂2, Ĉ). The terms in Âj , j = 1, 2, are Gj ,R
−1/2
j , Rjt/Rj , Rjx/Rj , and their

x−derivatives up to order i− 1. Since mi is bounded, all these terms are bounded.

The terms in B̂j are composed of the x−derivatives of zj , zjt, zjx, vj , vjt, vjx up to

order i − 1. Since Ei is bounded, each term grows, at most, linearly. Lastly, Ĉ is

bounded. As a result, the first term in this product is bounded by CP (t), where P (t)

is a polynomial and C is a constant that depends on a bound on Ei(0),A(0),mi+1(0)

and K. For the middle term, we use the eq. (76) for ∆Â, and ∥∆B̂∥ ≤ CH1/2
n ,

which is true by Sobolev embedding. This yields

|(II)| ≤ CP (t)(
mi[∆R](0)(t+ 1)

et cosh(2x)
+H1/2

n )∥(∂xÂ1, ∂xB̂1, ∂xĈ)∥.

Using the same ideas, we see that

|(I)| ≤ CP (t)(C
mi+1[∆R](0)(t+ 1)e−t

cosh(2x)
+ ∥∂x∆B̂∥).

Now, using Cauchy-Schwarz, and the fact that
∫
R∥(∂xÂ1, ∂xB̂1, ∂xĈ)∥2 dx is bounded,

we get ∫
R
(∂ix∆z)t∂

i
x(∆f) dx ≤ CP (t)

(
H1/2
n mn+1[∆R](0) +Hn

)
Putting all together, and using ab ≤ a2 + b2, we arrive at the conclusion. □

Now we can enhance the results given by Corollary 4.11 and Corollary 5.9.

Theorem 6.3. Let k ≥ 3. Let (R,W ) be a C2 solution of the system eqs. (2)

and (3) with q = 0. Suppose also that (R−Rb(0, ·), ∂t(R−Rb)(0, ·)) ∈ Ck0 ×Ck−1
0 ,

m0(0) < 2R0/3 and ((W −Wb)(0, ·), ∂t(W −Wb)(0, ·)) ∈ H̃k × H̃k−1. Then, the

solution is defined for every t ≥ 0 and

M̃k(t) ≤ Ce−t(t+ 1)
(
M̃k(0) +mk(0)

)
.

Moreover, the constant C depends only on an upper bound on mk(0) and k.

Proof. Consider a sequence of initial data (Ri(0, ·), Rit(0, ·)) such that for each i,

((Ri − Rb)(0, ·), Rit − Rbt(0, ·)) are compactly supported and converges to ((R −
Rb)(0, ·), (R − Rb)t(0, ·)) in Ck0 × Ck−1

0 . Similarly, we ask the same for the initial

data of W , but this time, we require that the sequence (zi(0, ·), zit(0, ·)) converges
to (z(0, ·), zt(0, ·)) in Hk ×Hk−1.

A quick computation using D’Alembert shows that for each fixed T > 0, (Ri, Rit)

is a Cauchy sequence in C([0, T ], Ck0 )×C([0, T ], Ck−1
0 ), converging to (R,Rt). Re-

garding zi, first note that eq. (42) holds for every i with the same constant. Accord-

ingly, we are in the hypothesis of Proposition 6.2, with the same K for each i. By

applying this with n = k−1, we see that Hk−1 ≤ C∗(Hk−1(0)+mk(0)), 0 ≤ t ≤ T ,

where C∗ now depends also on T . Again, we can use the same constant, C∗, each

time we apply this proposition. It follows that (zi, zit) is a Cauchy sequence in
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C([0, T ], Hk) × C([0, T ], Hk−1). Since k ≥ 3, we have that (zi, zit) is a Cauchy

sequence in C([0, T ], C2) × C([0, T ], C1). Finally, using the equation (73), we

see that we also have control of ∂2t zi and then, we have that zi is a Cauchy se-

quence in C2([0, T ]× R,R). As result, zi converges in C
2([0, T ]× R) to a function

h : [0, T ]×R → R which satisfies the equation (26) with initial data (z(0, ·), zt(0, ·)).
By uniqueness, h is the solution with this initial data, defined on [0, T ]× R. From
now on, we shall call it z instead of h. Now, by eq. (43), we have

M̃k[zi](t) ≤ Ce−t(t+ 1)
(
M̃k[zi](0) +mk[Ri](0)

)
∀t ≥ 0,

where we have used the same constant for each i. Since (zi, zit) converges in

C([0, T ], Hk)×C([0, T ], Hk−1) to (z, zt) and (Ri, Rit) converges in C([0, T ], C
k
0 )×

C([0, T ], Ck−1
0 ) to (R,Rt), taking limit in the above estimate yields

Mk[z](t) ≤ Ce−t(t+ 1) (Mk[z](0) +mk[R](0)) 0 ≤ t ≤ T.

Since this is valid for all T , by uniqueness, we have constructed a smooth solution

z to the eq. (26) which satisfies this estimate for all t ≥ 0 and which has the

desired initial data, namely, that of W but seen in the z−variable. By the passage

Lemma 4.10, this z corresponds to the smooth solution W given in the statement.

The estimate in the statement is a consequence of this lemma as well. □

Theorem 6.4. There is a number δ > 0 such that, any C2 solution of the system

eqs. (2) to (4), (R,W, q), with initial data satisfying (R−Rb(0, ·), ∂t(R−Rb)(0, ·)) ∈
Ck0 × Ck−1

0 , m0(0) < 2R0/3, ((W − Wb)(0, ·), ∂t(W − Wb)(0, ·)) ∈ H̃k × H̃k−1,

(q(0, ·), ∂tq(0, ·)) ∈ H̃k × H̃k−1, and m3(0) < δ, M̃3(0) < δ, is defined for all t ≥ 0

and

M̃3(t) ≤ Ce−t(t+ 1)(M̃3(0) +m3(0)).

Moreover, the constant C depends only on an upper bound on m3(0) and on M̃3(0).

Proof. The argument is essentially the same, the difference being that now we work

with zi and vi, that it is Theorem 5.8 which allows us to use Proposition 6.2 with

n = 2, and also that we use the equation given by Corollary 5.9, version M3,

instead of the Equation (43). □
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