english Icono del idioma   español Icono del idioma  

Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/20.500.12008/43528 Cómo citar
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorSu, Shuochenes
dc.contributor.authorDelbracio, Mauricioes
dc.contributor.authorWang, Juees
dc.contributor.authorSapiro, Guillermoes
dc.contributor.authorHeidrich, Wolfganges
dc.contributor.authorWang, Oliveres
dc.date.accessioned2024-04-16T16:21:13Z-
dc.date.available2024-04-16T16:21:13Z-
dc.date.issued2017es
dc.date.submitted20240416es
dc.identifier.citationSu, S, Delbracio, M, Wang, J, Sapiro, G, Heidrich, W, Wang, O. "Deep Video Deblurring for Hand-Held Cameras" Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 2017.es
dc.identifier.urihttps://hdl.handle.net/20.500.12008/43528-
dc.descriptionVersión de acceso abierto disponibilizada por Computer Vision Foundationes
dc.description.abstractMotion blur from camera shake is a major problem in videos captured by hand-held devices. Unlike single-image deblurring, video-based approaches can take advantage of the abundant information that exists across neighboring frames. As a result the best performing methods rely on the alignment of nearby frames. However, aligning images is a computationally expensive and fragile procedure, and methods that aggregate information must therefore be able to identify which regions have been accurately aligned and which have not, a task that requires high level scene understanding. In this work, we introduce a deep learning solution to video deblurring, where a CNN is trained end-toend to learn how to accumulate information across frames. To train this network, we collected a dataset of real videos recorded with a high frame rate camera, which we use to generate synthetic motion blur for supervision. We show that the features learned from this dataset extend to deblurring motion blur that arises due to camera shake in a wide range of videos, and compare the quality of results to a number of other baselineses
dc.languageenes
dc.relation.ispartofConference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21-16 jul. 2017es
dc.rightsLas obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad De La República. (Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014)es
dc.subjectAdaptive opticses
dc.subjectOptical imaginges
dc.subjectCamerases
dc.subjectData modelses
dc.subject.otherProcesamiento de Señaleses
dc.titleDeep video deblurring for hand-held camerases
dc.typePonenciaes
dc.rights.licenceLicencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)es
udelar.academic.departmentProcesamiento de Señales-
udelar.investigation.groupTratamiento de Imágenes-
Aparece en las colecciones: Publicaciones académicas y científicas - Instituto de Ingeniería Eléctrica

Ficheros en este ítem:
Fichero Descripción Tamaño Formato   
SDWSHW17.pdf8,11 MBAdobe PDFVisualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons