Por favor, use este identificador para citar o enlazar este ítem:
https://hdl.handle.net/20.500.12008/43528
Cómo citar
Registro completo de metadatos
Campo DC | Valor | Lengua/Idioma |
---|---|---|
dc.contributor.author | Su, Shuochen | es |
dc.contributor.author | Delbracio, Mauricio | es |
dc.contributor.author | Wang, Jue | es |
dc.contributor.author | Sapiro, Guillermo | es |
dc.contributor.author | Heidrich, Wolfgang | es |
dc.contributor.author | Wang, Oliver | es |
dc.date.accessioned | 2024-04-16T16:21:13Z | - |
dc.date.available | 2024-04-16T16:21:13Z | - |
dc.date.issued | 2017 | es |
dc.date.submitted | 20240416 | es |
dc.identifier.citation | Su, S, Delbracio, M, Wang, J, Sapiro, G, Heidrich, W, Wang, O. "Deep Video Deblurring for Hand-Held Cameras" Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 2017. | es |
dc.identifier.uri | https://hdl.handle.net/20.500.12008/43528 | - |
dc.description | Versión de acceso abierto disponibilizada por Computer Vision Foundation | es |
dc.description.abstract | Motion blur from camera shake is a major problem in videos captured by hand-held devices. Unlike single-image deblurring, video-based approaches can take advantage of the abundant information that exists across neighboring frames. As a result the best performing methods rely on the alignment of nearby frames. However, aligning images is a computationally expensive and fragile procedure, and methods that aggregate information must therefore be able to identify which regions have been accurately aligned and which have not, a task that requires high level scene understanding. In this work, we introduce a deep learning solution to video deblurring, where a CNN is trained end-toend to learn how to accumulate information across frames. To train this network, we collected a dataset of real videos recorded with a high frame rate camera, which we use to generate synthetic motion blur for supervision. We show that the features learned from this dataset extend to deblurring motion blur that arises due to camera shake in a wide range of videos, and compare the quality of results to a number of other baselines | es |
dc.language | en | es |
dc.relation.ispartof | Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21-16 jul. 2017 | es |
dc.rights | Las obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad De La República. (Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014) | es |
dc.subject | Adaptive optics | es |
dc.subject | Optical imaging | es |
dc.subject | Cameras | es |
dc.subject | Data models | es |
dc.subject.other | Procesamiento de Señales | es |
dc.title | Deep video deblurring for hand-held cameras | es |
dc.type | Ponencia | es |
dc.rights.licence | Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0) | es |
udelar.academic.department | Procesamiento de Señales | - |
udelar.investigation.group | Tratamiento de Imágenes | - |
Aparece en las colecciones: | Publicaciones académicas y científicas - Instituto de Ingeniería Eléctrica |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | ||
---|---|---|---|---|---|
SDWSHW17.pdf | 8,11 MB | Adobe PDF | Visualizar/Abrir |
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons