english Icono del idioma   español Icono del idioma  

Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/20.500.12008/43540 Cómo citar
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorAnger, Jeremyes
dc.contributor.authorFacciolo, Gabrielees
dc.contributor.authorDelbracio, Mauricioes
dc.date.accessioned2024-04-16T16:21:18Z-
dc.date.available2024-04-16T16:21:18Z-
dc.date.issued2018es
dc.date.submitted20240416es
dc.identifier.citationAnger, J, Facciolo, G, Delbracio, M. “Estimating an Image's Blur Kernel Using Natural Image Statistics, and Deblurring it: An Analysis of the Goldstein-Fattal Method” Image Processing On Line, 8 (2018), pp. 282–304. https://doi.org/10.5201/ipol.2018.211es
dc.identifier.issn2105-1232es
dc.identifier.urihttps://hdl.handle.net/20.500.12008/43540-
dc.description.abstractDespite the significant improvement in image quality resulting from improvement in optical sensors and general electronics, camera shake blur significantly undermines the quality of hand-held photographs. In this work, we present a detailed description and implementation of the blur kernel estimation algorithm introduced by Goldstein and Fattal in 2012. Unlike most methods that attempt to solve an inverse problem through a variational formulation (e.g. through a Maximum A Posteriori estimation), this method directly estimates the blur kernel by modeling statistical irregularities in the power spectrum of blurred natural images. The adopted mathematical model extends the well-known power-law by contemplating the presence of dominant strong edges in particular directions. The blur kernel is retrieved from an estimation of its power spectrum, by solving a phase retrieval problem using additional constraints associated with the particular nature of camera shake blur kernels (e.g. non-negativity and small spatial support). Although the algorithm is conceptually simple, its numerical implementation presents several challenges. This work contributes to a detailed anatomy of the Goldstein and Fattal method, its algorithmic description, and its parameters.es
dc.languageenes
dc.publisherIPOLes
dc.relation.ispartofImage Processing On Line, 8 (2018), pp. 282–304es
dc.rightsLas obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad De La República. (Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014)es
dc.subject.otherProcesamiento de Señaleses
dc.titleEstimating an images blur kernel using natural image statistics, and deblurring it : An analysis of the Goldstein-Fattal methodes
dc.typeArtículoes
dc.rights.licenceLicencia Creative Commons Atribución – Compartir Igual (CC - By-SA)es
dc.identifier.doihttps://doi.org/10.5201/ipol.2018.211es
udelar.academic.departmentProcesamiento de Señales-
udelar.investigation.groupTratamiento de Imágenes-
Aparece en las colecciones: Publicaciones académicas y científicas - Instituto de Ingeniería Eléctrica

Ficheros en este ítem:
Fichero Descripción Tamaño Formato   
AFD18a.pdf6,83 MBAdobe PDFVisualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons