Por favor, use este identificador para citar o enlazar este ítem:
https://hdl.handle.net/20.500.12008/43540
Cómo citar
| Título: | Estimating an images blur kernel using natural image statistics, and deblurring it : An analysis of the Goldstein-Fattal method |
| Autor: | Anger, Jeremy Facciolo, Gabriele Delbracio, Mauricio |
| Tipo: | Artículo |
| Descriptores: | Procesamiento de Señales |
| Fecha de publicación: | 2018 |
| Resumen: | Despite the significant improvement in image quality resulting from improvement in optical sensors and general electronics, camera shake blur significantly undermines the quality of hand-held photographs. In this work, we present a detailed description and implementation of the blur kernel estimation algorithm introduced by Goldstein and Fattal in 2012. Unlike most methods that attempt to solve an inverse problem through a variational formulation (e.g. through a Maximum A Posteriori estimation), this method directly estimates the blur kernel by modeling statistical irregularities in the power spectrum of blurred natural images. The adopted mathematical model extends the well-known power-law by contemplating the presence of dominant strong edges in particular directions. The blur kernel is retrieved from an estimation of its power spectrum, by solving a phase retrieval problem using additional constraints associated with the particular nature of camera shake blur kernels (e.g. non-negativity and small spatial support). Although the algorithm is conceptually simple, its numerical implementation presents several challenges. This work contributes to a detailed anatomy of the Goldstein and Fattal method, its algorithmic description, and its parameters. |
| Editorial: | IPOL |
| EN: | Image Processing On Line, 8 (2018), pp. 282–304 |
| Citación: | Anger, J, Facciolo, G, Delbracio, M. “Estimating an Image's Blur Kernel Using Natural Image Statistics, and Deblurring it: An Analysis of the Goldstein-Fattal Method” Image Processing On Line, 8 (2018), pp. 282–304. https://doi.org/10.5201/ipol.2018.211 |
| ISSN: | 2105-1232 |
| Departamento académico: | Procesamiento de Señales |
| Grupo de investigación: | Tratamiento de Imágenes |
| Licencia: | Licencia Creative Commons Atribución – Compartir Igual (CC - By-SA) |
| Aparece en las colecciones: | Publicaciones académicas y científicas - Instituto de Ingeniería Eléctrica |
Ficheros en este ítem:
| Fichero | Descripción | Tamaño | Formato | ||
|---|---|---|---|---|---|
| AFD18a.pdf | 6,83 MB | Adobe PDF | Visualizar/Abrir |
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons