Por favor, use este identificador para citar o enlazar este ítem:
https://hdl.handle.net/20.500.12008/43517
Cómo citar
Título: | Similarity measure for cell membrane fusion proteins identification |
Autor: | Aguilar, Pablo S Megrian, Daniela Lecumberry, Federico |
Tipo: | Ponencia |
Palabras clave: | Cell membrane fusion, Viral fusogen, Similarity measure, Support vector machines, One-class support vector machines, k-nearest neighbors |
Descriptores: | Procesamiento de Señales |
Fecha de publicación: | 2017 |
Resumen: | This work proposes a similarity measure between secondary structures of proteins capable of fusing cell membranes and its implementation in a classification system. For the evaluation of the metric we used secondary structures estimated from amino acid sequences of Class I and Class II viral fusogens (VFs), as well as VFs precursor proteins. We evaluated three different classifiers based on k-Nearest Neighbors, Support Vector Machines and One-Class Support Vector Machines in different configurations. This is a first approach to the similarity measure with satisfactory results. It is possible that this method could allow the identification of unknown membrane fusion proteins in other biological models than the proposed in this work. Keywords: Cell Membrane Fusion, Viral Fusogen, Similarity Measure, Support Vector Machines, One-Class Support Vector Machines, k-Nearest Neighbors |
Descripción: | Trabajo presentado en Computer Vision, and Applications. CIARP 2016 |
Citación: | Megrian, D., Aguilar, P.S., Lecumberry, F. "Similarity measure for cell membrane fusion proteins identification”. Publicado en: Beltrán-Castañón, C., Nyström, I., Famili, F. (eds) Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications. CIARP 2016. Srpinger, Lecture Notes in Computer Science, vol 10125. https://doi.org/10.1007/978-3-319-52277-7_32 |
Departamento académico: | Procesamiento de Señales |
Grupo de investigación: | Tratamiento de Imágenes |
Aparece en las colecciones: | Publicaciones académicas y científicas - Instituto de Ingeniería Eléctrica |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | ||
---|---|---|---|---|---|
MAL17.pdf | 245,79 kB | Adobe PDF | Visualizar/Abrir |
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons