Por favor, use este identificador para citar o enlazar este ítem:
https://hdl.handle.net/20.500.12008/43540
Cómo citar
Registro completo de metadatos
Campo DC | Valor | Lengua/Idioma |
---|---|---|
dc.contributor.author | Anger, Jeremy | es |
dc.contributor.author | Facciolo, Gabriele | es |
dc.contributor.author | Delbracio, Mauricio | es |
dc.date.accessioned | 2024-04-16T16:21:18Z | - |
dc.date.available | 2024-04-16T16:21:18Z | - |
dc.date.issued | 2018 | es |
dc.date.submitted | 20240416 | es |
dc.identifier.citation | Anger, J, Facciolo, G, Delbracio, M. “Estimating an Image's Blur Kernel Using Natural Image Statistics, and Deblurring it: An Analysis of the Goldstein-Fattal Method” Image Processing On Line, 8 (2018), pp. 282–304. https://doi.org/10.5201/ipol.2018.211 | es |
dc.identifier.issn | 2105-1232 | es |
dc.identifier.uri | https://hdl.handle.net/20.500.12008/43540 | - |
dc.description.abstract | Despite the significant improvement in image quality resulting from improvement in optical sensors and general electronics, camera shake blur significantly undermines the quality of hand-held photographs. In this work, we present a detailed description and implementation of the blur kernel estimation algorithm introduced by Goldstein and Fattal in 2012. Unlike most methods that attempt to solve an inverse problem through a variational formulation (e.g. through a Maximum A Posteriori estimation), this method directly estimates the blur kernel by modeling statistical irregularities in the power spectrum of blurred natural images. The adopted mathematical model extends the well-known power-law by contemplating the presence of dominant strong edges in particular directions. The blur kernel is retrieved from an estimation of its power spectrum, by solving a phase retrieval problem using additional constraints associated with the particular nature of camera shake blur kernels (e.g. non-negativity and small spatial support). Although the algorithm is conceptually simple, its numerical implementation presents several challenges. This work contributes to a detailed anatomy of the Goldstein and Fattal method, its algorithmic description, and its parameters. | es |
dc.language | en | es |
dc.publisher | IPOL | es |
dc.relation.ispartof | Image Processing On Line, 8 (2018), pp. 282–304 | es |
dc.rights | Las obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad De La República. (Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014) | es |
dc.subject.other | Procesamiento de Señales | es |
dc.title | Estimating an images blur kernel using natural image statistics, and deblurring it : An analysis of the Goldstein-Fattal method | es |
dc.type | Artículo | es |
dc.rights.licence | Licencia Creative Commons Atribución – Compartir Igual (CC - By-SA) | es |
dc.identifier.doi | https://doi.org/10.5201/ipol.2018.211 | es |
udelar.academic.department | Procesamiento de Señales | - |
udelar.investigation.group | Tratamiento de Imágenes | - |
Aparece en las colecciones: | Publicaciones académicas y científicas - Instituto de Ingeniería Eléctrica |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | ||
---|---|---|---|---|---|
AFD18a.pdf | 6,83 MB | Adobe PDF | Visualizar/Abrir |
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons